GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
BMF(1) BMF(1)

bmf - efficient Bayesian mail filter

bmf [-t] [-n] [-s] [-N] [-S] [-f fmt] [-d db] [-i file] [-k n] [-m type] [-p]
    [-v] [-V] [-h]

bmf is a Bayesian mail filter. In its normal mode of operation, it takes an email message or other text on standard input, does a statistical check against lists of "good" and "spam" words, registers the new data, and returns a status code indicating whether or not the message is spam. BMF is written with fast, zero-copy algorithms, coded directly in C, and tuned for speed. It aims to be faster, smaller, and more versatile than similar applications.

bmf supports both mbox and maildir mail storage formats. It will automatically process multiple messages within an mbox file separately.

Without command-line options, bmf processes the input, registers it as either "good" or "spam", and returns the appropriate error code. The wordlist directory and nonexistent wordfiles are created if absent.

-t Test to see if the input is spam. The word lists are not updated. A report is written to stdout showing the final score and the tokens with the highest deviation form a mean of 0.5.

-n Register the input as non-spam.

-s Register the input as spam.

-N Register the input as non-spam and undo a prior registration as spam.

-S Register the input as spam and undo a prior registration as non-spam.

-f fmt Specify database format. Valid formats are text, db, and mysql. Text is always valid. The others may not be available if the corresponding option was not enabled at compile time. The default is db if available, else text.

-d db Specify database or directory for loading and saving word lists. The default is ~/.bmf in text mode.

-i file Use file for input instead of stdin.

-k n Specify the number of extrema (keepers) to use in the Bayes calculation. The default is 15.

-m fmt Specify mail storage format. Valid formats are mbox and maildir. The default is to automatically detect the mail storage format. This option is deprecated.

-p Copy the input to the output (passthrough) and insert spam headers in the style of SpamAssassin. An X-Spam-Status header is always inserted with processing details. The contents of this header always begin with either "Yes" or "No". If the input is judged to be spam, the header "X-Spam-Flag: YES" is also inserted.

-v Be more verbose. This option is not well supported yet.

-V Display version information.

-h Display usage information.

bmf treats its input as a bag of tokens. Each token is checked against "good" and "bad" wordlists, which maintain counts of the numbers of times it has occurred in non-spam and spam mails. These numbers are used to compute the probability that a mail in which the token occurs is spam. After probabilities for all input tokens have been computed, a fixed number of the probabilities that deviate furthest from average are combined using Bayes's theorem on conditional probabilities.

While this method sounds crude compared to the more usual pattern-matching approach, it turns out to be extremely effective. Paul Graham's paper A Plan For Spam: http://www.paulgraham.com/spam.html is recommended reading.

bmf improves on Paul's proposal by doing smarter lexical analysis. In particular, hostnames and IP addresses are not discarded, and certain types of MTA information are discarded (such as message ids and dates).

MIME and other attachments are not decoded. Experience from watching the token streams suggests that spam with enclosures invariably gives itself away through cues in the headers and non-enclosure parts. Nonetheless, I would like to add the ability to decode quoted-printable and perhaps base64 encodings for textual attachments.

Please see the README for samples and suggestions.

In passthrough mode: zero for success, nonzero for failure.

In non-passthrough mode: 0 for spam; 1 for non-spam; 2 for I/O or other errors.

~/.bmf/goodlist.txt
List of good tokens for text mode.

~/.bmf/spamlist.txt
List of bad tokens for text mode.

~/.bmf/goodlist.db
List of good tokens for libdb mode.

~/.bmf/spamlist.db
List of bad tokens for libdb mode.

The lexer should recognize multiline headers.

The lexer should recognize MIME attachments.

Content-Transfer-Encoding is not decoded.

Tom Marshall <tommy@tig-grr.com>.

The Bayes algorithm is from bogofilter by Eric S. Raymond <esr@thyrsus.com>. bogofilter can be found at the bogofilter project page: http://bogofilter.sourceforge.net/.


Search for    or go to Top of page |  Section 1 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.