|
|
| |
QEMU-IMG(1) |
QEMU |
QEMU-IMG(1) |
qemu-img - QEMU disk image utility
qemu-img [standard options] command [command
options]
qemu-img allows you to create, convert and modify images offline. It can handle
all image formats supported by QEMU.
Warning: Never use qemu-img to modify images in use by a
running virtual machine or any other process; this may destroy the image.
Also, be aware that querying an image that is being modified by another
process may encounter inconsistent state.
Standard options:
- -h, --help
- Display this help and exit
- -V, --version
- Display version information and exit
- -T, --trace [[enable=]PATTERN][,events=FILE][,file=FILE]
- Specify tracing options.
[enable=]PATTERN
Immediately enable events matching PATTERN (either
event name or a globbing pattern). This option is only available if QEMU has
been compiled with the simple, log or ftrace tracing
backend. To specify multiple events or patterns, specify the -trace
option multiple times.
Use -trace help to print a list of names of trace
points.
events=FILE
Immediately enable events listed in FILE. The file
must contain one event name (as listed in the trace-events-all file)
per line; globbing patterns are accepted too. This option is only available if
QEMU has been compiled with the simple, log or ftrace
tracing backend.
file=FILE
Log output traces to FILE. This option is only
available if QEMU has been compiled with the simple tracing
backend.
The following commands are supported:
- amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE]
[--force] -o OPTIONS FILENAME
- bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL]
[-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s
BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME
- bitmap (--merge SOURCE | --add | --remove | --clear | --enable |
--disable)... [-b SOURCE_FILE [-F SOURCE_FMT]] [-g GRANULARITY] [--object
OBJECTDEF] [--image-opts | -f FMT] FILENAME BITMAP
- check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT]
[-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME
- commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b
BASE] [-r RATE_LIMIT] [-d] [-p] FILENAME
- compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T
SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2
- convert [--object OBJECTDEF] [--image-opts] [--target-image-opts]
[--target-is-zero] [--bitmaps] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t
CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l
SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-r RATE_LIMIT] [-m NUM_COROUTINES] [-W]
[--salvage] FILENAME [FILENAME2 [...]] OUTPUT_FILENAME
- create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F
BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]
- dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE]
[count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT
- info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT]
[--backing-chain] [-U] FILENAME
- map [--object OBJECTDEF] [--image-opts] [-f FMT]
[--start-offset=OFFSET] [--max-length=LEN] [--output=OFMT] [-U]
FILENAME
- measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N |
[--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM]
FILENAME]
- snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a
SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME
- rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t
CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT]
FILENAME
- resize [--object OBJECTDEF] [--image-opts] [-f FMT]
[--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE
Command parameters:
FILENAME is a disk image filename.
FMT is the disk image format. It is guessed automatically
in most cases. See below for a description of the supported disk
formats.
SIZE is the disk image size in bytes. Optional suffixes
k or K (kilobyte, 1024) M (megabyte, 1024k) and
G (gigabyte, 1024M) and T (terabyte, 1024G) are supported. b
is ignored.
OUTPUT_FILENAME is the destination disk image filename.
OUTPUT_FMT is the destination format.
OPTIONS is a comma separated list of format specific
options in a name=value format. Use -o ? for an overview of the
options supported by the used format or see the format descriptions below
for details.
SNAPSHOT_PARAM is param used for internal snapshot, format
is 'snapshot.id=[ID],snapshot.name=[NAME]' or '[ID_OR_NAME]'.
- --object OBJECTDEF
- is a QEMU user creatable object definition. See the qemu(1) manual
page for a description of the object properties. The most common object
type is a secret, which is used to supply passwords and/or
encryption keys.
- --image-opts
- Indicates that the source FILENAME parameter is to be interpreted
as a full option string, not a plain filename. This parameter is mutually
exclusive with the -f parameter.
- --target-image-opts
- Indicates that the OUTPUT_FILENAME parameter(s) are to be interpreted as a
full option string, not a plain filename. This parameter is mutually
exclusive with the -O parameters. It is currently required to also
use the -n parameter to skip image creation. This restriction may
be relaxed in a future release.
- --force-share (-U)
- If specified, qemu-img will open the image in shared mode, allowing
other QEMU processes to open it in write mode. For example, this can be
used to get the image information (with 'info' subcommand) when the image
is used by a running guest. Note that this could produce inconsistent
results because of concurrent metadata changes, etc. This option is only
allowed when opening images in read-only mode.
- --backing-chain
- Will enumerate information about backing files in a disk image chain.
Refer below for further description.
- -c
- Indicates that target image must be compressed (qcow format only).
- -h
- With or without a command, shows help and lists the supported
formats.
- -p
- Display progress bar (compare, convert and rebase commands only). If the
-p option is not used for a command that supports it, the progress
is reported when the process receives a SIGUSR1 or SIGINFO
signal.
- -q
- Quiet mode - do not print any output (except errors). There's no progress
bar in case both -q and -p options are used.
- -S SIZE
- Indicates the consecutive number of bytes that must contain only zeros for
qemu-img to create a sparse image during conversion. This value is rounded
down to the nearest 512 bytes. You may use the common size suffixes like
k for kilobytes.
- -t CACHE
- Specifies the cache mode that should be used with the (destination) file.
See the documentation of the emulator's -drive cache=... option for
allowed values.
- -T SRC_CACHE
- Specifies the cache mode that should be used with the source file(s). See
the documentation of the emulator's -drive cache=... option for
allowed values.
Parameters to compare subcommand:
- -s
- Strict mode - fail on different image size or sector allocation
Parameters to convert subcommand:
- --bitmaps
- Additionally copy all persistent bitmaps from the top layer of the
source
- -n
- Skip the creation of the target volume
- -m
- Number of parallel coroutines for the convert process
- -W
- Allow out-of-order writes to the destination. This option improves
performance, but is only recommended for preallocated devices like host
devices or other raw block devices.
- -C
- Try to use copy offloading to move data from source image to target. This
may improve performance if the data is remote, such as with NFS or iSCSI
backends, but will not automatically sparsify zero sectors, and may result
in a fully allocated target image depending on the host support for
getting allocation information.
- -r
- Rate limit for the convert process
- --salvage
- Try to ignore I/O errors when reading. Unless in quiet mode (-q),
errors will still be printed. Areas that cannot be read from the source
will be treated as containing only zeroes.
- --target-is-zero
- Assume that reading the destination image will always return zeros. This
parameter is mutually exclusive with a destination image that has a
backing file. It is required to also use the -n parameter to skip
image creation.
Parameters to dd subcommand:
- bs=BLOCK_SIZE
- Defines the block size
- count=BLOCKS
- Sets the number of input blocks to copy
- if=INPUT
- Sets the input file
- of=OUTPUT
- Sets the output file
- skip=BLOCKS
- Sets the number of input blocks to skip
Parameters to snapshot subcommand:
- snapshot
- Is the name of the snapshot to create, apply or delete
- -a
- Applies a snapshot (revert disk to saved state)
- -l
- Lists all snapshots in the given image
Command description:
- amend [--object OBJECTDEF] [--image-opts] [-p] [-q] [-f FMT] [-t CACHE]
[--force] -o OPTIONS FILENAME
- Amends the image format specific OPTIONS for the image file
FILENAME. Not all file formats support this operation.
The set of options that can be amended are dependent on the
image format, but note that amending the backing chain relationship
should instead be performed with qemu-img rebase.
--force allows some unsafe operations. Currently for -f luks,
it allows to erase the last encryption key, and to overwrite an active
encryption key.
- bench [-c COUNT] [-d DEPTH] [-f FMT] [--flush-interval=FLUSH_INTERVAL]
[-i AIO] [-n] [--no-drain] [-o OFFSET] [--pattern=PATTERN] [-q] [-s
BUFFER_SIZE] [-S STEP_SIZE] [-t CACHE] [-w] [-U] FILENAME
- Run a simple sequential I/O benchmark on the specified image. If -w
is specified, a write test is performed, otherwise a read test is
performed.
A total number of COUNT I/O requests is performed, each
BUFFER_SIZE bytes in size, and with DEPTH requests in
parallel. The first request starts at the position given by
OFFSET, each following request increases the current position by
STEP_SIZE. If STEP_SIZE is not given, BUFFER_SIZE
is used for its value.
If FLUSH_INTERVAL is specified for a write test, the
request queue is drained and a flush is issued before new writes are
made whenever the number of remaining requests is a multiple of
FLUSH_INTERVAL. If additionally --no-drain is specified, a
flush is issued without draining the request queue first.
if -i is specified, AIO option can be used to
specify different AIO backends: threads, native or
io_uring.
If -n is specified, the native AIO backend is used if
possible. On Linux, this option only works if -t none or -t
directsync is specified as well.
For write tests, by default a buffer filled with zeros is
written. This can be overridden with a pattern byte specified by
PATTERN.
- bitmap (--merge SOURCE | --add | --remove | --clear | --enable |
--disable)... [-b SOURCE_FILE [-F SOURCE_FMT]] [-g GRANULARITY] [--object
OBJECTDEF] [--image-opts | -f FMT] FILENAME BITMAP
- Perform one or more modifications of the persistent bitmap BITMAP
in the disk image FILENAME. The various modifications are:
--add to create BITMAP, enabled to record future
edits.
--remove to remove BITMAP.
--clear to clear BITMAP.
--enable to change BITMAP to start recording
future edits.
--disable to change BITMAP to stop recording
future edits.
--merge to merge the contents of the SOURCE
bitmap into BITMAP.
Additional options include -g which sets a non-default
GRANULARITY for --add, and -b and -F which
select an alternative source file for all SOURCE bitmaps used by
--merge.
To see what bitmaps are present in an image, use qemu-img
info.
- check [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [--output=OFMT]
[-r [leaks | all]] [-T SRC_CACHE] [-U] FILENAME
- Perform a consistency check on the disk image FILENAME. The command
can output in the format OFMT which is either human or
json. The JSON output is an object of QAPI type ImageCheck.
If -r is specified, qemu-img tries to repair any
inconsistencies found during the check. -r leaks repairs only
cluster leaks, whereas -r all fixes all kinds of errors, with a
higher risk of choosing the wrong fix or hiding corruption that has
already occurred.
Only the formats qcow2, qed and vdi
support consistency checks.
In case the image does not have any inconsistencies, check
exits with 0. Other exit codes indicate the kind of inconsistency
found or if another error occurred. The following table summarizes all
exit codes of the check subcommand:
- 0
- Check completed, the image is (now) consistent
- 1
- Check not completed because of internal errors
- 2
- Check completed, image is corrupted
- 3
- Check completed, image has leaked clusters, but is not corrupted
- 63
- Checks are not supported by the image format
If -r is specified, exit codes representing the image state
refer to the state after (the attempt at) repairing it. That is, a
successful -r all will yield the exit code 0, independently of the
image state before.
- commit [--object OBJECTDEF] [--image-opts] [-q] [-f FMT] [-t CACHE] [-b
BASE] [-r RATE_LIMIT] [-d] [-p] FILENAME
- Commit the changes recorded in FILENAME in its base image or
backing file. If the backing file is smaller than the snapshot, then the
backing file will be resized to be the same size as the snapshot. If the
snapshot is smaller than the backing file, the backing file will not be
truncated. If you want the backing file to match the size of the smaller
snapshot, you can safely truncate it yourself once the commit operation
successfully completes.
The image FILENAME is emptied after the operation has
succeeded. If you do not need FILENAME afterwards and intend to
drop it, you may skip emptying FILENAME by specifying the
-d flag.
If the backing chain of the given image file FILENAME
has more than one layer, the backing file into which the changes will be
committed may be specified as BASE (which has to be part of
FILENAME's backing chain). If BASE is not specified, the
immediate backing file of the top image (which is FILENAME) will
be used. Note that after a commit operation all images between
BASE and the top image will be invalid and may return garbage
data when read. For this reason, -b implies -d (so that
the top image stays valid).
The rate limit for the commit process is specified by
-r.
- compare [--object OBJECTDEF] [--image-opts] [-f FMT] [-F FMT] [-T
SRC_CACHE] [-p] [-q] [-s] [-U] FILENAME1 FILENAME2
- Check if two images have the same content. You can compare images with
different format or settings.
The format is probed unless you specify it by -f (used
for FILENAME1) and/or -F (used for FILENAME2)
option.
By default, images with different size are considered
identical if the larger image contains only unallocated and/or zeroed
sectors in the area after the end of the other image. In addition, if
any sector is not allocated in one image and contains only zero bytes in
the second one, it is evaluated as equal. You can use Strict mode by
specifying the -s option. When compare runs in Strict mode, it
fails in case image size differs or a sector is allocated in one image
and is not allocated in the second one.
By default, compare prints out a result message. This message
displays information that both images are same or the position of the
first different byte. In addition, result message can report different
image size in case Strict mode is used.
Compare exits with 0 in case the images are equal and
with 1 in case the images differ. Other exit codes mean an error
occurred during execution and standard error output should contain an
error message. The following table sumarizes all exit codes of the
compare subcommand:
- 0
- Images are identical
- 1
- Images differ
- 2
- Error on opening an image
- 3
- Error on checking a sector allocation
- 4
- Error on reading data
- convert [--object OBJECTDEF] [--image-opts] [--target-image-opts]
[--target-is-zero] [--bitmaps] [-U] [-C] [-c] [-p] [-q] [-n] [-f FMT] [-t
CACHE] [-T SRC_CACHE] [-O OUTPUT_FMT] [-B BACKING_FILE] [-o OPTIONS] [-l
SNAPSHOT_PARAM] [-S SPARSE_SIZE] [-r RATE_LIMIT] [-m NUM_COROUTINES] [-W]
FILENAME [FILENAME2 [...]] OUTPUT_FILENAME
- Convert the disk image FILENAME or a snapshot SNAPSHOT_PARAM
to disk image OUTPUT_FILENAME using format OUTPUT_FMT. It
can be optionally compressed (-c option) or use any format specific
options like encryption (-o option).
Only the formats qcow and qcow2 support
compression. The compression is read-only. It means that if a compressed
sector is rewritten, then it is rewritten as uncompressed data.
Image conversion is also useful to get smaller image when
using a growable format such as qcow: the empty sectors are
detected and suppressed from the destination image.
SPARSE_SIZE indicates the consecutive number of bytes
(defaults to 4k) that must contain only zeros for qemu-img to create a
sparse image during conversion. If SPARSE_SIZE is 0, the source
will not be scanned for unallocated or zero sectors, and the destination
image will always be fully allocated.
You can use the BACKING_FILE option to force the output
image to be created as a copy on write image of the specified base
image; the BACKING_FILE should have the same content as the
input's base image, however the path, image format, etc may differ.
If a relative path name is given, the backing file is looked
up relative to the directory containing OUTPUT_FILENAME.
If the -n option is specified, the target volume
creation will be skipped. This is useful for formats such as rbd
if the target volume has already been created with site specific options
that cannot be supplied through qemu-img.
Out of order writes can be enabled with -W to improve
performance. This is only recommended for preallocated devices like host
devices or other raw block devices. Out of order write does not work in
combination with creating compressed images.
NUM_COROUTINES specifies how many coroutines work in
parallel during the convert process (defaults to 8).
- create [--object OBJECTDEF] [-q] [-f FMT] [-b BACKING_FILE] [-F
BACKING_FMT] [-u] [-o OPTIONS] FILENAME [SIZE]
- Create the new disk image FILENAME of size SIZE and format
FMT. Depending on the file format, you can add one or more
OPTIONS that enable additional features of this format.
If the option BACKING_FILE is specified, then the image
will record only the differences from BACKING_FILE. No size needs
to be specified in this case. BACKING_FILE will never be modified
unless you use the commit monitor command (or qemu-img
commit).
If a relative path name is given, the backing file is looked
up relative to the directory containing FILENAME.
Note that a given backing file will be opened to check that it
is valid. Use the -u option to enable unsafe backing file mode,
which means that the image will be created even if the associated
backing file cannot be opened. A matching backing file must be created
or additional options be used to make the backing file specification
valid when you want to use an image created this way.
The size can also be specified using the SIZE option
with -o, it doesn't need to be specified separately in this
case.
- dd [--image-opts] [-U] [-f FMT] [-O OUTPUT_FMT] [bs=BLOCK_SIZE]
[count=BLOCKS] [skip=BLOCKS] if=INPUT of=OUTPUT
- dd copies from INPUT file to OUTPUT file converting it from
FMT format to OUTPUT_FMT format.
The data is by default read and written using blocks of 512
bytes but can be modified by specifying BLOCK_SIZE. If
count=BLOCKS is specified dd will stop reading input after
reading BLOCKS input blocks.
The size syntax is similar to dd(1)'s size syntax.
- info [--object OBJECTDEF] [--image-opts] [-f FMT] [--output=OFMT]
[--backing-chain] [-U] FILENAME
- Give information about the disk image FILENAME. Use it in
particular to know the size reserved on disk which can be different from
the displayed size. If VM snapshots are stored in the disk image, they are
displayed too.
If a disk image has a backing file chain, information about
each disk image in the chain can be recursively enumerated by using the
option --backing-chain.
For instance, if you have an image chain like:
base.qcow2 <- snap1.qcow2 <- snap2.qcow2
To enumerate information about each disk image in the above chain,
starting from top to base, do:
qemu-img info --backing-chain snap2.qcow2
The command can output in the format OFMT which is either
human or json. The JSON output is an object of QAPI type
ImageInfo; with --backing-chain, it is an array of
ImageInfo objects.
--output=human reports the following information (for every
image in the chain):
- image
- The image file name
- file format
- The image format
- virtual size
- The size of the guest disk
- disk size
- How much space the image file occupies on the host file system (may be
shown as 0 if this information is unavailable, e.g. because there is no
file system)
- cluster_size
- Cluster size of the image format, if applicable
- encrypted
- Whether the image is encrypted (only present if so)
- cleanly shut down
- This is shown as no if the image is dirty and will have to be
auto-repaired the next time it is opened in qemu.
- backing file
- The backing file name, if present
- backing file format
- The format of the backing file, if the image enforces it
- Snapshot list
- A list of all internal snapshots
- Format specific information
- Further information whose structure depends on the image format. This
section is a textual representation of the respective
ImageInfoSpecific* QAPI object (e.g. ImageInfoSpecificQCow2
for qcow2 images).
- map [--object OBJECTDEF] [--image-opts] [-f FMT]
[--start-offset=OFFSET] [--max-length=LEN] [--output=OFMT] [-U]
FILENAME
- Dump the metadata of image FILENAME and its backing file chain. In
particular, this commands dumps the allocation state of every sector of
FILENAME, together with the topmost file that allocates it in the
backing file chain.
Two option formats are possible. The default format
(human) only dumps known-nonzero areas of the file. Known-zero
parts of the file are omitted altogether, and likewise for parts that
are not allocated throughout the chain. qemu-img output will
identify a file from where the data can be read, and the offset in the
file. Each line will include four fields, the first three of which are
hexadecimal numbers. For example the first line of:
Offset Length Mapped to File
0 0x20000 0x50000 /tmp/overlay.qcow2
0x100000 0x10000 0x95380000 /tmp/backing.qcow2
means that 0x20000 (131072) bytes starting at offset 0 in the
image are available in /tmp/overlay.qcow2 (opened in raw format)
starting at offset 0x50000 (327680). Data that is compressed, encrypted, or
otherwise not available in raw format will cause an error if human
format is in use. Note that file names can include newlines, thus it is not
safe to parse this output format in scripts.
The alternative format json will return an array of
dictionaries in JSON format. It will include similar information in the
start, length, offset fields; it will also include
other more specific information:
- whether the sectors contain actual data or not (boolean field data;
if false, the sectors are either unallocated or stored as optimized
all-zero clusters);
- whether the data is known to read as zero (boolean field
zero);
- in order to make the output shorter, the target file is expressed as a
depth; for example, a depth of 2 refers to the backing file of the
backing file of FILENAME.
In JSON format, the offset field is optional; it is absent
in cases where human format would omit the entry or exit with an
error. If data is false and the offset field is present, the
corresponding sectors in the file are not yet in use, but they are
preallocated.
For more information, consult include/block/block.h in
QEMU's source code.
- measure [--output=OFMT] [-O OUTPUT_FMT] [-o OPTIONS] [--size N |
[--object OBJECTDEF] [--image-opts] [-f FMT] [-l SNAPSHOT_PARAM]
FILENAME]
- Calculate the file size required for a new image. This information can be
used to size logical volumes or SAN LUNs appropriately for the image that
will be placed in them. The values reported are guaranteed to be large
enough to fit the image. The command can output in the format OFMT
which is either human or json. The JSON output is an object
of QAPI type BlockMeasureInfo.
If the size N is given then act as if creating a new
empty image file using qemu-img create. If FILENAME is
given then act as if converting an existing image file using qemu-img
convert. The format of the new file is given by OUTPUT_FMT
while the format of an existing file is given by FMT.
A snapshot in an existing image can be specified using
SNAPSHOT_PARAM.
The following fields are reported:
required size: 524288
fully allocated size: 1074069504
bitmaps size: 0
The required size is the file size of the new image. It may
be smaller than the virtual disk size if the image format supports compact
representation.
The fully allocated size is the file size of the new image
once data has been written to all sectors. This is the maximum size that the
image file can occupy with the exception of internal snapshots, dirty
bitmaps, vmstate data, and other advanced image format features.
The bitmaps size is the additional size required in order
to copy bitmaps from a source image in addition to the guest-visible data;
the line is omitted if either source or destination lacks bitmap support, or
0 if bitmaps are supported but there is nothing to copy.
- snapshot [--object OBJECTDEF] [--image-opts] [-U] [-q] [-l | -a
SNAPSHOT | -c SNAPSHOT | -d SNAPSHOT] FILENAME
- List, apply, create or delete snapshots in image FILENAME.
- rebase [--object OBJECTDEF] [--image-opts] [-U] [-q] [-f FMT] [-t
CACHE] [-T SRC_CACHE] [-p] [-u] -b BACKING_FILE [-F BACKING_FMT]
FILENAME
- Changes the backing file of an image. Only the formats qcow2 and
qed support changing the backing file.
The backing file is changed to BACKING_FILE and (if the
image format of FILENAME supports this) the backing file format
is changed to BACKING_FMT. If BACKING_FILE is specified as
"" (the empty string), then the image is rebased onto no
backing file (i.e. it will exist independently of any backing file).
If a relative path name is given, the backing file is looked
up relative to the directory containing FILENAME.
CACHE specifies the cache mode to be used for
FILENAME, whereas SRC_CACHE specifies the cache mode for
reading backing files.
There are two different modes in which rebase can
operate:
- Safe mode
- This is the default mode and performs a real rebase operation. The new
backing file may differ from the old one and qemu-img rebase will take
care of keeping the guest-visible content of FILENAME unchanged.
In order to achieve this, any clusters that differ between
BACKING_FILE and the old backing file of FILENAME are
merged into FILENAME before actually changing the backing
file.
Note that the safe mode is an expensive operation, comparable
to converting an image. It only works if the old backing file still
exists.
- Unsafe mode
- qemu-img uses the unsafe mode if -u is specified. In this mode,
only the backing file name and format of FILENAME is changed
without any checks on the file contents. The user must take care of
specifying the correct new backing file, or the guest-visible content of
the image will be corrupted.
This mode is useful for renaming or moving the backing file to
somewhere else. It can be used without an accessible old backing file,
i.e. you can use it to fix an image whose backing file has already been
moved/renamed.
You can use rebase to perform a "diff" operation
on two disk images. This can be useful when you have copied or cloned a
guest, and you want to get back to a thin image on top of a template or base
image.
Say that base.img has been cloned as modified.img by
copying it, and that the modified.img guest has run so there are now
some changes compared to base.img. To construct a thin image called
diff.qcow2 that contains just the differences, do:
qemu-img create -f qcow2 -b modified.img diff.qcow2
qemu-img rebase -b base.img diff.qcow2
At this point, modified.img can be discarded, since
base.img + diff.qcow2 contains the same information.
- resize [--object OBJECTDEF] [--image-opts] [-f FMT]
[--preallocation=PREALLOC] [-q] [--shrink] FILENAME [+ | -]SIZE
- Change the disk image as if it had been created with SIZE.
Before using this command to shrink a disk image, you MUST use
file system and partitioning tools inside the VM to reduce allocated
file systems and partition sizes accordingly. Failure to do so will
result in data loss!
When shrinking images, the --shrink option must be
given. This informs qemu-img that the user acknowledges all loss of data
beyond the truncated image's end.
After using this command to grow a disk image, you must use
file system and partitioning tools inside the VM to actually begin using
the new space on the device.
When growing an image, the --preallocation option may
be used to specify how the additional image area should be allocated on
the host. See the format description in the Notes section which
values are allowed. Using this option may result in slightly more data
being allocated than necessary.
Supported image file formats:
raw
Raw disk image format (default). This format has the
advantage of being simple and easily exportable to all other emulators. If
your file system supports holes (for example in ext2 or ext3 on Linux
or NTFS on Windows), then only the written sectors will reserve space. Use
qemu-img info to know the real size used by the image or ls -ls
on Unix/Linux.
Supported options:
- preallocation
- Preallocation mode (allowed values: off, falloc,
full). falloc mode preallocates space for image by calling
posix_fallocate(). full mode preallocates space for image by
writing data to underlying storage. This data may or may not be zero,
depending on the storage location.
qcow2
QEMU image format, the most versatile format. Use it to
have smaller images (useful if your filesystem does not supports holes, for
example on Windows), optional AES encryption, zlib based compression and
support of multiple VM snapshots.
Supported options:
- compat
- Determines the qcow2 version to use. compat=0.10 uses the
traditional image format that can be read by any QEMU since 0.10.
compat=1.1 enables image format extensions that only QEMU 1.1 and
newer understand (this is the default). Amongst others, this includes zero
clusters, which allow efficient copy-on-read for sparse images.
- backing_file
- File name of a base image (see create subcommand)
- backing_fmt
- Image format of the base image
- encryption
- If this option is set to on, the image is encrypted with 128-bit
AES-CBC.
The use of encryption in qcow and qcow2 images is considered
to be flawed by modern cryptography standards, suffering from a number
of design problems:
- The AES-CBC cipher is used with predictable initialization vectors based
on the sector number. This makes it vulnerable to chosen plaintext attacks
which can reveal the existence of encrypted data.
- The user passphrase is directly used as the encryption key. A poorly
chosen or short passphrase will compromise the security of the
encryption.
- In the event of the passphrase being compromised there is no way to change
the passphrase to protect data in any qcow images. The files must be
cloned, using a different encryption passphrase in the new file. The
original file must then be securely erased using a program like shred,
though even this is ineffective with many modern storage
technologies.
- Initialization vectors used to encrypt sectors are based on the guest
virtual sector number, instead of the host physical sector. When a disk
image has multiple internal snapshots this means that data in multiple
physical sectors is encrypted with the same initialization vector. With
the CBC mode, this opens the possibility of watermarking attacks if the
attack can collect multiple sectors encrypted with the same IV and some
predictable data. Having multiple qcow2 images with the same passphrase
also exposes this weakness since the passphrase is directly used as the
key.
Use of qcow / qcow2 encryption is thus strongly discouraged. Users
are recommended to use an alternative encryption technology such as the
Linux dm-crypt / LUKS system.
- cluster_size
- Changes the qcow2 cluster size (must be between 512 and 2M). Smaller
cluster sizes can improve the image file size whereas larger cluster sizes
generally provide better performance.
- preallocation
- Preallocation mode (allowed values: off, metadata,
falloc, full). An image with preallocated metadata is
initially larger but can improve performance when the image needs to grow.
falloc and full preallocations are like the same options of
raw format, but sets up metadata also.
- lazy_refcounts
- If this option is set to on, reference count updates are postponed
with the goal of avoiding metadata I/O and improving performance. This is
particularly interesting with cache=writethrough which doesn't
batch metadata updates. The tradeoff is that after a host crash, the
reference count tables must be rebuilt, i.e. on the next open an
(automatic) qemu-img check -r all is required, which may take some
time.
This option can only be enabled if compat=1.1 is
specified.
- nocow
- If this option is set to on, it will turn off COW of the file. It's
only valid on btrfs, no effect on other file systems.
Btrfs has low performance when hosting a VM image file, even
more when the guest on the VM also using btrfs as file system. Turning
off COW is a way to mitigate this bad performance. Generally there are
two ways to turn off COW on btrfs:
- Disable it by mounting with nodatacow, then all newly created files will
be NOCOW
- For an empty file, add the NOCOW file attribute. That's what this option
does.
Note: this option is only valid to new or empty files. If there is
an existing file which is COW and has data blocks already, it couldn't be
changed to NOCOW by setting nocow=on. One can issue lsattr
filename to check if the NOCOW flag is set or not (Capital 'C' is NOCOW
flag).
Other
QEMU also supports various other image file formats for
compatibility with older QEMU versions or other hypervisors, including VMDK,
VDI, VHD (vpc), VHDX, qcow1 and QED. For a full list of supported formats see
qemu-img --help. For a more detailed description of these formats, see
the QEMU block drivers reference documentation.
The main purpose of the block drivers for these formats is image
conversion. For running VMs, it is recommended to convert the disk images to
either raw or qcow2 in order to achieve good performance.
2020, The QEMU Project Developers
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |