|
NAMEprimecount - count prime numbersSYNOPSISprimecount x [options]DESCRIPTIONCount the number of primes less than or equal to x (<= 10^31) using fast implementations of the combinatorial prime counting function algorithms. By default primecount counts primes using Xavier Gourdon’s algorithm which has a runtime complexity of O(x^(2/3) / log^2 x) operations and uses O(x^(2/3) * log^3 x) memory. primecount is multi-threaded, it uses all available CPU cores by default.OPTIONS-d, --deleglise-rivatCount primes using the Deleglise-Rivat algorithm.
-g, --gourdon Count primes using Xavier Gourdon’s algorithm
(default algorithm).
-l, --legendre Count primes using Legendre’s formula.
--lehmer Count primes using Lehmer’s formula.
--lmo Count primes using the Lagarias-Miller-Odlyzko
algorithm.
-m, --meissel Count primes using Meissel’s formula.
--Li Approximate pi(x) using the logarithmic integral.
--Li-inverse Approximate the nth prime using Li^-1(x).
-n, --nth-prime Calculate the nth prime.
-p, --primesieve Count primes using the sieve of Eratosthenes.
--phi X A phi(x, a) counts the numbers <= x that are not
divisible by any of the first a primes.
--Ri Approximate pi(x) using the Riemann R function.
--Ri-inverse Approximate the nth prime using Ri^-1(x).
-s, --status[=NUM] Show the computation progress e.g. 1%, 2%, 3%, ... Show
NUM digits after the decimal point: --status=1 prints
99.9%.
--test Run various correctness tests and exit.
--time Print the time elapsed in seconds.
-t, --threads=NUM Set the number of threads, 1 <= NUM <= CPU
cores. By default primecount uses all available CPU cores.
-v, --version Print version and license information.
-h, --help Print this help menu.
ADVANCED OPTIONS FOR THE DELEGLISE-RIVAT ALGORITHM--P2Compute the 2nd partial sieve function.
--S1 Compute the ordinary leaves.
--S2-trivial Compute the trivial special leaves.
--S2-easy Compute the easy special leaves.
--S2-hard Compute the hard special leaves.
Tuning factorThe alpha tuning factor mainly balances the computation of the S2_easy and S2_hard formulas. By increasing alpha the runtime of the S2_hard formula will usually decrease but the runtime of the S2_easy formula will increase. For large pi(x) computations with x >= 10^25 you can usually achieve a significant speedup by increasing alpha.The alpha tuning factor is also very useful for verifying pi(x) computations. You compute pi(x) twice but for the second computation you use a slightly different alpha factor. If the results of both pi(x) computations match then pi(x) has been verified successfully. -a, --alpha=NUM Set the alpha tuning factor: y = x^(1/3) * alpha, 1 <=
alpha <= x^(1/6).
ADVANCED OPTIONS FOR XAVIER GOURDON’S ALGORITHM--ACCompute the A + C formulas.
--B Compute the B formula.
--D Compute the D formula.
--Phi0 Compute the Phi0 formula.
--Sigma Compute the 7 Sigma formulas.
Tuning factorsThe alpha_y and alpha_z tuning factors mainly balance the computation of the A, B, C and D formulas. When alpha_y is decreased but alpha_z is increased then the runtime of the B formula will increase but the runtime of the A, C and D formulas will decrease. For large pi(x) computations with x >= 10^25 you can usually achieve a significant speedup by decreasing alpha_y and increasing alpha_z. For convenience when you increase alpha_z using --alpha-z=NUM then alpha_y is automatically decreased.Both the alpha_y and alpha_z tuning factors are also very useful for verifying pi(x) computations. You compute pi(x) twice but for the second computation you use a slightly different alpha_y or alpha_z factor. If the results of both pi(x) computations match then pi(x) has been verified successfully. --alpha-y=NUM Set the alpha_y tuning factor: y = x^(1/3) * alpha_y, 1
<= alpha_y <= x^(1/6).
--alpha-z=NUM Set the alpha_z tuning factor: z = y * alpha_z, 1 <=
alpha_z <= x^(1/6).
EXAMPLESprimecount 1000Count the primes <= 1000.
primecount 1e17 --status Count the primes <= 10^17 and print status
information.
primecount 1e15 --threads 1 --time Count the primes <= 10^15 using a single thread and
print the time elapsed.
HOMEPAGEhttps://github.com/kimwalisch/primecountAUTHORKim Walisch <kim.walisch@gmail.com>
Visit the GSP FreeBSD Man Page Interface. |