|
|
| |
GXEMUL(1) |
FreeBSD General Commands Manual |
GXEMUL(1) |
gxemul —
an experimental framework for full-system machine
emulation
gxemul |
[machine, other, and general options] [file
...] |
gxemul |
[general options] @configfile |
gxemul is a framework for full-system computer
architecture emulation. Several processor architectures and machine types have
been implemented. It is working well enough to allow unmodified
"guest" operating systems (e.g. NetBSD) to run inside the emulator,
as if they were running on real hardware.
The emulator emulates (networks of) real machines. The machines
may consist of ARM, MIPS, Motorola 88K, PowerPC, and SuperH processors, and
various surrounding hardware components such as framebuffers, busses,
interrupt controllers, ethernet controllers, disk controllers, and serial
port controllers.
Please read the HTML documentation for more details on how to run specific guest
operating systems in the emulator.
The emulator can be invoked in the following ways:
1. When emulating a complete machine, configuration options can be
supplied directly on the command line.
2. Options can be read from a configuration file.
The easiest way to use the emulator is to supply settings directly
on the command line.
The most important thing you need to supply is the file argument.
This is the name of a binary file (an ELF, a.out, COFF/ECOFF, SREC, or a raw
binary image) which you wish to run in the emulator. This file might be an
operating system kernel, or perhaps a ROM image file. If more than one
filename is supplied, all files are loaded into memory, and the entry point
(if available) is taken from the last file.
Apart from the name of a binary file, you must also use the
-E and/or -e options to
select which emulation mode to use. This is necessary because the emulator
cannot in general deduce this from the file being executed. For example, a
MIPS-based machine from DEC (a DECstation) is very different from a
MIPS-based machine from SGI. Use gxemul
-H to get a list of available emulation modes.
There are three exceptions to the normal invocation usage
mentioned above.
1. For DECstation emulation, if you have a bootable DECstation
harddisk or CDROM image, then just supplying the diskimage via the
-d option is sufficient. The filename of the kernel
can then be skipped, as the emulator runs the bootblocks from the diskimage
directly and doesn't need the kernel as a separate file.
2. If you supply an ISO9660 CDROM disk image, then using the
-j option to indicate a file on the CDROM filesystem
to load is sufficient; no additional kernel filename needs to be supplied on
the command line.
3. For Dreamcast emulation, when booting e.g. a NetBSD/dreamcast
CDROM image, it is enough to supply the disk image (with the correct ISO
partition start offset). Bootblocks will be read directly from the CDROM
image, and there is no need to supply the name of an external kernel on the
command line.
Gzipped kernels are automatically unzipped, by calling the
external gunzip program, both when specifying a gzipped file directly on the
command line and when loading such a file using the
-j option.
Machine selection options:
-E
t
- Try to emulate machine type t. This option is not
always needed, if the
-e option uniquely selects a
machine. (Use -H to get a list of types.)
-e
st
- Try to emulate machine subtype st. Use this together
with
-E . (This option is not always needed, if a
machine type has no subtypes.)
Other options:
-C
x
- Try to emulate a specific CPU type, x. This
overrides the default CPU type for the machine being emulated. (Use
-H to get a list of available CPU types.)
-d
[modifiers:]filename
- Add filename as a disk image. By adding one or more
modifier characters and then a colon (":") as a prefix to
filename, you can modify the way the disk image is
treated. Available modifiers are:
- b
- Specifies that this is a boot device.
- c
- CD-ROM.
- d
- DISK (this is the default).
- f
- FLOPPY.
- gH;S;
- Override the default geometry; use H heads and S sectors-per-track.
(The number of cylinders is calculated automatically.)
- i
- IDE.
- oOFS;
- Set the base offset for an ISO9660 filesystem on a disk image. The
default is 0. A suitable offset when booting from Dreamcast ISO9660
filesystem images, which are offset by 11702 sectors, is
23965696.
- r
- Read-only (don't allow changes to be written to the file).
- R
- Don't allow changes to the file, but add a temporary overlay for the
disk image to allow guest operating systems to write to the disk.
(These changes are lost when the GXemul process exits.)
- s
- SCSI.
- t
- Tape.
- V
- Add an overlay filename to an already defined disk image. (A ID number
must also be specified when this flag is used. See the documentation
for an example of how to use overlays.)
- 0-7
- Force a specific ID number.
For SCSI devices, the ID number is the SCSI ID. For IDE
harddisks, the ID number has the following meaning:
- 0
- Primary master.
- 1
- Primary slave.
- 2
- Secondary master.
- 3
- Secondary slave.
Unless otherwise specified, filenames ending with
".iso" or ".cdr" are assumed to be CDROM images.
Most others are assumed to be disks. Depending on which machine is being
emulated, the default for disks can be either SCSI or IDE. Some disk
images that are very small are assumed to be floppy disks. (If you are
not happy with the way a disk image is detected, then you need to use
explicit prefixes to force a specific type.)
For floppies, the gH;S; prefix is ignored. Instead, the number
of heads and cylinders are assumed to be 2 and 80, respectively, and the
number of sectors per track is calculated automatically. (This works for
720KB, 1.2MB, 1.44MB, and 2.88MB floppies.)
-I
hz
- Set the main CPU's frequency to hz Hz. This option
does not work for all emulated machine modes. It affects the way
count/compare interrupts are faked to simulate emulated time = real world
time. If the guest operating system relies on RTC interrupts instead of
count/compare interrupts, then this option has no effect.
Setting the frequency to zero disables automatic
synchronization of emulated time vs real world time, and the
count/compare system runs at a fixed rate.
-i
- Enable instruction trace, i.e. display disassembly of each instruction as
it is being executed.
-J
- Disable instruction combinations in the dynamic translator.
-j
n
- Set the name of the kernel to n. When booting from
an ISO9660 filesystem, the emulator will try to boot using this file. (In
some emulation modes, eg. DECstation, this name is passed along to the
boot program. Useful names are "bsd" for OpenBSD/pmax,
"vmunix" for Ultrix, or "vmsprite" for Sprite.)
-L
tapdev
- Enable tap networking using device 'tapdev', on systems that support
it.
-M
m
- Emulate m MBs of physical RAM. This overrides the
default amount of RAM for the selected machine type.
-N
- Display the number of executed instructions per second on average, at
regular intervals.
-n
nr
- Set the number of processors in the machine, for SMP experiments.
Note 1: The emulator allocates quite a lot of virtual memory
for per-CPU translation tables. On 64-bit hosts, this is normally not a
problem. On 32-bit hosts, this can use up all available virtual
userspace memory. The solution is to either run the emulator on a 64-bit
host, or limit the number of emulated CPUs to a reasonably low
number.
Note 2: SMP simulation is not working very well yet; multiple
processors are simulated, but synchronization between the processors
does not map very well to how real-world SMP systems work.
-O
- Force a "netboot" (tftp instead of disk), even when a disk image
is present (for DECstation, SGI, and ARC emulation).
-o
arg
- Set the boot argument (mostly useful for DEC, ARC, or SGI emulation).
Default arg for DEC is "-a", for ARC/SGI
it is "-aN", and for CATS it is "-A".
-p
pc
- Add a breakpoint. pc can be a symbol, or a numeric
value. (Remember to use the "0x" prefix for hexadecimal
values.)
-Q
- Disable the built-in (software-only) PROM emulation. This option is useful
for experimenting with running raw ROM images from real machines. The
default behaviour of the emulator is to "fake" certain PROM
calls used by guest operating systems (e.g. NetBSD), so that no real PROM
image is needed.
-R
- Use a random bootstrap cpu, instead of CPU nr 0. (This option is only
meaningful together with the
-n option.)
-r
- Dump register contents for every executed instruction.
-S
- Initialize emulated RAM to random data, instead of zeroes. This option is
useful when trying to trigger bugs in a program that occur because the
program assumed that uninitialized memory contains zeros. (Use with
care.)
-s
flags:filename
- Gather statistics based on the current emulated program counter value,
while the program executes. The statistics is actually just a raw dump of
all program counter values in sequence, suitable for post-analysis with
separate tools. Output is appended to filename.
The flags should include one or more of
the following type specifiers:
- v
- Virtual. This means that the program counter value is used.
- p
- Physical. This means that the physical address of where the program is
actually running is used.
- i
- Instruction call. This type of statistics gathering is practically
only useful during development of the emulator itself. The output is a
list of addresses of instruction call functions (ic->f), which
after some post-processing can be used as a basis for deciding when to
implement instruction combinations.
The flags may also include the following
optional modifiers:
- d
- Disabled at startup.
- o
- Overwrite the file, instead of appending to it.
Statistics gathering can be enabled/disabled at runtime by
using the "statistics_enabled = yes" and
"statistics_enabled = no" debugger commands.
When gathering instruction statistics using the
-s option, instruction combinations are always
disabled (i.e. an implicit -J flag is added to
the command line).
-T
- Halt if the emulated program attempts to access non-existing memory.
-t
- Show a trace tree of all function calls being made.
-X
- Use X11. This option enables graphical framebuffers.
-Y
n
- Scale down framebuffer windows by n x
n times. This option is useful when emulating a very
large framebuffer, and the actual display is of lower resolution. If
n is negative, then there will be no scaledown, but
emulation of certain graphic controllers will be scaled up by
-n times instead. E.g. Using
-2 with VGA text mode emulation will result in 80x25
character cells rendered in a 1280x800 window, instead of the normal
resolution of 640x400.
-Z
n
- Set the number of graphics cards, for emulating a dual-head or
tripple-head environment. (Only for DECstation emulation so far.)
-z
disp
- Add disp as an X11 display to use for
framebuffers.
General options:
-A
- Disable colorized output.
-c
cmd
- Add cmd as a command to run before starting the
simulation. A similar effect can be achieved by using the
-V option, and entering the commands
manually.
-D
- Causes the emulator to skip a call to srandom(). This leads to somewhat
more deterministic behaviour than running without this option. However, if
the emulated machine has clocks or timer interrupt sources, or if user
interaction is taking place (e.g. keyboard input at irregular intervals),
then this option is meaningless.
-G
- Enable colorized output. If the environment variable CLICOLOR is set, then
this is the default behavior.
-H
- Display a list of available CPU types and machine types. (Most of these
don't work. Please read the HTML documentation included in the
gxemul distribution for details on which modes
that actually work.)
-h
- Display a list of all available command line options.
-k
n
- Set the size of the dyntrans cache (per emulated CPU) to
n MB. The default size is 96 MB.
-K
- Show the debugger prompt instead of exiting, when a simulation ends.
-q
- Quiet mode; this suppresses startup messages.
-V
- Start up in the interactive debugger, paused. If this option is used,
-q is ignored. This option also sets
-K.
-v
- Increase verbosity (show more debug messages). This option can be used
multiple times.
-x
- Open up separate terminal windows for emulated serial ports. The default
behaviour is to open up new terminals when using configuration files with
more than one machine specified, or if X11 is enabled. When starting up a
simple emulation session with settings directly on the command line (or
when using configuration files with a single machine specification), and
neither
-X nor -x is used,
then all output is confined to the terminal that
gxemul started in. The default terminal to use is
'xterm', but this can be overriden by the XTERM environment variable.
Configuration file startup:
- @ configfile
- Start an emulation based on the contents of
configfile.
The following command will start NetBSD/pmax on an emulated DECstation 5000/200
(3MAX):
gxemul -e 3max -d
nbsd_pmax.img
nbsd_pmax.img should be a raw disk image containing a bootable
NetBSD/pmax filesystem.
The following command will start an emulation session based on
settings in the configuration file "mysession". The -v option
tells gxemul to be verbose.
gxemul -v @mysession
If you have compiled the small Hello World program mentioned in
the gxemul documentation, the following command will
start up an emulated test machine in "paused" mode:
gxemul -E testmips -V
hello_mips
Paused mode means that you enter the interactive single-step
debugger directly at startup, instead of launching the Hello World
program.
The paused mode is also what should be used when running
"unknown" files for the first time in the emulator. E.g. if you
have a binary which you think is some kind of MIPS ROM image, then you can
try the following:
gxemul -vv -E baremips -V
0xbfc00000:image.raw
You can then use the single-stepping functionality of the built-in
debugger to run the code in the ROM image, to see how it behaves. Based on
that, you can deduce what machine type it was actually from (the baremips
machine is not a real machine), and perhaps try again with another emulation
mode.
In general, however, real ROM images require much more emulation
detail than GXemul provides, so they can usually not run.
There are many bugs. Some of the known bugs are mentioned in the TODO file in
the gxemul source distribution, some are marked as
TODO in the source code itself.
gxemul is in general not cycle-accurate;
it does not simulate individual pipe-line stages or penalties caused by
branch-prediction misses or cache misses, so it cannot be used for accurate
simulation of any actual real-world processor.
gxemul is in general not timing-accurate.
Many emulation modes try to make the guest operating system's clock run at
the same speed as the host clock. However, the number of instructions
executed per clock tick can obviously vary, depending on the current CPU
load on the host.
gxemul is in general not guaranteed to be
secure; when used as a virtual machine to run untrusted code in the form of
a guest OS, the untrusted code may be able to crash the emulator, or due to
bugs, take over the host.
GXemul is Copyright (C) 2003-2021 Anders Gavare <gavare@gmail.com>
See http://gavare.se/gxemul/ for more information. For other
Copyright messages, see the corresponding parts of the source code and/or
documentation.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |