GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
MPI_Rget(3) MPI MPI_Rget(3)

MPI_Rget - Get data from a memory window on a remote process

int MPI_Rget(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Win win, MPI_Request * request)

MPI_Rget is similar to MPI_Get , except that it allocates a communication request object and associates it with the request handle (the argument request) that can be used to wait or test for completion. The completion of an MPI_Rget operation indicates that the data is available in the origin buffer. If origin_addr points to memory attached to a window, then the data becomes available in the private copy of this window.

origin_addr
- Address of the buffer in which to receive the data
origin_count
- number of entries in origin buffer (nonnegative integer)
origin_datatype
- datatype of each entry in origin buffer (handle)
target_rank
- rank of target (nonnegative integer)
target_disp
- displacement from window start to the beginning of the target buffer (nonnegative integer)
target_count
- number of entries in target buffer (nonnegative integer)
target_datatype
- datatype of each entry in target buffer (handle)
win
- window object used for communication (handle)

request
- RMA request (handle)

This routine is thread-safe. This means that this routine may be safely used by multiple threads without the need for any user-provided thread locks. However, the routine is not interrupt safe. Typically, this is due to the use of memory allocation routines such as malloc or other non-MPICH runtime routines that are themselves not interrupt-safe.

All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK ) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.

All MPI objects (e.g., MPI_Datatype , MPI_Comm ) are of type INTEGER in Fortran.

All MPI routines (except MPI_Wtime and MPI_Wtick ) return an error value; C routines as the value of the function and Fortran routines in the last argument. Before the value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Comm_set_errhandler (for communicators), MPI_File_set_errhandler (for files), and MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine MPI_Errhandler_set may be used but its use is deprecated. The predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error; however, MPI implementations will attempt to continue whenever possible.

MPI_SUCCESS
- No error; MPI routine completed successfully.
MPI_ERR_ARG
- Invalid argument. Some argument is invalid and is not identified by a specific error class (e.g., MPI_ERR_RANK ).
MPI_ERR_COUNT
- Invalid count argument. Count arguments must be non-negative; a count of zero is often valid.
MPI_ERR_RANK
- Invalid source or destination rank. Ranks must be between zero and the size of the communicator minus one; ranks in a receive ( MPI_Recv , MPI_Irecv , MPI_Sendrecv , etc.) may also be MPI_ANY_SOURCE .

MPI_ERR_TYPE
- Invalid datatype argument. Additionally, this error can occur if an uncommitted MPI_Datatype (see MPI_Type_commit ) is used in a communication call.
MPI_ERR_WIN
- Invalid MPI window object

MPI_Get
12/16/2021

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.