Quick Navigator

 Search Site Miscellaneous Server Agreement Year 2038 Credits
 PSLAED0(l) ) PSLAED0(l)

NAME

PSLAED0 - compute all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method

SYNOPSIS

SUBROUTINE PSLAED0(
N, D, E, Q, IQ, JQ, DESCQ, WORK, IWORK, INFO )
INTEGER INFO, IQ, JQ, N INTEGER DESCQ( * ), IWORK( * ) REAL D( * ), E( * ), Q( * ), WORK( * )

PURPOSE

PSLAED0 computes all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

ARGUMENTS

N (global input) INTEGER
The order of the tridiagonal matrix T. N >= 0.
D (global input/output) REAL array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in descending order.
E (global input/output) REAL array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
Q (local output) REAL array,
global dimension (N, N), local dimension ( LLD_Q, LOCc(JQ+N-1)) Q contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. On output, Q is distributed across the P processes in block cyclic format.
IQ (global input) INTEGER
Q's global row index, which points to the beginning of the submatrix which is to be operated on.
JQ (global input) INTEGER
Q's global column index, which points to the beginning of the submatrix which is to be operated on.
DESCQ (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix Z.
WORK (local workspace ) REAL array, dimension (LWORK)
LWORK = 6*N + 2*NP*NQ, with NP = NUMROC( N, MB_Q, MYROW, IQROW, NPROW ) NQ = NUMROC( N, NB_Q, MYCOL, IQCOL, NPCOL ) IQROW = INDXG2P( IQ, NB_Q, MYROW, RSRC_Q, NPROW ) IQCOL = INDXG2P( JQ, MB_Q, MYCOL, CSRC_Q, NPCOL )
IWORK (local workspace/output) INTEGER array, dimension (LIWORK)
LIWORK = 2 + 7*N + 8*NPCOL
INFO (global output) INTEGER
= 0: successful exit

< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i. > 0: The algorithm failed to compute the INFO/(N+1) th eigenvalue while working on the submatrix lying in global rows and columns mod(INFO,N+1).
 13 August 2001 ScaLAPACK version 1.7

Search for    or go to Top of page |  Section l |  Main Index

Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.