GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
PDDTTRS(l) ) PDDTTRS(l)

PDDTTRS - solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)

SUBROUTINE PDDTTRS(
TRANS, N, NRHS, DL, D, DU, JA, DESCA, B, IB, DESCB, AF, LAF, WORK, LWORK, INFO )
CHARACTER TRANS INTEGER IB, INFO, JA, LAF, LWORK, N, NRHS INTEGER DESCA( * ), DESCB( * ) DOUBLE PRECISION AF( * ), B( * ), D( * ), DL( * ), DU( * ), WORK( * )

PDDTTRS solves a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS) or
 

A(1:N, JA:JA+N-1)' * X = B(IB:IB+N-1, 1:NRHS)
 
where A(1:N, JA:JA+N-1) is the matrix used to produce the factors stored in A(1:N,JA:JA+N-1) and AF by PDDTTRF.
 
A(1:N, JA:JA+N-1) is an N-by-N real
 
tridiagonal diagonally dominant-like distributed
 
matrix.
 
Routine PDDTTRF MUST be called first.
 
13 August 2001 ScaLAPACK version 1.7

Search for    or go to Top of page |  Section l |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.