|
|
| |
gcc - GNU project C and C++ compiler
gcc [-c|-S|-E] [-std=standard]
[-g] [-pg] [-Olevel]
[-Wwarn...] [-Wpedantic]
[-Idir...] [-Ldir...]
[-Dmacro[=defn]...] [-Umacro]
[-foption...] [-mmachine-option...]
[-o outfile] [@file] infile...
Only the most useful options are listed here; see below for the
remainder. g++ accepts mostly the same options as gcc.
When you invoke GCC, it normally does preprocessing, compilation, assembly and
linking. The "overall options" allow you to stop this process at an
intermediate stage. For example, the -c option says not to run the
linker. Then the output consists of object files output by the assembler.
Other options are passed on to one stage of processing. Some
options control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not documented
here, since you rarely need to use any of them.
Most of the command-line options that you can use with GCC are
useful for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description for a
particular option does not mention a source language, you can use that
option with all supported languages.
The gcc program accepts options and file names as operands.
Many options have multi-letter names; therefore multiple single-letter
options may not be grouped: -dv is very different from
-d -v.
You can mix options and other arguments. For the most part, the
order you use doesn't matter. Order does matter when you use several options
of the same kind; for example, if you specify -L more than once, the
directories are searched in the order specified. Also, the placement of the
-l option is significant.
Many options have long names starting with -f or with
-W---for example, -fmove-loop-invariants, -Wformat and
so on. Most of these have both positive and negative forms; the negative
form of -ffoo is -fno-foo. This manual documents only one of
these two forms, whichever one is not the default.
Here is a summary of all the options, grouped by type. Explanations are in the
following sections.
- Overall Options
- -c -S -E -o file -no-canonical-prefixes -pipe
-pass-exit-codes -x language -v -###
--help[=class[,...]] --target-help
--version -wrapper @file -fplugin=file
-fplugin-arg-name=arg
-fdump-ada-spec[-slim] -fada-spec-parent=unit
-fdump-go-spec=file
- C Language Options
- -ansi -std=standard -fgnu89-inline -aux-info
filename -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-function -fhosted
-ffreestanding -fopenmp -fms-extensions -fplan9-extensions
-trigraphs -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char -funsigned-bitfields
-funsigned-char
- C++ Language Options
- -fabi-version=n -fno-access-control -fcheck-new
-fconstexpr-depth=n -ffriend-injection
-fno-elide-constructors -fno-enforce-eh-specs -ffor-scope
-fno-for-scope -fno-gnu-keywords -fno-implicit-templates
-fno-implicit-inline-templates -fno-implement-inlines
-fms-extensions -fno-nonansi-builtins -fnothrow-opt
-fno-operator-names -fno-optional-diags -fpermissive
-fno-pretty-templates -frepo -fno-rtti -fstats
-ftemplate-backtrace-limit=n -ftemplate-depth=n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-fvisibility-ms-compat -fext-numeric-literals -Wabi
-Wconversion-null -Wctor-dtor-privacy -Wdelete-non-virtual-dtor
-Wliteral-suffix -Wnarrowing -Wnoexcept -Wnon-virtual-dtor
-Wreorder -Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast -Woverloaded-virtual
-Wno-pmf-conversions -Wsign-promo
- Objective-C and Objective-C++ Language Options
- -fconstant-string-class=class-name -fgnu-runtime
-fnext-runtime -fno-nil-receivers
-fobjc-abi-version=n -fobjc-call-cxx-cdtors
-fobjc-direct-dispatch -fobjc-exceptions -fobjc-gc
-fobjc-nilcheck -fobjc-std=objc1
-freplace-objc-classes -fzero-link -gen-decls
-Wassign-intercept -Wno-protocol -Wselector
-Wstrict-selector-match -Wundeclared-selector
- Language Independent Options
- -fmessage-length=n
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics-color=[auto|never|always]
-fno-diagnostics-show-option -fno-diagnostics-show-caret
- Warning Options
- -fsyntax-only -fmax-errors=n -Wpedantic
-pedantic-errors -w -Wextra -Wall -Waddress
-Waggregate-return -Waggressive-loop-optimizations
-Warray-bounds -Wno-attributes -Wno-builtin-macro-redefined
-Wc++-compat -Wc++11-compat -Wcast-align -Wcast-qual
-Wchar-subscripts -Wclobbered -Wcomment -Wconversion
-Wcoverage-mismatch -Wno-cpp -Wno-deprecated
-Wno-deprecated-declarations -Wdisabled-optimization
-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare
-Wno-endif-labels -Werror -Werror=* -Wfatal-errors -Wfloat-equal
-Wformat -Wformat=2 -Wno-format-contains-nul -Wno-format-extra-args
-Wformat-nonliteral -Wformat-security -Wformat-y2k
-Wframe-larger-than=len -Wno-free-nonheap-object
-Wjump-misses-init -Wignored-qualifiers -Wimplicit
-Wimplicit-function-declaration -Wimplicit-int -Winit-self -Winline
-Wmaybe-uninitialized -Wno-int-to-pointer-cast
-Wno-invalid-offsetof -Winvalid-pch -Wlarger-than=len
-Wunsafe-loop-optimizations -Wlogical-op -Wlong-long
-Wmain -Wmaybe-uninitialized -Wmissing-braces
-Wmissing-field-initializers -Wmissing-include-dirs
-Wno-mudflap -Wno-multichar -Wnonnull -Wno-overflow
-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format
-Wpointer-arith -Wno-pointer-to-int-cast -Wredundant-decls
-Wno-return-local-addr -Wreturn-type -Wsequence-point -Wshadow
-Wsign-compare -Wsign-conversion -Wsizeof-pointer-memaccess
-Wstack-protector -Wstack-usage=len -Wstrict-aliasing
-Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=n
-Wsuggest-attribute=[pure|const|noreturn|format]
-Wmissing-format-attribute -Wswitch -Wswitch-default
-Wswitch-enum -Wsync-nand -Wsystem-headers -Wtrampolines
-Wtrigraphs -Wtype-limits -Wundef -Wuninitialized -Wunknown-pragmas
-Wno-pragmas -Wunsuffixed-float-constants -Wunused
-Wunused-function -Wunused-label -Wunused-local-typedefs
-Wunused-parameter -Wno-unused-result -Wunused-value
-Wunused-variable -Wunused-but-set-parameter
-Wunused-but-set-variable -Wuseless-cast -Wvariadic-macros
-Wvector-operation-performance -Wvla -Wvolatile-register-var
-Wwrite-strings -Wzero-as-null-pointer-constant
- C and Objective-C-only Warning Options
- -Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign
- Debugging Options
- -dletters -dumpspecs -dumpmachine -dumpversion
-fsanitize=style -fdbg-cnt-list
-fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name
-fdisable-rtl-pass_name
-fdisable-rtl-pass-name=range-list
-fdisable-tree-pass_name
-fdisable-tree-pass-name=range-list
-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-translation-unit[-n]
-fdump-class-hierarchy[-n] -fdump-ipa-all
-fdump-ipa-cgraph -fdump-ipa-inline -fdump-passes
-fdump-statistics -fdump-tree-all
-fdump-tree-original[-n]
-fdump-tree-optimized[-n] -fdump-tree-cfg
-fdump-tree-alias -fdump-tree-ch
-fdump-tree-ssa[-n]
-fdump-tree-pre[-n]
-fdump-tree-ccp[-n]
-fdump-tree-dce[-n]
-fdump-tree-gimple[-raw]
-fdump-tree-mudflap[-n]
-fdump-tree-dom[-n]
-fdump-tree-dse[-n]
-fdump-tree-phiprop[-n]
-fdump-tree-phiopt[-n]
-fdump-tree-forwprop[-n]
-fdump-tree-copyrename[-n] -fdump-tree-nrv
-fdump-tree-vect -fdump-tree-sink
-fdump-tree-sra[-n]
-fdump-tree-forwprop[-n]
-fdump-tree-fre[-n]
-fdump-tree-vrp[-n]
-ftree-vectorizer-verbose=n
-fdump-tree-storeccp[-n]
-fdump-final-insns=file
-fcompare-debug[=opts] -fcompare-debug-second
-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fenable-kind-pass
-fenable-kind-pass=range-list
-fdebug-types-section -fmem-report-wpa -fmem-report
-fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-fopt-info -fopt-info-options[=file]
-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg
-fsel-sched-pipelining-verbose -fstack-usage -ftest-coverage
-ftime-report -fvar-tracking -fvar-tracking-assignments
-fvar-tracking-assignments-toggle -g -glevel -gtoggle
-gcoff -gdwarf-version -ggdb -grecord-gcc-switches
-gno-record-gcc-switches -gstabs -gstabs+ -gstrict-dwarf
-gno-strict-dwarf -gvms -gxcoff -gxcoff+
-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=old=new
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed[=spec-list] -p -pg
-print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix -save-temps
-save-temps=cwd -save-temps=obj -time[=file]
- Optimization Options
- -faggressive-loop-optimizations -falign-functions[=n]
-falign-jumps[=n] -falign-labels[=n]
-falign-loops[=n] -fassociative-math -fauto-inc-dec
-fbranch-probabilities -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive
-fcaller-saves -fcheck-data-deps -fcombine-stack-adjustments
-fconserve-stack -fcompare-elim -fcprop-registers
-fcrossjumping -fcse-follow-jumps -fcse-skip-blocks
-fcx-fortran-rules -fcx-limited-range -fdata-sections -fdce
-fdelayed-branch -fdelete-null-pointer-checks -fdevirtualize
-fdse -fearly-inlining -fipa-sra -fexpensive-optimizations
-ffat-lto-objects -ffast-math -ffinite-math-only -ffloat-store
-fexcess-precision=style -fforward-propagate
-ffp-contract=style -ffunction-sections -fgcse
-fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion
-fif-conversion2 -findirect-inlining -finline-functions
-finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-pta
-fipa-profile -fipa-pure-const -fipa-reference
-fira-algorithm=algorithm -fira-region=region
-fira-hoist-pressure -fira-loop-pressure
-fno-ira-share-save-slots -fno-ira-share-spill-slots
-fira-verbose=n -fivopts -fkeep-inline-functions
-fkeep-static-consts -floop-block -floop-interchange
-floop-strip-mine -floop-nest-optimize -floop-parallelize-all -flto
-flto-compression-level -flto-partition=alg
-flto-report -fmerge-all-constants -fmerge-constants
-fmodulo-sched -fmodulo-sched-allow-regmoves -fmove-loop-invariants
fmudflap -fmudflapir -fmudflapth -fno-branch-count-reg
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-guess-branch-probability -fno-inline -fno-math-errno
-fno-peephole -fno-peephole2 -fno-sched-interblock -fno-sched-spec
-fno-signed-zeros -fno-toplevel-reorder -fno-trapping-math
-fno-zero-initialized-in-bss -fomit-frame-pointer
-foptimize-register-move -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays -fprofile-report -fprofile-correction
-fprofile-dir=path -fprofile-generate
-fprofile-generate=path -fprofile-use
-fprofile-use=path -fprofile-values -freciprocal-math
-free -fregmove -frename-registers -freorder-blocks
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n]
-fsched-stalled-insns[=n] -fsched-group-heuristic
-fsched-critical-path-heuristic -fsched-spec-insn-heuristic
-fsched-rank-heuristic -fsched-last-insn-heuristic
-fsched-dep-count-heuristic -fschedule-insns -fschedule-insns2
-fsection-anchors -fselective-scheduling
-fselective-scheduling2 -fsel-sched-pipelining
-fsel-sched-pipelining-outer-loops -fshrink-wrap -fsignaling-nans
-fsingle-precision-constant -fsplit-ivs-in-unroller
-fsplit-wide-types -fstack-protector -fstack-protector-all
-fstack-protector-strong -fstrict-aliasing -fstrict-overflow
-fthread-jumps -ftracer -ftree-bit-ccp -ftree-builtin-call-dce
-ftree-ccp -ftree-ch -ftree-coalesce-inline-vars
-ftree-coalesce-vars -ftree-copy-prop -ftree-copyrename -ftree-dce
-ftree-dominator-opts -ftree-dse -ftree-forwprop -ftree-fre
-ftree-loop-if-convert -ftree-loop-if-convert-stores
-ftree-loop-im -ftree-phiprop -ftree-loop-distribution
-ftree-loop-distribute-patterns -ftree-loop-ivcanon
-ftree-loop-linear -ftree-loop-optimize
-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre
-ftree-pta -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge -ftree-ter
-ftree-vect-loop-version -ftree-vectorize -ftree-vrp
-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations
-funswitch-loops -fvariable-expansion-in-unroller -fvect-cost-model
-fvpt -fweb -fwhole-program -fwpa -fuse-ld=linker
-fuse-linker-plugin --param name=value
-O -O0 -O1 -O2 -O3 -Os -Ofast -Og
- Preprocessor Options
- -Aquestion=answer
-A-question[=answer] -C -dD -dI -dM -dN
-Dmacro[=defn] -E -H -idirafter
dir -include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-imultilib dir -isysroot dir -M -MM -MF -MG
-MP -MQ -MT -nostdinc -P -fdebug-cpp -ftrack-macro-expansion
-fworking-directory -remap -trigraphs -undef -Umacro
-Wp,option -Xpreprocessor option
-no-integrated-cpp
- Assembler Option
- -Wa,option -Xassembler option
- Linker Options
- object-file-name -llibrary -nostartfiles
-nodefaultlibs -nostdlib -pie -rdynamic -s -static -static-libgcc
-static-libstdc++ -static-libasan -static-libtsan -shared
-shared-libgcc -symbolic -T script
-Wl,option -Xlinker option -u
symbol
- Directory Options
- -Bprefix -Idir -iplugindir=dir
-iquotedir -Ldir -specs=file
-I- --sysroot=dir --no-sysroot-suffix
- Machine Dependent Options
- AArch64 Options -mbig-endian -mlittle-endian
-mgeneral-regs-only -mcmodel=tiny -mcmodel=small
-mcmodel=large -mstrict-align -momit-leaf-frame-pointer
-mno-omit-leaf-frame-pointer -mtls-dialect=desc
-mtls-dialect=traditional -mfix-cortex-a53-835769
-mno-fix-cortex-a53-835769 -march=name
-mcpu=name -mtune=name
Adapteva Epiphany Options -mhalf-reg-file
-mprefer-short-insn-regs -mbranch-cost=num -mcmove
-mnops=num -msoft-cmpsf -msplit-lohi -mpost-inc
-mpost-modify -mstack-offset=num -mround-nearest
-mlong-calls -mshort-calls -msmall16 -mfp-mode=mode
-mvect-double -max-vect-align=num -msplit-vecmove-early
-m1reg-reg
ARM Options -mapcs-frame -mno-apcs-frame
-mabi=name -mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float -mapcs-reentrant
-mno-apcs-reentrant -msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name -mfp16-format=name
-mthumb-interwork -mno-thumb-interwork -mcpu=name
-march=name -mfpu=name
-mstructure-size-boundary=n -mabort-on-noreturn
-mlong-calls -mno-long-calls -msingle-pic-base
-mno-single-pic-base -mpic-register=reg
-mnop-fun-dllimport -mpoke-function-name -mthumb
-marm -mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations -mfix-cortex-m3-ldrd
-munaligned-access
AVR Options -mmcu=mcu
-maccumulate-args -mbranch-cost=cost -mcall-prologues
-mint8 -mno-interrupts -mrelax -mstrict-X -mtiny-stack
-Waddr-space-convert
Blackfin Options
-mcpu=cpu[-sirevision] -msim
-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly
-mno-csync-anomaly -mlow-64k -mno-low64k -mstack-check-l1
-mid-shared-library -mno-id-shared-library
-mshared-library-id=n -mleaf-id-shared-library
-mno-leaf-id-shared-library -msep-data -mno-sep-data -mlong-calls
-mno-long-calls -mfast-fp -minline-plt -mmulticore -mcorea
-mcoreb -msdram -micplb
C6X Options -mbig-endian -mlittle-endian
-march=cpu -msim -msdata=sdata-type
CRIS Options -mcpu=cpu
-march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align -m32-bit -m16-bit
-m8-bit -mno-prologue-epilogue -mno-gotplt -melf -maout -melinux
-mlinux -sim -sim2 -mmul-bug-workaround
-mno-mul-bug-workaround
CR16 Options -mmac -mcr16cplus -mcr16c
-msim -mint32 -mbit-ops -mdata-model=model
Darwin Options -all_load -allowable_client -arch
-arch_errors_fatal -arch_only -bind_at_load -bundle
-bundle_loader -client_name -compatibility_version
-current_version -dead_strip -dependency-file -dylib_file
-dylinker_install_name -dynamic -dynamiclib
-exported_symbols_list -filelist -flat_namespace
-force_cpusubtype_ALL -force_flat_namespace
-headerpad_max_install_names -iframework -image_base -init
-install_name -keep_private_externs -multi_module
-multiply_defined -multiply_defined_unused -noall_load
-no_dead_strip_inits_and_terms -nofixprebinding -nomultidefs
-noprebind -noseglinkedit -pagezero_size -prebind
-prebind_all_twolevel_modules -private_bundle -read_only_relocs
-sectalign -sectobjectsymbols -whyload -seg1addr
-sectcreate -sectobjectsymbols -sectorder -segaddr
-segs_read_only_addr -segs_read_write_addr -seg_addr_table
-seg_addr_table_filename -seglinkedit -segprot
-segs_read_only_addr -segs_read_write_addr -single_module -static
-sub_library -sub_umbrella -twolevel_namespace -umbrella
-undefined -unexported_symbols_list
-weak_reference_mismatches -whatsloaded -F -gused -gfull
-mmacosx-version-min=version -mkernel
-mone-byte-bool
DEC Alpha Options -mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type -mbwx
-mmax -mfix -mcix -mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data -msmall-text
-mlarge-text -mmemory-latency=time
FR30 Options -msmall-model -mno-lsim
FRV Options -mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float -malloc-cc -mfixed-cc -mdword
-mno-dword -mdouble -mno-double -mmedia -mno-media
-mmuladd -mno-muladd -mfdpic -minline-plt -mgprel-ro
-multilib-library-pic -mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8 -mpack -mno-pack -mno-eflags
-mcond-move -mno-cond-move -moptimize-membar
-mno-optimize-membar -mscc -mno-scc -mcond-exec
-mno-cond-exec -mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats -mTLS -mtls
-mcpu=cpu
GNU/Linux Options -mglibc -muclibc -mbionic
-mandroid -tno-android-cc -tno-android-ld
H8/300 Options -mrelax -mh -ms -mn -mexr -mno-exr
-mint32 -malign-300
HPPA Options -march=architecture-type
-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld
-mfixed-range=register-range -mjump-in-delay
-mlinker-opt -mlong-calls -mlong-load-store -mno-big-switch
-mno-disable-fpregs -mno-disable-indexing
-mno-fast-indirect-calls -mno-gas -mno-jump-in-delay
-mno-long-load-store -mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0 -mpa-risc-1-1
-mpa-risc-2-0 -mportable-runtime -mschedule=cpu-type
-mspace-regs -msio -mwsio -munix=unix-std
-nolibdld -static -threads
i386 and x86-64 Options -mtune=cpu-type
-march=cpu-type -mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -mno-wide-multiply -mrtd
-malign-double -mpreferred-stack-boundary=num
-mincoming-stack-boundary=num -mcld -mcx16 -msahf
-mmovbe -mcrc32 -mrecip -mrecip=opt -mvzeroupper
-mprefer-avx128 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1
-msse4.2 -msse4 -mavx -mavx2 -maes -mpclmul -mfsgsbase -mrdrnd
-mf16c -mfma -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4
-mxop -mlzcnt -mbmi2 -mrtm -mlwp -mpku -mthreads
-mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80
-mregparm=num -msseregparm
-mveclibabi=type -mvect8-ret-in-mem -mpc32
-mpc64 -mpc80 -mstackrealign -momit-leaf-frame-pointer
-mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name
-maddress-mode=mode -m32 -m64 -mx32
-mlarge-data-threshold=num -msse2avx -mfentry
-m8bit-idiv -mavx256-split-unaligned-load
-mavx256-split-unaligned-store
-mindirect-branch=choice
-mfunction-return==choice
-mindirect-branch-register
i386 and x86-64 Windows Options -mconsole -mcygwin
-mno-cygwin -mdll -mnop-fun-dllimport -mthread -municode
-mwin32 -mwindows -fno-set-stack-executable
IA-64 Options -mbig-endian -mlittle-endian -mgnu-as
-mgnu-ld -mno-pic -mvolatile-asm-stop -mregister-names -msdata
-mno-sdata -mconstant-gp -mauto-pic -mfused-madd
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide -minline-int-divide-min-latency
-minline-int-divide-max-throughput -mno-inline-int-divide
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt -mdwarf2-asm -mearly-stop-bits
-mfixed-range=register-range
-mtls-size=tls-size -mtune=cpu-type
-milp32 -mlp64 -msched-br-data-spec -msched-ar-data-spec
-msched-control-spec -msched-br-in-data-spec
-msched-ar-in-data-spec -msched-in-control-spec -msched-spec-ldc
-msched-spec-control-ldc -msched-prefer-non-data-spec-insns
-msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle
-msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit
-msched-max-memory-insns=max-insns
LM32 Options -mbarrel-shift-enabled -mdivide-enabled
-mmultiply-enabled -msign-extend-enabled -muser-enabled
M32R/D Options -m32r2 -m32rx -m32r
-mdebug -malign-loops -mno-align-loops
-missue-rate=number -mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type -mno-flush-func
-mflush-func=name -mno-flush-trap
-mflush-trap=number -G num
M32C Options -mcpu=cpu -msim
-memregs=number
M680x0 Options -march=arch
-mcpu=cpu -mtune=tune -m68000 -m68020
-m68020-40 -m68020-60 -m68030 -m68040 -m68060 -mcpu32 -m5200
-m5206e -m528x -m5307 -m5407 -mcfv4e -mbitfield -mno-bitfield
-mc68000 -mc68020 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div
-mshort -mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot
MCore Options -mhardlit -mno-hardlit -mdiv -mno-div
-mrelax-immediates -mno-relax-immediates -mwide-bitfields
-mno-wide-bitfields -m4byte-functions -mno-4byte-functions
-mcallgraph-data -mno-callgraph-data -mslow-bytes -mno-slow-bytes
-mno-lsim -mlittle-endian -mbig-endian -m210 -m340
-mstack-increment
MeP Options -mabsdiff -mall-opts -maverage
-mbased=n -mbitops -mc=n -mclip
-mconfig=name -mcop -mcop32 -mcop64 -mivc2 -mdc
-mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax -mmult
-mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n
MicroBlaze Options -msoft-float -mhard-float
-msmall-divides -mcpu=cpu -mmemcpy -mxl-soft-mul
-mxl-soft-div -mxl-barrel-shift -mxl-pattern-compare
-mxl-stack-check -mxl-gp-opt -mno-clearbss -mxl-multiply-high
-mxl-float-convert -mxl-float-sqrt -mbig-endian -mlittle-endian
-mxl-reorder -mxl-mode-app-model
MIPS Options -EL -EB -march=arch
-mtune=arch -mips1 -mips2 -mips3 -mips4 -mips32
-mips32r2 -mips64 -mips64r2 -mips16 -mno-mips16
-mflip-mips16 -minterlink-mips16 -mno-interlink-mips16
-mabi=abi -mabicalls -mno-abicalls -mshared
-mno-shared -mplt -mno-plt -mxgot -mno-xgot -mgp32 -mgp64 -mfp32
-mfp64 -mhard-float -msoft-float -mno-float -msingle-float
-mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2 -mmcu
-mmno-mcu -mfpu=fpu-type -msmartmips
-mno-smartmips -mpaired-single -mno-paired-single -mdmx
-mno-mdmx -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32 -Gnum
-mlocal-sdata -mno-local-sdata -mextern-sdata
-mno-extern-sdata -mgpopt -mno-gopt -membedded-data
-mno-embedded-data -muninit-const-in-rodata
-mno-uninit-const-in-rodata -mcode-readable=setting
-msplit-addresses -mno-split-addresses -mexplicit-relocs
-mno-explicit-relocs -mcheck-zero-division
-mno-check-zero-division -mdivide-traps -mdivide-breaks
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls -mmad
-mno-mad -mfused-madd -mno-fused-madd -nocpp -mfix-24k
-mno-fix-24k -mfix-r4000 -mno-fix-r4000 -mfix-r4400
-mno-fix-r4400 -mfix-r10000 -mno-fix-r10000 -mfix-vr4120
-mno-fix-vr4120 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1
-mno-fix-sb1 -mflush-func=func -mno-flush-func
-mbranch-cost=num -mbranch-likely
-mno-branch-likely -mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
MMIX Options -mlibfuncs -mno-libfuncs -mepsilon
-mno-epsilon -mabi=gnu -mabi=mmixware -mzero-extend -mknuthdiv
-mtoplevel-symbols -melf -mbranch-predict -mno-branch-predict
-mbase-addresses -mno-base-addresses -msingle-exit
-mno-single-exit
MN10300 Options -mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34 -mtune=cpu-type
-mreturn-pointer-on-d0 -mno-crt0 -mrelax -mliw -msetlb
Moxie Options -meb -mel -mno-crt0
PDP-11 Options -mfpu -msoft-float -mac0 -mno-ac0
-m40 -m45 -m10 -mbcopy -mbcopy-builtin -mint32 -mno-int16
-mint16 -mno-int32 -mfloat32 -mno-float64 -mfloat64
-mno-float32 -mabshi -mno-abshi -mbranch-expensive
-mbranch-cheap -munix-asm -mdec-asm
picoChip Options -mae=ae_type
-mvliw-lookahead=N -msymbol-as-address
-mno-inefficient-warnings
PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options -msim -mmul=none -mmul=g13
-mmul=rl78
RS/6000 and PowerPC Options
-mcpu=cpu-type -mtune=cpu-type
-mcmodel=code-model -mpowerpc64 -maltivec
-mno-altivec -mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt -mmfcrf -mno-mfcrf
-mpopcntb -mno-popcntb -mpopcntd -mno-popcntd -mfprnd
-mno-fprnd -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp
-mno-hard-dfp -mfull-toc -mminimal-toc -mno-fp-in-toc
-mno-sum-in-toc -m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural -msoft-float -mhard-float
-mmultiple -mno-multiple -msingle-float -mdouble-float
-msimple-fpu -mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib -mtoc
-mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme -mcall-sysv
-mcall-netbsd -maix-struct-return -msvr4-struct-return
-mabi=abi-type -msecure-plt -mbss-plt
-mblock-move-inline-limit=num -misel -mno-isel
-misel=yes -misel=no -mspe -mno-spe -mspe=yes
-mspe=no -mpaired -mgen-cell-microcode
-mwarn-cell-microcode -mvrsave -mno-vrsave -mmulhw
-mno-mulhw -mdlmzb -mno-dlmzb -mfloat-gprs=yes
-mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype -msim -mmvme -mads -myellowknife
-memb -msdata -msdata=opt -mvxworks -G
num -pthread -mrecip -mrecip=opt
-mno-recip -mrecip-precision -mno-recip-precision
-mveclibabi=type -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect -mpower8-fusion
-mno-mpower8-fusion -mpower8-vector -mno-power8-vector -mcrypto
-mno-crypto -mdirect-move -mno-direct-move -mquad-memory
-mno-quad-memory -mquad-memory-atomic -mno-quad-memory-atomic
-mcompat-align-parm -mno-compat-align-parm
-mstack-protector-guard=guard
-mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset
RX Options -m64bit-doubles -m32bit-doubles -fpu
-nofpu -mcpu= -mbig-endian-data -mlittle-endian-data
-msmall-data -msim -mno-sim -mas100-syntax
-mno-as100-syntax -mrelax -mmax-constant-size=
-mint-register= -mpid
-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts
S/390 and zSeries Options -mtune=cpu-type
-march=cpu-type -mhard-float -msoft-float -mhard-dfp
-mno-hard-dfp -mlong-double-64 -mlong-double-128
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle -m64 -m31
-mdebug -mno-debug -mesa -mzarch -mhtm -mvx -mzvector
-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch=halfwords,halfwords
Score Options -meb -mel -mnhwloop
-muls -mmac -mscore5 -mscore5u -mscore7
-mscore7d
SH Options -m1 -m2 -m2e -m2a-nofpu
-m2a-single-only -m2a-single -m2a -m3 -m3e -m4-nofpu
-m4-single-only -m4-single -m4 -m4a-nofpu -m4a-single-only
-m4a-single -m4a -m4al -m5-64media -m5-64media-nofpu
-m5-32media -m5-32media-nofpu -m5-compact
-m5-compact-nofpu -mb -ml -mdalign -mrelax -mbigtable
-mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave -mieee
-mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mspace -mprefergot -musermode -multcost=number
-mdiv=strategy -mdivsi3_libfunc=name
-mfixed-range=register-range -mindexed-addressing
-mgettrcost=number -mpt-fixed
-maccumulate-outgoing-args -minvalid-symbols
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch
-mcbranchdi -mcmpeqdi -mfused-madd -mno-fused-madd -mfsca
-mno-fsca -mfsrra -mno-fsrra -mpretend-cmove -mtas
Solaris 2 Options -mimpure-text -mno-impure-text
-pthreads -pthread
SPARC Options -mcpu=cpu-type
-mtune=cpu-type -mcmodel=code-model
-mmemory-model=mem-model -m32 -m64 -mapp-regs
-mno-app-regs -mfaster-structs -mno-faster-structs -mflat
-mno-flat -mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float -mstack-bias
-mno-stack-bias -munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode -mv8plus -mno-v8plus -mvis
-mno-vis -mvis2 -mno-vis2 -mvis3 -mno-vis3 -mcbcond
-mno-cbcond -mfmaf -mno-fmaf -mpopc -mno-popc -mfix-at697f
-mfix-ut699
SPU Options -mwarn-reloc -merror-reloc
-msafe-dma -munsafe-dma -mbranch-hints -msmall-mem
-mlarge-mem -mstdmain -mfixed-range=register-range
-mea32 -mea64 -maddress-space-conversion
-mno-address-space-conversion -mcache-size=cache-size
-matomic-updates -mno-atomic-updates
System V Options -Qy -Qn -YP,paths
-Ym,dir
TILE-Gx Options -mcpu=cpu -m32 -m64
-mcmodel=code-model
TILEPro Options -mcpu=cpu -m32
V850 Options -mlong-calls -mno-long-calls -mep
-mno-ep -mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs -mdisable-callt
-mno-disable-callt -mv850e2v3 -mv850e2 -mv850e1 -mv850es
-mv850e -mv850 -mv850e3v5 -mloop -mrelax
-mlong-jumps -msoft-float -mhard-float
-mgcc-abi -mrh850-abi -mbig-switch
VAX Options -mg -mgnu -munix
VMS Options -mvms-return-codes
-mdebug-main=prefix -mmalloc64
-mpointer-size=size
VxWorks Options -mrtp -non-static -Bstatic
-Bdynamic -Xbind-lazy -Xbind-now
x86-64 Options See i386 and x86-64 Options.
Xstormy16 Options -msim
Xtensa Options -mconst16 -mno-const16
-mfused-madd -mno-fused-madd -mforce-no-pic
-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align -mlongcalls
-mno-longcalls
zSeries Options See S/390 and zSeries Options.
- Code Generation Options
- -fcall-saved-reg -fcall-used-reg
-ffixed-reg -fexceptions -fnon-call-exceptions
-fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables -fno-gnu-unique
-finhibit-size-directive -finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym,...
-finstrument-functions-exclude-file-list=file,file,...
-fno-common -fno-ident -fpcc-struct-return -fpic -fPIC -fpie
-fPIE -fno-jump-tables -frecord-gcc-switches
-freg-struct-return -fshort-enums -fshort-double
-fshort-wchar -fverbose-asm -fpack-struct[=n]
-fstack-check -fstack-limit-register=reg
-fstack-limit-symbol=sym -fno-stack-limit
-fsplit-stack -fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level -ftrapv -fwrapv
-fbounds-check -fvisibility -fstrict-volatile-bitfields
-fsync-libcalls
Compilation can involve up to four stages: preprocessing, compilation proper,
assembly and linking, always in that order. GCC is capable of preprocessing
and compiling several files either into several assembler input files, or into
one assembler input file; then each assembler input file produces an object
file, and linking combines all the object files (those newly compiled, and
those specified as input) into an executable file.
For any given input file, the file name suffix determines what
kind of compilation is done:
- file.c
- C source code that must be preprocessed.
- file.i
- C source code that should not be preprocessed.
- file.ii
- C++ source code that should not be preprocessed.
- file.m
- Objective-C source code. Note that you must link with the libobjc
library to make an Objective-C program work.
- file.mi
- Objective-C source code that should not be preprocessed.
- file.mm
- file.M
- Objective-C++ source code. Note that you must link with the libobjc
library to make an Objective-C++ program work. Note that .M refers
to a literal capital M.
- file.mii
- Objective-C++ source code that should not be preprocessed.
- file.h
- C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header (default), or C, C++ header file to be turned into an
Ada spec (via the -fdump-ada-spec switch).
- file.cc
- file.cp
- file.cxx
- file.cpp
- file.CPP
- file.c++
- file.C
- C++ source code that must be preprocessed. Note that in .cxx, the
last two letters must both be literally x. Likewise, .C
refers to a literal capital C.
- file.mm
- file.M
- Objective-C++ source code that must be preprocessed.
- file.mii
- Objective-C++ source code that should not be preprocessed.
- file.hh
- file.H
- file.hp
- file.hxx
- file.hpp
- file.HPP
- file.h++
- file.tcc
- C++ header file to be turned into a precompiled header or Ada spec.
- file.f
- file.for
- file.ftn
- Fixed form Fortran source code that should not be preprocessed.
- file.F
- file.FOR
- file.fpp
- file.FPP
- file.FTN
- Fixed form Fortran source code that must be preprocessed (with the
traditional preprocessor).
- file.f90
- file.f95
- file.f03
- file.f08
- Free form Fortran source code that should not be preprocessed.
- file.F90
- file.F95
- file.F03
- file.F08
- Free form Fortran source code that must be preprocessed (with the
traditional preprocessor).
- file.go
- Go source code.
- file.ads
- Ada source code file that contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration). Such files are also called
specs.
- file.adb
- Ada source code file containing a library unit body (a subprogram or
package body). Such files are also called bodies.
- file.s
- Assembler code.
- file.S
- file.sx
- Assembler code that must be preprocessed.
- other
- An object file to be fed straight into linking. Any file name with no
recognized suffix is treated this way.
You can specify the input language explicitly with the -x
option:
- -x language
- Specify explicitly the language for the following input files
(rather than letting the compiler choose a default based on the file name
suffix). This option applies to all following input files until the next
-x option. Possible values for language are:
c c-header cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
f77 f77-cpp-input f95 f95-cpp-input
go
java
- -x none
- Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if -x
has not been used at all).
- -pass-exit-codes
- Normally the gcc program exits with the code of 1 if any phase of
the compiler returns a non-success return code. If you specify
-pass-exit-codes, the gcc program instead returns with the
numerically highest error produced by any phase returning an error
indication. The C, C++, and Fortran front ends return 4 if an internal
compiler error is encountered.
If you only want some of the stages of compilation, you can use
-x (or filename suffixes) to tell gcc where to start, and one
of the options -c, -S, or -E to say where gcc is
to stop. Note that some combinations (for example, -x cpp-output -E)
instruct gcc to do nothing at all.
- -c
- Compile or assemble the source files, but do not link. The linking stage
simply is not done. The ultimate output is in the form of an object file
for each source file.
By default, the object file name for a source file is made by
replacing the suffix .c, .i, .s, etc., with
.o.
Unrecognized input files, not requiring compilation or
assembly, are ignored.
- -S
- Stop after the stage of compilation proper; do not assemble. The output is
in the form of an assembler code file for each non-assembler input file
specified.
By default, the assembler file name for a source file is made
by replacing the suffix .c, .i, etc., with .s.
Input files that don't require compilation are ignored.
- -E
- Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.
Input files that don't require preprocessing are ignored.
- -o file
- Place output in file file. This applies to whatever sort of output
is being produced, whether it be an executable file, an object file, an
assembler file or preprocessed C code.
If -o is not specified, the default is to put an
executable file in a.out, the object file for
source .suffix in
source .o, its assembler file in
source .s, a precompiled header file in
source.suffix.gch, and all
preprocessed C source on standard output.
- -v
- Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.
- -###
- Like -v except the commands are not executed and arguments are
quoted unless they contain only alphanumeric characters or
"./-_". This is useful for shell scripts
to capture the driver-generated command lines.
- -pipe
- Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has no
trouble.
- --help
- Print (on the standard output) a description of the command-line options
understood by gcc. If the -v option is also specified then
--help is also passed on to the various processes invoked by
gcc, so that they can display the command-line options they accept.
If the -Wextra option has also been specified (prior to the
--help option), then command-line options that have no
documentation associated with them are also displayed.
- --target-help
- Print (on the standard output) a description of target-specific
command-line options for each tool. For some targets extra target-specific
information may also be printed.
- --help={class|[^]qualifier}[,...]
- Print (on the standard output) a description of the command-line options
understood by the compiler that fit into all specified classes and
qualifiers. These are the supported classes:
- optimizers
- Display all of the optimization options supported by the compiler.
- warnings
- Display all of the options controlling warning messages produced by the
compiler.
- target
- Display target-specific options. Unlike the --target-help option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended --help= syntax.
- params
- Display the values recognized by the --param option.
- language
- Display the options supported for language, where language
is the name of one of the languages supported in this version of GCC.
- common
- Display the options that are common to all languages.
These are the supported qualifiers:
- undocumented
- Display only those options that are undocumented.
- joined
- Display options taking an argument that appears after an equal sign in the
same continuous piece of text, such as: --help=target.
- separate
- Display options taking an argument that appears as a separate word
following the original option, such as: -o output-file.
Thus for example to display all the undocumented target-specific
switches supported by the compiler, use:
--help=target,undocumented
The sense of a qualifier can be inverted by prefixing it with the
^ character, so for example to display all binary warning options
(i.e., ones that are either on or off and that do not take an argument) that
have a description, use:
--help=warnings,^joined,^undocumented
The argument to --help= should not consist solely of
inverted qualifiers.
Combining several classes is possible, although this usually
restricts the output so much that there is nothing to display. One case
where it does work, however, is when one of the classes is target.
For example, to display all the target-specific optimization options,
use:
--help=target,optimizers
The --help= option can be repeated on the command line.
Each successive use displays its requested class of options, skipping those
that have already been displayed.
If the -Q option appears on the command line before the
--help= option, then the descriptive text displayed by --help=
is changed. Instead of describing the displayed options, an indication is
given as to whether the option is enabled, disabled or set to a specific
value (assuming that the compiler knows this at the point where the
--help= option is used).
Here is a truncated example from the ARM port of gcc:
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]
The output is sensitive to the effects of previous command-line
options, so for example it is possible to find out which optimizations are
enabled at -O2 by using:
-Q -O2 --help=optimizers
Alternatively you can discover which binary optimizations are
enabled by -O3 by using:
gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
- -no-canonical-prefixes
- Do not expand any symbolic links, resolve references to /../ or
/./, or make the path absolute when generating a relative
prefix.
- --version
- Display the version number and copyrights of the invoked GCC.
- -wrapper
- Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.
gcc -c t.c -wrapper gdb,--args
This invokes all subprograms of gcc under gdb
--args, thus the invocation of cc1 is gdb --args cc1
....
- -fplugin=name.so
- Load the plugin code in file name.so, assumed to be a shared object
to be dlopen'd by the compiler. The base name of the shared object file is
used to identify the plugin for the purposes of argument parsing (See
-fplugin-arg-name-key=value
below). Each plugin should define the callback functions specified in the
Plugins API.
- -fplugin-arg-name-key=value
- Define an argument called key with a value of value for the
plugin called name.
- -fdump-ada-spec[-slim]
- For C and C++ source and include files, generate corresponding Ada
specs.
- -fada-spec-parent=unit
- In conjunction with -fdump-ada-spec[-slim] above, generate
Ada specs as child units of parent unit.
- -fdump-go-spec=file
- For input files in any language, generate corresponding Go declarations in
file. This generates Go "const",
"type",
"var", and
"func" declarations which may be a
useful way to start writing a Go interface to code written in some other
language.
- @file
- Read command-line options from file. The options read are inserted
in place of the original @file option. If file does not
exist, or cannot be read, then the option will be treated literally, and
not removed.
Options in file are separated by whitespace. A
whitespace character may be included in an option by surrounding the
entire option in either single or double quotes. Any character
(including a backslash) may be included by prefixing the character to be
included with a backslash. The file may itself contain additional
@file options; any such options will be processed
recursively.
C++ source files conventionally use one of the suffixes .C, .cc,
.cpp, .CPP, .c++, .cp, or .cxx; C++ header
files often use .hh, .hpp, .H, or (for shared template
code) .tcc; and preprocessed C++ files use the suffix .ii. GCC
recognizes files with these names and compiles them as C++ programs even if
you call the compiler the same way as for compiling C programs (usually with
the name gcc).
However, the use of gcc does not add the C++ library.
g++ is a program that calls GCC and automatically specifies linking
against the C++ library. It treats .c, .h and .i files
as C++ source files instead of C source files unless -x is used. This
program is also useful when precompiling a C header file with a .h
extension for use in C++ compilations. On many systems, g++ is also
installed with the name c++.
When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any language; or
command-line options meaningful for C and related languages; or options that
are meaningful only for C++ programs.
The following options control the dialect of C (or languages derived from C,
such as C++, Objective-C and Objective-C++) that the compiler accepts:
- -ansi
- In C mode, this is equivalent to -std=c90. In C++ mode, it is
equivalent to -std=c++98.
This turns off certain features of GCC that are incompatible
with ISO C90 (when compiling C code), or of standard C++ (when compiling
C++ code), such as the "asm" and
"typeof" keywords, and predefined
macros such as "unix" and
"vax" that identify the type of system
you are using. It also enables the undesirable and rarely used ISO
trigraph feature. For the C compiler, it disables recognition of C++
style // comments as well as the
"inline" keyword.
The alternate keywords
"__asm__",
"__extension__",
"__inline__" and
"__typeof__" continue to work despite
-ansi. You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be
included in compilations done with -ansi. Alternate predefined
macros such as "__unix__" and
"__vax__" are also available, with or
without -ansi.
The -ansi option does not cause non-ISO programs to be
rejected gratuitously. For that, -Wpedantic is required in
addition to -ansi.
The macro "__STRICT_ANSI__"
is predefined when the -ansi option is used. Some header files
may notice this macro and refrain from declaring certain functions or
defining certain macros that the ISO standard doesn't call for; this is
to avoid interfering with any programs that might use these names for
other things.
Functions that are normally built in but do not have semantics
defined by ISO C (such as "alloca" and
"ffs") are not built-in functions when
-ansi is used.
- -std=
- Determine the language standard. This option is currently only supported
when compiling C or C++.
The compiler can accept several base standards, such as
c90 or c++98, and GNU dialects of those standards, such as
gnu90 or gnu++98. When a base standard is specified, the
compiler accepts all programs following that standard plus those using
GNU extensions that do not contradict it. For example, -std=c90
turns off certain features of GCC that are incompatible with ISO C90,
such as the "asm" and
"typeof" keywords, but not other GNU
extensions that do not have a meaning in ISO C90, such as omitting the
middle term of a "?:" expression. On
the other hand, when a GNU dialect of a standard is specified, all
features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some
strict-conforming programs may be rejected. The particular standard is
used by -Wpedantic to identify which features are GNU extensions
given that version of the standard. For example -std=gnu90
-Wpedantic warns about C++ style // comments, while
-std=gnu99 -Wpedantic does not.
A value for this option must be provided; possible values
are
- c90
- c89
- iso9899:1990
- Support all ISO C90 programs (certain GNU extensions that conflict with
ISO C90 are disabled). Same as -ansi for C code.
- iso9899:199409
- ISO C90 as modified in amendment 1.
- c99
- c9x
- iso9899:1999
- iso9899:199x
- ISO C99. Note that this standard is not yet fully supported; see
<http://gcc.gnu.org/c99status.html> for more information. The
names c9x and iso9899:199x are deprecated.
- c11
- c1x
- iso9899:2011
- ISO C11, the 2011 revision of the ISO C standard. Support is incomplete
and experimental. The name c1x is deprecated.
- gnu90
- gnu89
- GNU dialect of ISO C90 (including some C99 features). This is the default
for C code.
- gnu99
- gnu9x
- GNU dialect of ISO C99. When ISO C99 is fully implemented in GCC, this
will become the default. The name gnu9x is deprecated.
- gnu11
- gnu1x
- GNU dialect of ISO C11. Support is incomplete and experimental. The name
gnu1x is deprecated.
- c++98
- c++03
- The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
additional defect reports. Same as -ansi for C++ code.
- gnu++98
- gnu++03
- GNU dialect of -std=c++98. This is the default for C++ code.
- c++11
- c++0x
- The 2011 ISO C++ standard plus amendments. Support for C++11 is still
experimental, and may change in incompatible ways in future releases. The
name c++0x is deprecated.
- gnu++11
- gnu++0x
- GNU dialect of -std=c++11. Support for C++11 is still experimental,
and may change in incompatible ways in future releases. The name
gnu++0x is deprecated.
- c++1y
- The next revision of the ISO C++ standard, tentatively planned for 2017.
Support is highly experimental, and will almost certainly change in
incompatible ways in future releases.
- gnu++1y
- GNU dialect of -std=c++1y. Support is highly experimental, and will
almost certainly change in incompatible ways in future releases.
- -fgnu89-inline
- The option -fgnu89-inline tells GCC to use the traditional GNU
semantics for "inline" functions when in
C99 mode.
This option is accepted and ignored by GCC versions 4.1.3 up to but not
including 4.3. In GCC versions 4.3 and later it changes the behavior of
GCC in C99 mode. Using this option is roughly equivalent to adding the
"gnu_inline" function attribute to all
inline functions.
The option -fno-gnu89-inline explicitly tells GCC to
use the C99 semantics for "inline"
when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option was first supported in GCC 4.3. This option is not supported
in -std=c90 or -std=gnu90 mode.
The preprocessor macros
"__GNUC_GNU_INLINE__" and
"__GNUC_STDC_INLINE__" may be used to
check which semantics are in effect for
"inline" functions.
- -aux-info filename
- Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files. This option is silently ignored in any language other than C.
Besides declarations, the file indicates, in comments, the
origin of each declaration (source file and line), whether the
declaration was implicit, prototyped or unprototyped (I, N
for new or O for old, respectively, in the first character after
the line number and the colon), and whether it came from a declaration
or a definition (C or F, respectively, in the following
character). In the case of function definitions, a K&R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.
- -fallow-parameterless-variadic-functions
- Accept variadic functions without named parameters.
Although it is possible to define such a function, this is not
very useful as it is not possible to read the arguments. This is only
supported for C as this construct is allowed by C++.
- -fno-asm
- Do not recognize "asm",
"inline" or
"typeof" as a keyword, so that code can
use these words as identifiers. You can use the keywords
"__asm__",
"__inline__" and
"__typeof__" instead. -ansi
implies -fno-asm.
In C++, this switch only affects the
"typeof" keyword, since
"asm" and
"inline" are standard keywords. You
may want to use the -fno-gnu-keywords flag instead, which has the
same effect. In C99 mode (-std=c99 or -std=gnu99), this
switch only affects the "asm" and
"typeof" keywords, since
"inline" is a standard keyword in ISO
C99.
- -fno-builtin
- -fno-builtin-function
- Don't recognize built-in functions that do not begin with
__builtin_ as prefix.
GCC normally generates special code to handle certain built-in
functions more efficiently; for instance, calls to
"alloca" may become single
instructions which adjust the stack directly, and calls to
"memcpy" may become inline copy loops.
The resulting code is often both smaller and faster, but since the
function calls no longer appear as such, you cannot set a breakpoint on
those calls, nor can you change the behavior of the functions by linking
with a different library. In addition, when a function is recognized as
a built-in function, GCC may use information about that function to warn
about problems with calls to that function, or to generate more
efficient code, even if the resulting code still contains calls to that
function. For example, warnings are given with -Wformat for bad
calls to "printf" when
"printf" is built in and
"strlen" is known not to modify global
memory.
With the -fno-builtin-function option only the
built-in function function is disabled. function must not
begin with __builtin_. If a function is named that is not
built-in in this version of GCC, this option is ignored. There is no
corresponding -fbuiltin-function option; if you wish to
enable built-in functions selectively when using -fno-builtin or
-ffreestanding, you may define macros such as:
#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
- -fhosted
- Assert that compilation targets a hosted environment. This implies
-fbuiltin. A hosted environment is one in which the entire standard
library is available, and in which
"main" has a return type of
"int". Examples are nearly everything
except a kernel. This is equivalent to -fno-freestanding.
- -ffreestanding
- Assert that compilation targets a freestanding environment. This implies
-fno-builtin. A freestanding environment is one in which the
standard library may not exist, and program startup may not necessarily be
at "main". The most obvious example is
an OS kernel. This is equivalent to -fno-hosted.
- -fopenmp
- Enable handling of OpenMP directives "#pragma
omp" in C/C++ and "!$omp" in
Fortran. When -fopenmp is specified, the compiler generates
parallel code according to the OpenMP Application Program Interface v3.0
<http://www.openmp.org/>. This option implies
-pthread, and thus is only supported on targets that have support
for -pthread.
- -fgnu-tm
- When the option -fgnu-tm is specified, the compiler generates code
for the Linux variant of Intel's current Transactional Memory ABI
specification document (Revision 1.1, May 6 2009). This is an experimental
feature whose interface may change in future versions of GCC, as the
official specification changes. Please note that not all architectures are
supported for this feature.
For more information on GCC's support for transactional
memory,
Note that the transactional memory feature is not supported
with non-call exceptions (-fnon-call-exceptions).
- -fms-extensions
- Accept some non-standard constructs used in Microsoft header files.
In C++ code, this allows member names in structures to be
similar to previous types declarations.
typedef int UOW;
struct ABC {
UOW UOW;
};
Some cases of unnamed fields in structures and unions are only
accepted with this option.
- -fplan9-extensions
- Accept some non-standard constructs used in Plan 9 code.
This enables -fms-extensions, permits passing pointers
to structures with anonymous fields to functions that expect pointers to
elements of the type of the field, and permits referring to anonymous
fields declared using a typedef. This is only supported for C, not
C++.
- -trigraphs
- Support ISO C trigraphs. The -ansi option (and -std options
for strict ISO C conformance) implies -trigraphs.
- -traditional
- -traditional-cpp
- Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the -E switch. The
preprocessor continues to support a pre-standard mode. See the GNU CPP
manual for details.
- -fcond-mismatch
- Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void. This option is
not supported for C++.
- -flax-vector-conversions
- Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types. This option should not be used
for new code.
- -funsigned-char
- Let the type "char" be unsigned, like
"unsigned char".
Each kind of machine has a default for what
"char" should be. It is either like
"unsigned char" by default or like
"signed char" by default.
Ideally, a portable program should always use
"signed char" or
"unsigned char" when it depends on the
signedness of an object. But many programs have been written to use
plain "char" and expect it to be
signed, or expect it to be unsigned, depending on the machines they were
written for. This option, and its inverse, let you make such a program
work with the opposite default.
The type "char" is always a
distinct type from each of "signed
char" or "unsigned char",
even though its behavior is always just like one of those two.
- -fsigned-char
- Let the type "char" be signed, like
"signed char".
Note that this is equivalent to -fno-unsigned-char,
which is the negative form of -funsigned-char. Likewise, the
option -fno-signed-char is equivalent to
-funsigned-char.
- -fsigned-bitfields
- -funsigned-bitfields
- -fno-signed-bitfields
- -fno-unsigned-bitfields
- These options control whether a bit-field is signed or unsigned, when the
declaration does not use either "signed"
or "unsigned". By default, such a
bit-field is signed, because this is consistent: the basic integer types
such as "int" are signed types.
This section describes the command-line options that are only meaningful for C++
programs. You can also use most of the GNU compiler options regardless of what
language your program is in. For example, you might compile a file
"firstClass.C" like this:
g++ -g -frepo -O -c firstClass.C
In this example, only -frepo is an option meant only for
C++ programs; you can use the other options with any language supported by
GCC.
Here is a list of options that are only for compiling C++
programs:
- -fabi-version=n
- Use version n of the C++ ABI. The default is version 2.
Version 0 refers to the version conforming most closely to the
C++ ABI specification. Therefore, the ABI obtained using version 0 will
change in different versions of G++ as ABI bugs are fixed.
Version 1 is the version of the C++ ABI that first appeared in
G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in
G++ 3.4.
Version 3 corrects an error in mangling a constant address as
a template argument.
Version 4, which first appeared in G++ 4.5, implements a
standard mangling for vector types.
Version 5, which first appeared in G++ 4.6, corrects the
mangling of attribute const/volatile on function pointer types, decltype
of a plain decl, and use of a function parameter in the declaration of
another parameter.
Version 6, which first appeared in G++ 4.7, corrects the
promotion behavior of C++11 scoped enums and the mangling of template
argument packs, const/static_cast, prefix ++ and --, and a class scope
function used as a template argument.
See also -Wabi.
- -fno-access-control
- Turn off all access checking. This switch is mainly useful for working
around bugs in the access control code.
- -fcheck-new
- Check that the pointer returned by "operator
new" is non-null before attempting to modify the storage
allocated. This check is normally unnecessary because the C++ standard
specifies that "operator new" only
returns 0 if it is declared
throw() , in which case the compiler always
checks the return value even without this option. In all other cases, when
"operator new" has a non-empty exception
specification, memory exhaustion is signalled by throwing
"std::bad_alloc". See also new
(nothrow).
- -fconstexpr-depth=n
- Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant
expression evaluation. The minimum specified by the standard is 512.
- -fdeduce-init-list
- Enable deduction of a template type parameter as
"std::initializer_list" from a
brace-enclosed initializer list, i.e.
template <class T> auto forward(T t) -> decltype (realfn (t))
{
return realfn (t);
}
void f()
{
forward({1,2}); // call forward<std::initializer_list<int>>
}
This deduction was implemented as a possible extension to the
originally proposed semantics for the C++11 standard, but was not part
of the final standard, so it is disabled by default. This option is
deprecated, and may be removed in a future version of G++.
- -ffriend-injection
- Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared. Friend
functions were documented to work this way in the old Annotated C++
Reference Manual, and versions of G++ before 4.1 always worked that way.
However, in ISO C++ a friend function that is not declared in an enclosing
scope can only be found using argument dependent lookup. This option
causes friends to be injected as they were in earlier releases.
This option is for compatibility, and may be removed in a
future release of G++.
- -fno-elide-constructors
- The C++ standard allows an implementation to omit creating a temporary
that is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to call
the copy constructor in all cases.
- -fno-enforce-eh-specs
- Don't generate code to check for violation of exception specifications at
run time. This option violates the C++ standard, but may be useful for
reducing code size in production builds, much like defining NDEBUG.
This does not give user code permission to throw exceptions in violation
of the exception specifications; the compiler still optimizes based on the
specifications, so throwing an unexpected exception results in undefined
behavior at run time.
- -fextern-tls-init
- -fno-extern-tls-init
- The C++11 and OpenMP standards allow thread_local and
threadprivate variables to have dynamic (runtime) initialization.
To support this, any use of such a variable goes through a wrapper
function that performs any necessary initialization. When the use and
definition of the variable are in the same translation unit, this overhead
can be optimized away, but when the use is in a different translation unit
there is significant overhead even if the variable doesn't actually need
dynamic initialization. If the programmer can be sure that no use of the
variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the
variable in the defining TU will be executed before any uses in another
TU), they can avoid this overhead with the -fno-extern-tls-init
option.
On targets that support symbol aliases, the default is
-fextern-tls-init. On targets that do not support symbol aliases,
the default is -fno-extern-tls-init.
- -ffor-scope
- -fno-for-scope
- If -ffor-scope is specified, the scope of variables declared in a
for-init-statement is limited to the for loop itself, as
specified by the C++ standard. If -fno-for-scope is specified, the
scope of variables declared in a for-init-statement extends to the
end of the enclosing scope, as was the case in old versions of G++, and
other (traditional) implementations of C++.
If neither flag is given, the default is to follow the
standard, but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.
- -fno-gnu-keywords
- Do not recognize "typeof" as a keyword,
so that code can use this word as an identifier. You can use the keyword
"__typeof__" instead. -ansi
implies -fno-gnu-keywords.
- -fno-implicit-templates
- Never emit code for non-inline templates that are instantiated implicitly
(i.e. by use); only emit code for explicit instantiations.
- -fno-implicit-inline-templates
- Don't emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization need the same set of explicit instantiations.
- -fno-implement-inlines
- To save space, do not emit out-of-line copies of inline functions
controlled by #pragma implementation. This causes linker errors if
these functions are not inlined everywhere they are called.
- -fms-extensions
- Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.
- -fno-nonansi-builtins
- Disable built-in declarations of functions that are not mandated by
ANSI/ISO C. These include "ffs",
"alloca",
"_exit",
"index",
"bzero",
"conjf", and other related
functions.
- -fnothrow-opt
- Treat a "throw()" exception
specification as if it were a "noexcept"
specification to reduce or eliminate the text size overhead relative to a
function with no exception specification. If the function has local
variables of types with non-trivial destructors, the exception
specification actually makes the function smaller because the EH cleanups
for those variables can be optimized away. The semantic effect is that an
exception thrown out of a function with such an exception specification
results in a call to "terminate" rather
than "unexpected".
- -fno-operator-names
- Do not treat the operator name keywords
"and",
"bitand",
"bitor",
"compl",
"not",
"or" and
"xor" as synonyms as keywords.
- -fno-optional-diags
- Disable diagnostics that the standard says a compiler does not need to
issue. Currently, the only such diagnostic issued by G++ is the one for a
name having multiple meanings within a class.
- -fpermissive
- Downgrade some diagnostics about nonconformant code from errors to
warnings. Thus, using -fpermissive allows some nonconforming code
to compile.
- -fno-pretty-templates
- When an error message refers to a specialization of a function template,
the compiler normally prints the signature of the template followed by the
template arguments and any typedefs or typenames in the signature (e.g.
"void f(T) [with T = int]" rather than
"void f(int)") so that it's clear which
template is involved. When an error message refers to a specialization of
a class template, the compiler omits any template arguments that match the
default template arguments for that template. If either of these behaviors
make it harder to understand the error message rather than easier, you can
use -fno-pretty-templates to disable them.
- -frepo
- Enable automatic template instantiation at link time. This option also
implies -fno-implicit-templates.
- -fno-rtti
- Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features
(dynamic_cast and typeid). If you don't use those parts of
the language, you can save some space by using this flag. Note that
exception handling uses the same information, but G++ generates it as
needed. The dynamic_cast operator can still be used for casts that
do not require run-time type information, i.e. casts to
"void *" or to unambiguous base
classes.
- -fstats
- Emit statistics about front-end processing at the end of the compilation.
This information is generally only useful to the G++ development
team.
- -fstrict-enums
- Allow the compiler to optimize using the assumption that a value of
enumerated type can only be one of the values of the enumeration (as
defined in the C++ standard; basically, a value that can be represented in
the minimum number of bits needed to represent all the enumerators). This
assumption may not be valid if the program uses a cast to convert an
arbitrary integer value to the enumerated type.
- -ftemplate-backtrace-limit=n
- Set the maximum number of template instantiation notes for a single
warning or error to n. The default value is 10.
- -ftemplate-depth=n
- Set the maximum instantiation depth for template classes to n. A
limit on the template instantiation depth is needed to detect endless
recursions during template class instantiation. ANSI/ISO C++ conforming
programs must not rely on a maximum depth greater than 17 (changed to 1024
in C++11). The default value is 900, as the compiler can run out of stack
space before hitting 1024 in some situations.
- -fno-threadsafe-statics
- Do not emit the extra code to use the routines specified in the C++ ABI
for thread-safe initialization of local statics. You can use this option
to reduce code size slightly in code that doesn't need to be
thread-safe.
- -fuse-cxa-atexit
- Register destructors for objects with static storage duration with the
"__cxa_atexit" function rather than the
"atexit" function. This option is
required for fully standards-compliant handling of static destructors, but
only works if your C library supports
"__cxa_atexit".
- -fno-use-cxa-get-exception-ptr
- Don't use the "__cxa_get_exception_ptr"
runtime routine. This causes
"std::uncaught_exception" to be
incorrect, but is necessary if the runtime routine is not available.
- -fvisibility-inlines-hidden
- This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are
taken in different shared objects.
The effect of this is that GCC may, effectively, mark inline
methods with "__attribute__ ((visibility
("hidden")))" so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used
within the DSO. Enabling this option can have a dramatic effect on load
and link times of a DSO as it massively reduces the size of the dynamic
export table when the library makes heavy use of templates.
The behavior of this switch is not quite the same as marking
the methods as hidden directly, because it does not affect static
variables local to the function or cause the compiler to deduce that the
function is defined in only one shared object.
You may mark a method as having a visibility explicitly to
negate the effect of the switch for that method. For example, if you do
want to compare pointers to a particular inline method, you might mark
it as having default visibility. Marking the enclosing class with
explicit visibility has no effect.
Explicitly instantiated inline methods are unaffected by this
option as their linkage might otherwise cross a shared library
boundary.
- -fvisibility-ms-compat
- This flag attempts to use visibility settings to make GCC's C++ linkage
model compatible with that of Microsoft Visual Studio.
The flag makes these changes to GCC's linkage model:
- 1.
- It sets the default visibility to
"hidden", like
-fvisibility=hidden.
- 2.
- Types, but not their members, are not hidden by default.
- 3.
- The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those
declarations are permitted if they are permitted when this option is not
used.
In new code it is better to use -fvisibility=hidden and
export those classes that are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally, on the
Visual Studio behavior.
Among the consequences of these changes are that static data
members of the same type with the same name but defined in different shared
objects are different, so changing one does not change the other; and that
pointers to function members defined in different shared objects may not
compare equal. When this flag is given, it is a violation of the ODR to
define types with the same name differently.
- -fno-weak
- Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists
only for testing, and should not be used by end-users; it results in
inferior code and has no benefits. This option may be removed in a future
release of G++.
- -nostdinc++
- Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories. (This option is
used when building the C++ library.)
In addition, these optimization, warning, and code generation
options have meanings only for C++ programs:
- -fno-default-inline
- Do not assume inline for functions defined inside a class scope.
Note that these functions have linkage like inline functions; they just
aren't inlined by default.
- -Wabi (C, Objective-C, C++ and Objective-C++ only)
- Warn when G++ generates code that is probably not compatible with the
vendor-neutral C++ ABI. Although an effort has been made to warn about all
such cases, there are probably some cases that are not warned about, even
though G++ is generating incompatible code. There may also be cases where
warnings are emitted even though the code that is generated is compatible.
You should rewrite your code to avoid these warnings if you
are concerned about the fact that code generated by G++ may not be
binary compatible with code generated by other compilers.
The known incompatibilities in -fabi-version=2 (the
default) include:
- A template with a non-type template parameter of reference type is mangled
incorrectly:
extern int N;
template <int &> struct S {};
void n (S<N>) {2}
This is fixed in -fabi-version=3.
- SIMD vector types declared using "__attribute
((vector_size))" are mangled in a non-standard way that does
not allow for overloading of functions taking vectors of different sizes.
The mangling is changed in -fabi-version=4.
The known incompatibilities in -fabi-version=1 include:
- Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack
data into the same byte as a base class. For example:
struct A { virtual void f(); int f1 : 1; };
struct B : public A { int f2 : 1; };
In this case, G++ places
"B::f2" into the same byte as
"A::f1"; other compilers do not. You
can avoid this problem by explicitly padding
"A" so that its size is a multiple of
the byte size on your platform; that causes G++ and other compilers to
lay out "B" identically.
- Incorrect handling of tail-padding for virtual bases. G++ does not use
tail padding when laying out virtual bases. For example:
struct A { virtual void f(); char c1; };
struct B { B(); char c2; };
struct C : public A, public virtual B {};
In this case, G++ does not place
"B" into the tail-padding for
"A"; other compilers do. You can avoid
this problem by explicitly padding "A"
so that its size is a multiple of its alignment (ignoring virtual base
classes); that causes G++ and other compilers to lay out
"C" identically.
- Incorrect handling of bit-fields with declared widths greater than that of
their underlying types, when the bit-fields appear in a union. For
example:
union U { int i : 4096; };
Assuming that an "int" does
not have 4096 bits, G++ makes the union too small by the number of bits
in an "int".
- Empty classes can be placed at incorrect offsets. For example:
struct A {};
struct B {
A a;
virtual void f ();
};
struct C : public B, public A {};
G++ places the "A" base
class of "C" at a nonzero offset; it
should be placed at offset zero. G++ mistakenly believes that the
"A" data member of
"B" is already at offset zero.
- Names of template functions whose types involve
"typename" or template template
parameters can be mangled incorrectly.
template <typename Q>
void f(typename Q::X) {}
template <template <typename> class Q>
void f(typename Q<int>::X) {}
Instantiations of these templates may be mangled
incorrectly.
It also warns about psABI-related changes. The known psABI changes
at this point include:
- •
- For SysV/x86-64, unions with "long
double" members are passed in memory as specified in psABI.
For example:
union U {
long double ld;
int i;
};
"union U" is always passed
in memory.
- -Wctor-dtor-privacy (C++ and Objective-C++ only)
- Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions. Also warn if there are no non-private
methods, and there's at least one private member function that isn't a
constructor or destructor.
- -Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
- Warn when delete is used to destroy an instance of a class that has
virtual functions and non-virtual destructor. It is unsafe to delete an
instance of a derived class through a pointer to a base class if the base
class does not have a virtual destructor. This warning is enabled by
-Wall.
- -Wliteral-suffix (C++ and Objective-C++ only)
- Warn when a string or character literal is followed by a ud-suffix which
does not begin with an underscore. As a conforming extension, GCC treats
such suffixes as separate preprocessing tokens in order to maintain
backwards compatibility with code that uses formatting macros from
"<inttypes.h>". For example:
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdio.h>
int main() {
int64_t i64 = 123;
printf("My int64: %"PRId64"\n", i64);
}
In this case, "PRId64" is
treated as a separate preprocessing token.
This warning is enabled by default.
- -Wnarrowing (C++ and Objective-C++ only)
- Warn when a narrowing conversion prohibited by C++11 occurs within {
}, e.g.
int i = { 2.2 }; // error: narrowing from double to int
This flag is included in -Wall and
-Wc++11-compat.
With -std=c++11, -Wno-narrowing suppresses the
diagnostic required by the standard. Note that this does not affect the
meaning of well-formed code; narrowing conversions are still considered
ill-formed in SFINAE context.
- -Wnoexcept (C++ and Objective-C++ only)
- Warn when a noexcept-expression evaluates to false because of a call to a
function that does not have a non-throwing exception specification (i.e.
throw() or noexcept) but is known by
the compiler to never throw an exception.
- -Wnon-virtual-dtor (C++ and Objective-C++ only)
- Warn when a class has virtual functions and an accessible non-virtual
destructor, in which case it is possible but unsafe to delete an instance
of a derived class through a pointer to the base class. This warning is
also enabled if -Weffc++ is specified.
- -Wreorder (C++ and Objective-C++ only)
- Warn when the order of member initializers given in the code does not
match the order in which they must be executed. For instance:
struct A {
int i;
int j;
A(): j (0), i (1) { }
};
The compiler rearranges the member initializers for i
and j to match the declaration order of the members, emitting a
warning to that effect. This warning is enabled by -Wall.
- -fext-numeric-literals (C++ and Objective-C++ only)
- Accept imaginary, fixed-point, or machine-defined literal number suffixes
as GNU extensions. When this option is turned off these suffixes are
treated as C++11 user-defined literal numeric suffixes. This is on by
default for all pre-C++11 dialects and all GNU dialects:
-std=c++98, -std=gnu++98, -std=gnu++11,
-std=gnu++1y. This option is off by default for ISO C++11 onwards
(-std=c++11, ...).
The following -W... options are not affected by
-Wall.
- -Weffc++ (C++ and Objective-C++ only)
- Warn about violations of the following style guidelines from Scott Meyers'
Effective C++, Second Edition book:
- Item 11: Define a copy constructor and an assignment operator for classes
with dynamically-allocated memory.
- Item 12: Prefer initialization to assignment in constructors.
- Item 14: Make destructors virtual in base classes.
- Item 15: Have "operator=" return a
reference to *this.
- Item 23: Don't try to return a reference when you must return an
object.
Also warn about violations of the following style guidelines from
Scott Meyers' More Effective C++ book:
- Item 6: Distinguish between prefix and postfix forms of increment and
decrement operators.
- Item 7: Never overload "&&",
"||", or
",".
When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use grep -v to filter
out those warnings.
- -Wstrict-null-sentinel (C++ and Objective-C++ only)
- Warn about the use of an uncasted "NULL"
as sentinel. When compiling only with GCC this is a valid sentinel, as
"NULL" is defined to
"__null". Although it is a null pointer
constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different
compilers.
- -Wno-non-template-friend (C++ and Objective-C++ only)
- Disable warnings when non-templatized friend functions are declared within
a template. Since the advent of explicit template specification support in
G++, if the name of the friend is an unqualified-id (i.e., friend
foo(int)), the C++ language specification demands that the friend
declare or define an ordinary, nontemplate function. (Section 14.5.3).
Before G++ implemented explicit specification, unqualified-ids could be
interpreted as a particular specialization of a templatized function.
Because this non-conforming behavior is no longer the default behavior for
G++, -Wnon-template-friend allows the compiler to check existing
code for potential trouble spots and is on by default. This new compiler
behavior can be turned off with -Wno-non-template-friend, which
keeps the conformant compiler code but disables the helpful warning.
- -Wold-style-cast (C++ and Objective-C++ only)
- Warn if an old-style (C-style) cast to a non-void type is used within a
C++ program. The new-style casts (dynamic_cast, static_cast,
reinterpret_cast, and const_cast) are less vulnerable to
unintended effects and much easier to search for.
- -Woverloaded-virtual (C++ and Objective-C++ only)
- Warn when a function declaration hides virtual functions from a base
class. For example, in:
struct A {
virtual void f();
};
struct B: public A {
void f(int);
};
the "A" class version of
"f" is hidden in
"B", and code like:
B* b;
b->f();
fails to compile.
- -Wno-pmf-conversions (C++ and Objective-C++ only)
- Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.
- -Wsign-promo (C++ and Objective-C++ only)
- Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size. Previous versions of G++ tried to preserve unsignedness,
but the standard mandates the current behavior.
(NOTE: This manual does not describe the Objective-C and Objective-C++ languages
themselves.
This section describes the command-line options that are only
meaningful for Objective-C and Objective-C++ programs. You can also use most
of the language-independent GNU compiler options. For example, you might
compile a file "some_class.m" like
this:
gcc -g -fgnu-runtime -O -c some_class.m
In this example, -fgnu-runtime is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC.
Note that since Objective-C is an extension of the C language,
Objective-C compilations may also use options specific to the C front-end
(e.g., -Wtraditional). Similarly, Objective-C++ compilations may use
C++-specific options (e.g., -Wabi).
Here is a list of options that are only for compiling
Objective-C and Objective-C++ programs:
- -fconstant-string-class=class-name
- Use class-name as the name of the class to instantiate for each
literal string specified with the syntax
"@"..."". The default class
name is "NXConstantString" if the GNU
runtime is being used, and
"NSConstantString" if the NeXT runtime
is being used (see below). The -fconstant-cfstrings option, if also
present, overrides the -fconstant-string-class setting and cause
"@"..."" literals to be laid
out as constant CoreFoundation strings.
- -fgnu-runtime
- Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.
- -fnext-runtime
- Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro
"__NEXT_RUNTIME__" is predefined if (and
only if) this option is used.
- -fno-nil-receivers
- Assume that all Objective-C message dispatches
("[receiver
message:arg]") in this translation unit
ensure that the receiver is not "nil".
This allows for more efficient entry points in the runtime to be used.
This option is only available in conjunction with the NeXT runtime and ABI
version 0 or 1.
- -fobjc-abi-version=n
- Use version n of the Objective-C ABI for the selected runtime. This
option is currently supported only for the NeXT runtime. In that case,
Version 0 is the traditional (32-bit) ABI without support for properties
and other Objective-C 2.0 additions. Version 1 is the traditional (32-bit)
ABI with support for properties and other Objective-C 2.0 additions.
Version 2 is the modern (64-bit) ABI. If nothing is specified, the default
is Version 0 on 32-bit target machines, and Version 2 on 64-bit target
machines.
- -fobjc-call-cxx-cdtors
- For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor. If so, synthesize a
special "- (id) .cxx_construct" instance
method which runs non-trivial default constructors on any such instance
variables, in order, and then return
"self". Similarly, check if any instance
variable is a C++ object with a non-trivial destructor, and if so,
synthesize a special "- (void)
.cxx_destruct" method which runs all such default destructors,
in reverse order.
The "- (id) .cxx_construct"
and "- (void) .cxx_destruct" methods
thusly generated only operate on instance variables declared in the
current Objective-C class, and not those inherited from superclasses. It
is the responsibility of the Objective-C runtime to invoke all such
methods in an object's inheritance hierarchy. The
"- (id) .cxx_construct" methods are
invoked by the runtime immediately after a new object instance is
allocated; the "- (void)
.cxx_destruct" methods are invoked immediately before the
runtime deallocates an object instance.
As of this writing, only the NeXT runtime on Mac OS X 10.4 and
later has support for invoking the "- (id)
.cxx_construct" and "- (void)
.cxx_destruct" methods.
- -fobjc-direct-dispatch
- Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.
- -fobjc-exceptions
- Enable syntactic support for structured exception handling in Objective-C,
similar to what is offered by C++ and Java. This option is required to use
the Objective-C keywords @try,
@throw, @catch,
@finally and
@synchronized. This option is available with both
the GNU runtime and the NeXT runtime (but not available in conjunction
with the NeXT runtime on Mac OS X 10.2 and earlier).
- -fobjc-gc
- Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special
compiler flags.
- -fobjc-nilcheck
- For the NeXT runtime with version 2 of the ABI, check for a nil receiver
in method invocations before doing the actual method call. This is the
default and can be disabled using -fno-objc-nilcheck. Class methods
and super calls are never checked for nil in this way no matter what this
flag is set to. Currently this flag does nothing when the GNU runtime, or
an older version of the NeXT runtime ABI, is used.
- -fobjc-std=objc1
- Conform to the language syntax of Objective-C 1.0, the language recognized
by GCC 4.0. This only affects the Objective-C additions to the C/C++
language; it does not affect conformance to C/C++ standards, which is
controlled by the separate C/C++ dialect option flags. When this option is
used with the Objective-C or Objective-C++ compiler, any Objective-C
syntax that is not recognized by GCC 4.0 is rejected. This is useful if
you need to make sure that your Objective-C code can be compiled with
older versions of GCC.
- -freplace-objc-classes
- Emit a special marker instructing ld(1) not to
statically link in the resulting object file, and allow
dyld (1) to load it in at run time instead.
This is used in conjunction with the Fix-and-Continue debugging mode,
where the object file in question may be recompiled and dynamically
reloaded in the course of program execution, without the need to restart
the program itself. Currently, Fix-and-Continue functionality is only
available in conjunction with the NeXT runtime on Mac OS X 10.3 and
later.
- -fzero-link
- When compiling for the NeXT runtime, the compiler ordinarily replaces
calls to
"objc_getClass("...")" (when
the name of the class is known at compile time) with static class
references that get initialized at load time, which improves run-time
performance. Specifying the -fzero-link flag suppresses this
behavior and causes calls to
"objc_getClass("...")" to be
retained. This is useful in Zero-Link debugging mode, since it allows for
individual class implementations to be modified during program execution.
The GNU runtime currently always retains calls to
"objc_get_class("...")"
regardless of command-line options.
- -gen-decls
- Dump interface declarations for all classes seen in the source file to a
file named sourcename.decl.
- -Wassign-intercept (Objective-C and Objective-C++ only)
- Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.
- -Wno-protocol (Objective-C and Objective-C++ only)
- If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class. The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass. If you use the -Wno-protocol option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.
- -Wselector (Objective-C and Objective-C++ only)
- Warn if multiple methods of different types for the same selector are
found during compilation. The check is performed on the list of methods in
the final stage of compilation. Additionally, a check is performed for
each selector appearing in a
"@selector(...)" expression, and a
corresponding method for that selector has been found during compilation.
Because these checks scan the method table only at the end of compilation,
these warnings are not produced if the final stage of compilation is not
reached, for example because an error is found during compilation, or
because the -fsyntax-only option is being used.
- -Wstrict-selector-match (Objective-C and Objective-C++ only)
- Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type "id" or
"Class". When this flag is off (which is
the default behavior), the compiler omits such warnings if any differences
found are confined to types that share the same size and alignment.
- -Wundeclared-selector (Objective-C and Objective-C++ only)
- Warn if a "@selector(...)" expression
referring to an undeclared selector is found. A selector is considered
undeclared if no method with that name has been declared before the
"@selector(...)" expression, either
explicitly in an @interface or
@protocol declaration, or implicitly in an
@implementation section. This option always
performs its checks as soon as a
"@selector(...)" expression is found,
while -Wselector only performs its checks in the final stage of
compilation. This also enforces the coding style convention that methods
and selectors must be declared before being used.
- -print-objc-runtime-info
- Generate C header describing the largest structure that is passed by
value, if any.
Traditionally, diagnostic messages have been formatted irrespective of the
output device's aspect (e.g. its width, ...). You can use the options
described below to control the formatting algorithm for diagnostic messages,
e.g. how many characters per line, how often source location information
should be reported. Note that some language front ends may not honor these
options.
- -fmessage-length=n
- Try to format error messages so that they fit on lines of about n
characters. The default is 72 characters for g++ and 0 for the rest
of the front ends supported by GCC. If n is zero, then no
line-wrapping is done; each error message appears on a single line.
- -fdiagnostics-show-location=once
- Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit source location information once; that is, in case
the message is too long to fit on a single physical line and has to be
wrapped, the source location won't be emitted (as prefix) again, over and
over, in subsequent continuation lines. This is the default behavior.
- -fdiagnostics-show-location=every-line
- Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for
physical lines that result from the process of breaking a message which is
too long to fit on a single line.
- -fdiagnostics-color[=WHEN]
- -fno-diagnostics-color
- Use color in diagnostics. WHEN is never, always, or
auto. The default is auto. auto means to use color
only when the standard error is a terminal. The forms
-fdiagnostics-color and -fno-diagnostics-color are aliases
for -fdiagnostics-color=always and
-fdiagnostics-color=never, respectively.
The colors are defined by the environment variable
GCC_COLORS. Its value is a colon-separated list of capabilities
and Select Graphic Rendition (SGR) substrings. SGR commands are
interpreted by the terminal or terminal emulator. (See the section in
the documentation of your text terminal for permitted values and their
meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons.
Common values to concatenate include 1 for bold, 4 for
underline, 5 for blink, 7 for inverse, 39 for
default foreground color, 30 to 37 for foreground colors,
90 to 97 for 16-color mode foreground colors,
38;5;0 to 38;5;255 for 88-color and 256-color modes
foreground colors, 49 for default background color, 40 to
47 for background colors, 100 to 107 for 16-color
mode background colors, and 48;5;0 to 48;5;255 for
88-color and 256-color modes background colors.
The default GCC_COLORS is
error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
where 01;31 is bold red, 01;35 is bold magenta,
01;36 is bold cyan, 01;32 is bold green and 01 is
bold. Setting GCC_COLORS to the empty string disables colors.
Supported capabilities are as follows.
- "error="
- SGR substring for error: markers.
- "warning="
- SGR substring for warning: markers.
- "note="
- SGR substring for note: markers.
- "caret="
- SGR substring for caret line.
- "locus="
- SGR substring for location information, file:line or
file:line:column etc.
- "quote="
- SGR substring for information printed within quotes.
- -fno-diagnostics-show-option
- By default, each diagnostic emitted includes text indicating the
command-line option that directly controls the diagnostic (if such an
option is known to the diagnostic machinery). Specifying the
-fno-diagnostics-show-option flag suppresses that behavior.
- -fno-diagnostics-show-caret
- By default, each diagnostic emitted includes the original source line and
a caret '^' indicating the column. This option suppresses this
information.
Warnings are diagnostic messages that report constructions that are not
inherently erroneous but that are risky or suggest there may have been an
error.
The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC.
- -fsyntax-only
- Check the code for syntax errors, but don't do anything beyond that.
- -fmax-errors=n
- Limits the maximum number of error messages to n, at which point
GCC bails out rather than attempting to continue processing the source
code. If n is 0 (the default), there is no limit on the number of
error messages produced. If -Wfatal-errors is also specified, then
-Wfatal-errors takes precedence over this option.
- -w
- Inhibit all warning messages.
- -Werror
- Make all warnings into errors.
- -Werror=
- Make the specified warning into an error. The specifier for a warning is
appended; for example -Werror=switch turns the warnings controlled
by -Wswitch into errors. This switch takes a negative form, to be
used to negate -Werror for specific warnings; for example
-Wno-error=switch makes -Wswitch warnings not be errors,
even when -Werror is in effect.
The warning message for each controllable warning includes the
option that controls the warning. That option can then be used with
-Werror= and -Wno-error= as described above. (Printing of
the option in the warning message can be disabled using the
-fno-diagnostics-show-option flag.)
Note that specifying -Werror=foo automatically
implies -Wfoo. However, -Wno-error=foo does
not imply anything.
- -Wfatal-errors
- This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
You can request many specific warnings with options beginning with
-W, for example -Wimplicit to request warnings on implicit
declarations. Each of these specific warning options also has a negative
form beginning -Wno- to turn off warnings; for example,
-Wno-implicit. This manual lists only one of the two forms, whichever
is not the default. For further language-specific options also refer to
C++ Dialect Options and Objective-C and Objective-C++ Dialect
Options.
When an unrecognized warning option is requested (e.g.,
-Wunknown-warning), GCC emits a diagnostic stating that the option is
not recognized. However, if the -Wno- form is used, the behavior is
slightly different: no diagnostic is produced for
-Wno-unknown-warning unless other diagnostics are being produced.
This allows the use of new -Wno- options with old compilers, but if
something goes wrong, the compiler warns that an unrecognized option is
present.
- -Wpedantic
- -pedantic
- Issue all the warnings demanded by strict ISO C and ISO C++; reject all
programs that use forbidden extensions, and some other programs that do
not follow ISO C and ISO C++. For ISO C, follows the version of the ISO C
standard specified by any -std option used.
Valid ISO C and ISO C++ programs should compile properly with
or without this option (though a rare few require -ansi or a
-std option specifying the required version of ISO C). However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well. With this option, they are rejected.
-Wpedantic does not cause warning messages for use of
the alternate keywords whose names begin and end with __.
Pedantic warnings are also disabled in the expression that follows
"__extension__". However, only system
header files should use these escape routes; application programs should
avoid them.
Some users try to use -Wpedantic to check programs for
strict ISO C conformance. They soon find that it does not do quite what
they want: it finds some non-ISO practices, but not all---only those for
which ISO C requires a diagnostic, and some others for which
diagnostics have been added.
A feature to report any failure to conform to ISO C might be
useful in some instances, but would require considerable additional work
and would be quite different from -Wpedantic. We don't have plans
to support such a feature in the near future.
Where the standard specified with -std represents a GNU
extended dialect of C, such as gnu90 or gnu99, there is a
corresponding base standard, the version of ISO C on which the
GNU extended dialect is based. Warnings from -Wpedantic are given
where they are required by the base standard. (It does not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)
- -pedantic-errors
- Like -Wpedantic, except that errors are produced rather than
warnings.
- -Wall
- This enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the
warning), even in conjunction with macros. This also enables some
language-specific warnings described in C++ Dialect Options
and Objective-C and Objective-C++ Dialect Options.
-Wall turns on the following warning flags:
-Waddress -Warray-bounds (only with
-O2) -Wc++11-compat -Wchar-subscripts
-Wenum-compare (in C/ObjC; this is on by default in C++)
-Wimplicit-int (C and Objective-C only)
-Wimplicit-function-declaration (C and Objective-C only)
-Wcomment -Wformat -Wmain (only for C/ObjC and
unless -ffreestanding) -Wmaybe-uninitialized
-Wmissing-braces (only for C/ObjC) -Wnonnull
-Wparentheses -Wpointer-sign -Wreorder
-Wreturn-type -Wsequence-point -Wsign-compare (only
in C++) -Wstrict-aliasing -Wstrict-overflow=1
-Wswitch -Wtrigraphs -Wuninitialized
-Wunknown-pragmas -Wunused-function -Wunused-label
-Wunused-value -Wunused-variable
-Wvolatile-register-var
Note that some warning flags are not implied by -Wall.
Some of them warn about constructions that users generally do not
consider questionable, but which occasionally you might wish to check
for; others warn about constructions that are necessary or hard to avoid
in some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by -Wextra but many of them
must be enabled individually.
- -Wextra
- This enables some extra warning flags that are not enabled by
-Wall. (This option used to be called -W. The older name is
still supported, but the newer name is more descriptive.)
-Wclobbered -Wempty-body
-Wignored-qualifiers -Wmissing-field-initializers
-Wmissing-parameter-type (C only) -Wold-style-declaration
(C only) -Woverride-init -Wsign-compare
-Wtype-limits -Wuninitialized -Wunused-parameter
(only with -Wunused or -Wall)
-Wunused-but-set-parameter (only with -Wunused
or -Wall)
The option -Wextra also prints warning messages for the
following cases:
- A pointer is compared against integer zero with <, <=,
>, or >=.
- (C++ only) An enumerator and a non-enumerator both appear in a conditional
expression.
- (C++ only) Ambiguous virtual bases.
- (C++ only) Subscripting an array that has been declared
register.
- (C++ only) Taking the address of a variable that has been declared
register.
- (C++ only) A base class is not initialized in a derived class's copy
constructor.
- -Wchar-subscripts
- Warn if an array subscript has type
"char". This is a common cause of error,
as programmers often forget that this type is signed on some machines.
This warning is enabled by -Wall.
- -Wcomment
- Warn whenever a comment-start sequence /* appears in a /*
comment, or whenever a Backslash-Newline appears in a // comment.
This warning is enabled by -Wall.
- -Wno-coverage-mismatch
- Warn if feedback profiles do not match when using the -fprofile-use
option. If a source file is changed between compiling with
-fprofile-gen and with -fprofile-use, the files with the
profile feedback can fail to match the source file and GCC cannot use the
profile feedback information. By default, this warning is enabled and is
treated as an error. -Wno-coverage-mismatch can be used to disable
the warning or -Wno-error=coverage-mismatch can be used to disable
the error. Disabling the error for this warning can result in poorly
optimized code and is useful only in the case of very minor changes such
as bug fixes to an existing code-base. Completely disabling the warning is
not recommended.
- -Wno-cpp
- (C, Objective-C, C++, Objective-C++ and Fortran only)
Suppress warning messages emitted by
"#warning" directives.
- -Wdouble-promotion (C, C++, Objective-C and Objective-C++
only)
- Give a warning when a value of type
"float" is implicitly promoted to
"double". CPUs with a 32-bit
"single-precision" floating-point unit implement
"float" in hardware, but emulate
"double" in software. On such a machine,
doing computations using "double" values
is much more expensive because of the overhead required for software
emulation.
It is easy to accidentally do computations with
"double" because floating-point
literals are implicitly of type
"double". For example, in:
float area(float radius)
{
return 3.14159 * radius * radius;
}
the compiler performs the entire computation with
"double" because the floating-point
literal is a "double".
- -Wformat
- -Wformat=n
- Check calls to "printf" and
"scanf", etc., to make sure that the
arguments supplied have types appropriate to the format string specified,
and that the conversions specified in the format string make sense. This
includes standard functions, and others specified by format attributes, in
the "printf",
"scanf",
"strftime" and
"strfmon" (an X/Open extension, not in
the C standard) families (or other target-specific families). Which
functions are checked without format attributes having been specified
depends on the standard version selected, and such checks of functions
without the attribute specified are disabled by -ffreestanding or
-fno-builtin.
The formats are checked against the format features supported
by GNU libc version 2.2. These include all ISO C90 and C99 features, as
well as features from the Single Unix Specification and some BSD and GNU
extensions. Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library's limitations. However, if -Wpedantic is used
with -Wformat, warnings are given about format features not in
the selected standard version (but not for
"strfmon" formats, since those are not
in any version of the C standard).
- -Wformat=1
- -Wformat
- Option -Wformat is equivalent to -Wformat=1, and
-Wno-format is equivalent to -Wformat=0. Since
-Wformat also checks for null format arguments for several
functions, -Wformat also implies -Wnonnull. Some aspects of
this level of format checking can be disabled by the options:
-Wno-format-contains-nul, -Wno-format-extra-args, and
-Wno-format-zero-length. -Wformat is enabled by
-Wall.
- -Wno-format-contains-nul
- If -Wformat is specified, do not warn about format strings that
contain NUL bytes.
- -Wno-format-extra-args
- If -Wformat is specified, do not warn about excess arguments to a
"printf" or
"scanf" format function. The C standard
specifies that such arguments are ignored.
Where the unused arguments lie between used arguments that are
specified with $ operand number specifications, normally warnings
are still given, since the implementation could not know what type to
pass to "va_arg" to skip the unused
arguments. However, in the case of
"scanf" formats, this option
suppresses the warning if the unused arguments are all pointers, since
the Single Unix Specification says that such unused arguments are
allowed.
- -Wno-format-zero-length
- If -Wformat is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.
- -Wformat=2
- Enable -Wformat plus additional format checks. Currently equivalent
to -Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k.
- -Wformat-nonliteral
- If -Wformat is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function takes
its format arguments as a
"va_list".
- -Wformat-security
- If -Wformat is specified, also warn about uses of format functions
that represent possible security problems. At present, this warns about
calls to "printf" and
"scanf" functions where the format
string is not a string literal and there are no format arguments, as in
"printf (foo);". This may be a security
hole if the format string came from untrusted input and contains
%n. (This is currently a subset of what
-Wformat-nonliteral warns about, but in future warnings may be
added to -Wformat-security that are not included in
-Wformat-nonliteral.)
- -Wformat-y2k
- If -Wformat is specified, also warn about
"strftime" formats that may yield only a
two-digit year.
- -Wnonnull
- Warn about passing a null pointer for arguments marked as requiring a
non-null value by the "nonnull" function
attribute.
-Wnonnull is included in -Wall and
-Wformat. It can be disabled with the -Wno-nonnull
option.
- -Winit-self (C, C++, Objective-C and Objective-C++ only)
- Warn about uninitialized variables that are initialized with themselves.
Note this option can only be used with the -Wuninitialized option.
For example, GCC warns about
"i" being uninitialized in the
following snippet only when -Winit-self has been specified:
int f()
{
int i = i;
return i;
}
This warning is enabled by -Wall in C++.
- -Wimplicit-int (C and Objective-C only)
- Warn when a declaration does not specify a type. This warning is enabled
by -Wall.
- -Wimplicit-function-declaration (C and Objective-C only)
- Give a warning whenever a function is used before being declared. In C99
mode (-std=c99 or -std=gnu99), this warning is enabled by
default and it is made into an error by -pedantic-errors. This
warning is also enabled by -Wall.
- -Wimplicit (C and Objective-C only)
- Same as -Wimplicit-int and -Wimplicit-function-declaration.
This warning is enabled by -Wall.
- -Wignored-qualifiers (C and C++ only)
- Warn if the return type of a function has a type qualifier such as
"const". For ISO C such a type qualifier
has no effect, since the value returned by a function is not an lvalue.
For C++, the warning is only emitted for scalar types or
"void". ISO C prohibits qualified
"void" return types on function
definitions, so such return types always receive a warning even without
this option.
This warning is also enabled by -Wextra.
- -Wmain
- Warn if the type of main is suspicious. main should be a
function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types. This warning is
enabled by default in C++ and is enabled by either -Wall or
-Wpedantic.
- -Wmissing-braces
- Warn if an aggregate or union initializer is not fully bracketed. In the
following example, the initializer for a is not fully bracketed,
but that for b is fully bracketed. This warning is enabled by
-Wall in C.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };
This warning is enabled by -Wall.
- -Wmissing-include-dirs (C, C++, Objective-C and Objective-C++
only)
- Warn if a user-supplied include directory does not exist.
- -Wparentheses
- Warn if parentheses are omitted in certain contexts, such as when there is
an assignment in a context where a truth value is expected, or when
operators are nested whose precedence people often get confused about.
Also warn if a comparison like x<=y<=z appears;
this is equivalent to (x<=y ? 1 : 0) <= z, which is a
different interpretation from that of ordinary mathematical
notation.
Also warn about constructions where there may be confusion to
which "if" statement an
"else" branch belongs. Here is an
example of such a case:
{
if (a)
if (b)
foo ();
else
bar ();
}
In C/C++, every "else"
branch belongs to the innermost possible
"if" statement, which in this example
is "if (b)". This is often not what
the programmer expected, as illustrated in the above example by
indentation the programmer chose. When there is the potential for this
confusion, GCC issues a warning when this flag is specified. To
eliminate the warning, add explicit braces around the innermost
"if" statement so there is no way the
"else" can belong to the enclosing
"if". The resulting code looks like
this:
{
if (a)
{
if (b)
foo ();
else
bar ();
}
}
Also warn for dangerous uses of the GNU extension to
"?:" with omitted middle operand. When
the condition in the "?": operator is
a boolean expression, the omitted value is always 1. Often programmers
expect it to be a value computed inside the conditional expression
instead.
This warning is enabled by -Wall.
- -Wsequence-point
- Warn about code that may have undefined semantics because of violations of
sequence point rules in the C and C++ standards.
The C and C++ standards define the order in which expressions
in a C/C++ program are evaluated in terms of sequence points,
which represent a partial ordering between the execution of parts of the
program: those executed before the sequence point, and those executed
after it. These occur after the evaluation of a full expression (one
which is not part of a larger expression), after the evaluation of the
first operand of a "&&",
"||", "?
:" or "," (comma)
operator, before a function is called (but after the evaluation of its
arguments and the expression denoting the called function), and in
certain other places. Other than as expressed by the sequence point
rules, the order of evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather than a
total order, since, for example, if two functions are called within one
expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee
have ruled that function calls do not overlap.
It is not specified when between sequence points modifications
to the values of objects take effect. Programs whose behavior depends on
this have undefined behavior; the C and C++ standards specify that
"Between the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation of an
expression. Furthermore, the prior value shall be read only to determine
the value to be stored.". If a program breaks these rules, the
results on any particular implementation are entirely unpredictable.
Examples of code with undefined behavior are
"a = a++;",
"a[n] =
b[n++]" and "a[i++] = i;".
Some more complicated cases are not diagnosed by this option, and it may
give an occasional false positive result, but in general it has been
found fairly effective at detecting this sort of problem in
programs.
The standard is worded confusingly, therefore there is some
debate over the precise meaning of the sequence point rules in subtle
cases. Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
<http://gcc.gnu.org/readings.html>.
This warning is enabled by -Wall for C and C++.
- -Wno-return-local-addr
- Do not warn about returning a pointer (or in C++, a reference) to a
variable that goes out of scope after the function returns.
- -Wreturn-type
- Warn whenever a function is defined with a return type that defaults to
"int". Also warn about any
"return" statement with no return value
in a function whose return type is not
"void" (falling off the end of the
function body is considered returning without a value), and about a
"return" statement with an expression in
a function whose return type is "void".
For C++, a function without return type always produces a
diagnostic message, even when -Wno-return-type is specified. The
only exceptions are main and functions defined in system
headers.
This warning is enabled by -Wall.
- -Wswitch
- Warn whenever a "switch" statement has
an index of enumerated type and lacks a
"case" for one or more of the named
codes of that enumeration. (The presence of a
"default" label prevents this warning.)
"case" labels outside the enumeration
range also provoke warnings when this option is used (even if there is a
"default" label). This warning is
enabled by -Wall.
- -Wswitch-default
- Warn whenever a "switch" statement does
not have a "default" case.
- -Wswitch-enum
- Warn whenever a "switch" statement has
an index of enumerated type and lacks a
"case" for one or more of the named
codes of that enumeration. "case" labels
outside the enumeration range also provoke warnings when this option is
used. The only difference between -Wswitch and this option is that
this option gives a warning about an omitted enumeration code even if
there is a "default" label.
- -Wsync-nand (C and C++ only)
- Warn when "__sync_fetch_and_nand" and
"__sync_nand_and_fetch" built-in
functions are used. These functions changed semantics in GCC 4.4.
- -Wtrigraphs
- Warn if any trigraphs are encountered that might change the meaning of the
program (trigraphs within comments are not warned about). This warning is
enabled by -Wall.
- -Wunused-but-set-parameter
- Warn whenever a function parameter is assigned to, but otherwise unused
(aside from its declaration).
To suppress this warning use the unused attribute.
This warning is also enabled by -Wunused together with
-Wextra.
- -Wunused-but-set-variable
- Warn whenever a local variable is assigned to, but otherwise unused (aside
from its declaration). This warning is enabled by -Wall.
To suppress this warning use the unused attribute.
This warning is also enabled by -Wunused, which is
enabled by -Wall.
- -Wunused-function
- Warn whenever a static function is declared but not defined or a
non-inline static function is unused. This warning is enabled by
-Wall.
- -Wunused-label
- Warn whenever a label is declared but not used. This warning is enabled by
-Wall.
To suppress this warning use the unused attribute.
- -Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++
only)
- Warn when a typedef locally defined in a function is not used. This
warning is enabled by -Wall.
- -Wunused-parameter
- Warn whenever a function parameter is unused aside from its declaration.
To suppress this warning use the unused attribute.
- -Wno-unused-result
- Do not warn if a caller of a function marked with attribute
"warn_unused_result" does not use its
return value. The default is -Wunused-result.
- -Wunused-variable
- Warn whenever a local variable or non-constant static variable is unused
aside from its declaration. This warning is enabled by -Wall.
To suppress this warning use the unused attribute.
- -Wunused-value
- Warn whenever a statement computes a result that is explicitly not used.
To suppress this warning cast the unused expression to void. This
includes an expression-statement or the left-hand side of a comma
expression that contains no side effects. For example, an expression such
as x[i,j] causes a warning, while x[(void)i,j] does not.
This warning is enabled by -Wall.
- -Wunused
- All the above -Wunused options combined.
In order to get a warning about an unused function parameter,
you must either specify -Wextra -Wunused (note that -Wall
implies -Wunused), or separately specify
-Wunused-parameter.
- -Wuninitialized
- Warn if an automatic variable is used without first being initialized or
if a variable may be clobbered by a
"setjmp" call. In C++, warn if a
non-static reference or non-static const member appears in a class
without constructors.
If you want to warn about code that uses the uninitialized
value of the variable in its own initializer, use the -Winit-self
option.
These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for variables
that are uninitialized or clobbered as a whole. They do not occur for
variables or elements declared
"volatile". Because these warnings
depend on optimization, the exact variables or elements for which there
are warnings depends on the precise optimization options and version of
GCC used.
Note that there may be no warning about a variable that is
used only to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.
- -Wmaybe-uninitialized
- For an automatic variable, if there exists a path from the function entry
to a use of the variable that is initialized, but there exist some other
paths for which the variable is not initialized, the compiler emits a
warning if it cannot prove the uninitialized paths are not executed at run
time. These warnings are made optional because GCC is not smart enough to
see all the reasons why the code might be correct in spite of appearing to
have an error. Here is one example of how this can happen:
{
int x;
switch (y)
{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
}
foo (x);
}
If the value of "y" is
always 1, 2 or 3, then "x" is always
initialized, but GCC doesn't know this. To suppress the warning, you
need to provide a default case with assert(0) or similar
code.
This option also warns when a non-volatile automatic variable
might be changed by a call to
"longjmp". These warnings as well are
possible only in optimizing compilation.
The compiler sees only the calls to
"setjmp". It cannot know where
"longjmp" will be called; in fact, a
signal handler could call it at any point in the code. As a result, you
may get a warning even when there is in fact no problem because
"longjmp" cannot in fact be called at
the place that would cause a problem.
Some spurious warnings can be avoided if you declare all the
functions you use that never return as
"noreturn".
This warning is enabled by -Wall or -Wextra.
- -Wunknown-pragmas
- Warn when a "#pragma" directive is
encountered that is not understood by GCC. If this command-line option is
used, warnings are even issued for unknown pragmas in system header files.
This is not the case if the warnings are only enabled by the -Wall
command-line option.
- -Wno-pragmas
- Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas. See also
-Wunknown-pragmas.
- -Wstrict-aliasing
- This option is only active when -fstrict-aliasing is active. It
warns about code that might break the strict aliasing rules that the
compiler is using for optimization. The warning does not catch all cases,
but does attempt to catch the more common pitfalls. It is included in
-Wall. It is equivalent to -Wstrict-aliasing=3
- -Wstrict-aliasing=n
- This option is only active when -fstrict-aliasing is active. It
warns about code that might break the strict aliasing rules that the
compiler is using for optimization. Higher levels correspond to higher
accuracy (fewer false positives). Higher levels also correspond to more
effort, similar to the way -O works. -Wstrict-aliasing is
equivalent to -Wstrict-aliasing=3.
Level 1: Most aggressive, quick, least accurate. Possibly
useful when higher levels do not warn but -fstrict-aliasing still
breaks the code, as it has very few false negatives. However, it has
many false positives. Warns for all pointer conversions between possibly
incompatible types, even if never dereferenced. Runs in the front end
only.
Level 2: Aggressive, quick, not too precise. May still have
many false positives (not as many as level 1 though), and few false
negatives (but possibly more than level 1). Unlike level 1, it only
warns when an address is taken. Warns about incomplete types. Runs in
the front end only.
Level 3 (default for -Wstrict-aliasing): Should have
very few false positives and few false negatives. Slightly slower than
levels 1 or 2 when optimization is enabled. Takes care of the common
pun+dereference pattern in the front end:
"*(int*)&some_float". If
optimization is enabled, it also runs in the back end, where it deals
with multiple statement cases using flow-sensitive points-to
information. Only warns when the converted pointer is dereferenced. Does
not warn about incomplete types.
- -Wstrict-overflow
- -Wstrict-overflow=n
- This option is only active when -fstrict-overflow is active. It
warns about cases where the compiler optimizes based on the assumption
that signed overflow does not occur. Note that it does not warn about all
cases where the code might overflow: it only warns about cases where the
compiler implements some optimization. Thus this warning depends on the
optimization level.
An optimization that assumes that signed overflow does not
occur is perfectly safe if the values of the variables involved are such
that overflow never does, in fact, occur. Therefore this warning can
easily give a false positive: a warning about code that is not actually
a problem. To help focus on important issues, several warning levels are
defined. No warnings are issued for the use of undefined signed overflow
when estimating how many iterations a loop requires, in particular when
determining whether a loop will be executed at all.
- -Wstrict-overflow=1
- Warn about cases that are both questionable and easy to avoid. For
example, with -fstrict-overflow, the compiler simplifies
"x + 1 > x" to
1. This level of -Wstrict-overflow is
enabled by -Wall; higher levels are not, and must be explicitly
requested.
- -Wstrict-overflow=2
- Also warn about other cases where a comparison is simplified to a
constant. For example: "abs (x) >=
0". This can only be simplified when -fstrict-overflow
is in effect, because "abs (INT_MIN)"
overflows to "INT_MIN", which is less
than zero. -Wstrict-overflow (with no level) is the same as
-Wstrict-overflow=2.
- -Wstrict-overflow=3
- Also warn about other cases where a comparison is simplified. For example:
"x + 1 > 1" is simplified to
"x > 0".
- -Wstrict-overflow=4
- Also warn about other simplifications not covered by the above cases. For
example: "(x * 10) / 5" is simplified to
"x * 2".
- -Wstrict-overflow=5
- Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison. For example: "x +
2 > y" is simplified to "x + 1 >=
y". This is reported only at the highest warning level because
this simplification applies to many comparisons, so this warning level
gives a very large number of false positives.
- -Wsuggest-attribute=[pure|const|noreturn|format]
- Warn for cases where adding an attribute may be beneficial. The attributes
currently supported are listed below.
- -Wsuggest-attribute=pure
- -Wsuggest-attribute=const
- -Wsuggest-attribute=noreturn
- Warn about functions that might be candidates for attributes
"pure",
"const" or
"noreturn". The compiler only warns for
functions visible in other compilation units or (in the case of
"pure" and
"const") if it cannot prove that the
function returns normally. A function returns normally if it doesn't
contain an infinite loop or return abnormally by throwing, calling
"abort()" or trapping. This analysis
requires option -fipa-pure-const, which is enabled by default at
-O and higher. Higher optimization levels improve the accuracy of
the analysis.
- -Wsuggest-attribute=format
- -Wmissing-format-attribute
- Warn about function pointers that might be candidates for
"format" attributes. Note these are only
possible candidates, not absolute ones. GCC guesses that function pointers
with "format" attributes that are used
in assignment, initialization, parameter passing or return statements
should have a corresponding "format"
attribute in the resulting type. I.e. the left-hand side of the assignment
or initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a
"format" attribute to avoid the warning.
GCC also warns about function definitions that might be
candidates for "format" attributes.
Again, these are only possible candidates. GCC guesses that
"format" attributes might be
appropriate for any function that calls a function like
"vprintf" or
"vscanf", but this might not always be
the case, and some functions for which
"format" attributes are appropriate
may not be detected.
- -Warray-bounds
- This option is only active when -ftree-vrp is active (default for
-O2 and above). It warns about subscripts to arrays that are always
out of bounds. This warning is enabled by -Wall.
- -Wno-div-by-zero
- Do not warn about compile-time integer division by zero. Floating-point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.
- -Wsystem-headers
- Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read. Using this command-line option tells GCC
to emit warnings from system headers as if they occurred in user code.
However, note that using -Wall in conjunction with this option does
not warn about unknown pragmas in system headers---for that,
-Wunknown-pragmas must also be used.
- -Wtrampolines
-
Warn about trampolines generated for pointers to nested functions.
A trampoline is a small piece of data or code that is created at run
time on the stack when the address of a nested function is taken, and
is used to call the nested function indirectly. For some targets, it
is made up of data only and thus requires no special treatment. But,
for most targets, it is made up of code and thus requires the stack
to be made executable in order for the program to work properly.
- -Wfloat-equal
- Warn if floating-point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for
the programmer) to consider floating-point values as approximations to
infinitely precise real numbers. If you are doing this, then you need to
compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem). In particular, instead of testing for equality, you
should check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.
- -Wtraditional (C and Objective-C only)
- Warn about certain constructs that behave differently in traditional and
ISO C. Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs that should be avoided.
- Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but in
ISO C it does not.
- In traditional C, some preprocessor directives did not exist. Traditional
preprocessors only considered a line to be a directive if the #
appeared in column 1 on the line. Therefore -Wtraditional warns
about directives that traditional C understands but ignores because the
# does not appear as the first character on the line. It also
suggests you hide directives like #pragma not understood by
traditional C by indenting them. Some traditional implementations do not
recognize #elif, so this option suggests avoiding it
altogether.
- A function-like macro that appears without arguments.
- The unary plus operator.
- The U integer constant suffix, or the F or L
floating-point constant suffixes. (Traditional C does support the L
suffix on integer constants.) Note, these suffixes appear in macros
defined in the system headers of most modern systems, e.g. the
_MIN/_MAX macros in
"<limits.h>". Use of these macros
in user code might normally lead to spurious warnings, however GCC's
integrated preprocessor has enough context to avoid warning in these
cases.
- A function declared external in one block and then used after the end of
the block.
- A "switch" statement has an operand of
type "long".
- A non-"static" function declaration
follows a "static" one. This construct
is not accepted by some traditional C compilers.
- The ISO type of an integer constant has a different width or signedness
from its traditional type. This warning is only issued if the base of the
constant is ten. I.e. hexadecimal or octal values, which typically
represent bit patterns, are not warned about.
- Usage of ISO string concatenation is detected.
- Initialization of automatic aggregates.
- Identifier conflicts with labels. Traditional C lacks a separate namespace
for labels.
- Initialization of unions. If the initializer is zero, the warning is
omitted. This is done under the assumption that the zero initializer in
user code appears conditioned on e.g.
"__STDC__" to avoid missing initializer
warnings and relies on default initialization to zero in the traditional C
case.
- Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional C
causes serious problems. This is a subset of the possible conversion
warnings; for the full set use -Wtraditional-conversion.
- Use of ISO C style function definitions. This warning intentionally is
not issued for prototype declarations or variadic functions because
these ISO C features appear in your code when using libiberty's
traditional C compatibility macros,
"PARAMS" and
"VPARAMS". This warning is also bypassed
for nested functions because that feature is already a GCC extension and
thus not relevant to traditional C compatibility.
- -Wtraditional-conversion (C and Objective-C only)
- Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype. This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed-point argument
except when the same as the default promotion.
- -Wdeclaration-after-statement (C and Objective-C only)
- Warn when a declaration is found after a statement in a block. This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC. It is not supported by ISO C90 and was not supported by
GCC versions before GCC 3.0.
- -Wundef
- Warn if an undefined identifier is evaluated in an #if
directive.
- -Wno-endif-labels
- Do not warn whenever an #else or an #endif are followed by
text.
- -Wshadow
- Warn whenever a local variable or type declaration shadows another
variable, parameter, type, or class member (in C++), or whenever a
built-in function is shadowed. Note that in C++, the compiler warns if a
local variable shadows an explicit typedef, but not if it shadows a
struct/class/enum.
- -Wlarger-than=len
- Warn whenever an object of larger than len bytes is defined.
- -Wframe-larger-than=len
- Warn if the size of a function frame is larger than len bytes. The
computation done to determine the stack frame size is approximate and not
conservative. The actual requirements may be somewhat greater than
len even if you do not get a warning. In addition, any space
allocated via "alloca", variable-length
arrays, or related constructs is not included by the compiler when
determining whether or not to issue a warning.
- -Wno-free-nonheap-object
- Do not warn when attempting to free an object that was not allocated on
the heap.
- -Wstack-usage=len
- Warn if the stack usage of a function might be larger than len
bytes. The computation done to determine the stack usage is conservative.
Any space allocated via "alloca",
variable-length arrays, or related constructs is included by the compiler
when determining whether or not to issue a warning.
The message is in keeping with the output of
-fstack-usage.
- If the stack usage is fully static but exceeds the specified amount, it's:
warning: stack usage is 1120 bytes
- If the stack usage is (partly) dynamic but bounded, it's:
warning: stack usage might be 1648 bytes
- If the stack usage is (partly) dynamic and not bounded, it's:
warning: stack usage might be unbounded
- -Wunsafe-loop-optimizations
- Warn if the loop cannot be optimized because the compiler cannot assume
anything on the bounds of the loop indices. With
-funsafe-loop-optimizations warn if the compiler makes such
assumptions.
- -Wno-pedantic-ms-format (MinGW targets only)
- When used in combination with -Wformat and -pedantic without
GNU extensions, this option disables the warnings about non-ISO
"printf" /
"scanf" format width specifiers
"I32",
"I64", and
"I" used on Windows targets, which
depend on the MS runtime.
- -Wpointer-arith
- Warn about anything that depends on the "size of" a function
type or of "void". GNU C assigns these
types a size of 1, for convenience in calculations with
"void *" pointers and pointers to
functions. In C++, warn also when an arithmetic operation involves
"NULL". This warning is also enabled by
-Wpedantic.
- -Wtype-limits
- Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions. For
example, warn if an unsigned variable is compared against zero with
< or >=. This warning is also enabled by
-Wextra.
- -Wbad-function-cast (C and Objective-C only)
- Warn whenever a function call is cast to a non-matching type. For example,
warn if "int malloc()" is cast to
"anything *".
- -Wc++-compat (C and Objective-C only)
- Warn about ISO C constructs that are outside of the common subset of ISO C
and ISO C++, e.g. request for implicit conversion from
"void *" to a pointer to
non-"void" type.
- -Wc++11-compat (C++ and Objective-C++ only)
- Warn about C++ constructs whose meaning differs between ISO C++ 1998 and
ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords in ISO
C++ 2011. This warning turns on -Wnarrowing and is enabled by
-Wall.
- -Wcast-qual
- Warn whenever a pointer is cast so as to remove a type qualifier from the
target type. For example, warn if a "const char
*" is cast to an ordinary "char
*".
Also warn when making a cast that introduces a type qualifier
in an unsafe way. For example, casting "char
**" to "const char **" is
unsafe, as in this example:
/* p is char ** value. */
const char **q = (const char **) p;
/* Assignment of readonly string to const char * is OK. */
*q = "string";
/* Now char** pointer points to read-only memory. */
**p = 'b';
- -Wcast-align
- Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a "char
*" is cast to an "int *" on
machines where integers can only be accessed at two- or four-byte
boundaries.
- -Wwrite-strings
- When compiling C, give string constants the type
"const
char[length ]"
so that copying the address of one into a
non-"const" "char
*" pointer produces a warning. These warnings help you find at
compile time code that can try to write into a string constant, but only
if you have been very careful about using
"const" in declarations and prototypes.
Otherwise, it is just a nuisance. This is why we did not make -Wall
request these warnings.
When compiling C++, warn about the deprecated conversion from
string literals to "char *". This
warning is enabled by default for C++ programs.
- -Wclobbered
- Warn for variables that might be changed by longjmp or
vfork. This warning is also enabled by -Wextra.
- -Wconversion
- Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like "abs
(x)" when "x" is
"double"; conversions between signed and
unsigned, like "unsigned ui = -1"; and
conversions to smaller types, like "sqrtf
(M_PI)". Do not warn for explicit casts like
"abs ((int) x)"
and "ui = (unsigned) -1", or if the
value is not changed by the conversion like in "abs
(2.0)". Warnings about conversions between signed and unsigned
integers can be disabled by using -Wno-sign-conversion.
For C++, also warn for confusing overload resolution for
user-defined conversions; and conversions that never use a type
conversion operator: conversions to
"void", the same type, a base class or
a reference to them. Warnings about conversions between signed and
unsigned integers are disabled by default in C++ unless
-Wsign-conversion is explicitly enabled.
- -Wno-conversion-null (C++ and Objective-C++ only)
- Do not warn for conversions between
"NULL" and non-pointer types.
-Wconversion-null is enabled by default.
- -Wzero-as-null-pointer-constant (C++ and Objective-C++ only)
- Warn when a literal '0' is used as null pointer constant. This can be
useful to facilitate the conversion to
"nullptr" in C++11.
- -Wuseless-cast (C++ and Objective-C++ only)
- Warn when an expression is casted to its own type.
- -Wempty-body
- Warn if an empty body occurs in an if, else or do
while statement. This warning is also enabled by
-Wextra.
- -Wenum-compare
- Warn about a comparison between values of different enumerated types. In
C++ enumeral mismatches in conditional expressions are also diagnosed and
the warning is enabled by default. In C this warning is enabled by
-Wall.
- -Wjump-misses-init (C, Objective-C only)
- Warn if a "goto" statement or a
"switch" statement jumps forward across
the initialization of a variable, or jumps backward to a label after the
variable has been initialized. This only warns about variables that are
initialized when they are declared. This warning is only supported for C
and Objective-C; in C++ this sort of branch is an error in any case.
-Wjump-misses-init is included in -Wc++-compat.
It can be disabled with the -Wno-jump-misses-init option.
- -Wsign-compare
- Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This
warning is also enabled by -Wextra; to get the other warnings of
-Wextra without this warning, use -Wextra
-Wno-sign-compare.
- -Wsign-conversion
- Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned integer
variable. An explicit cast silences the warning. In C, this option is
enabled also by -Wconversion.
- -Wsizeof-pointer-memaccess
- Warn for suspicious length parameters to certain string and memory
built-in functions if the argument uses
"sizeof". This warning warns e.g. about
"memset (ptr, 0, sizeof (ptr));" if
"ptr" is not an array, but a pointer,
and suggests a possible fix, or about "memcpy
(&foo, ptr, sizeof (&foo));". This warning is enabled
by -Wall.
- -Waddress
- Warn about suspicious uses of memory addresses. These include using the
address of a function in a conditional expression, such as
"void func(void); if (func)", and
comparisons against the memory address of a string literal, such as
"if (x == "abc")". Such uses
typically indicate a programmer error: the address of a function always
evaluates to true, so their use in a conditional usually indicate that the
programmer forgot the parentheses in a function call; and comparisons
against string literals result in unspecified behavior and are not
portable in C, so they usually indicate that the programmer intended to
use "strcmp". This warning is enabled by
-Wall.
- -Wlogical-op
- Warn about suspicious uses of logical operators in expressions. This
includes using logical operators in contexts where a bit-wise operator is
likely to be expected.
- -Waggregate-return
- Warn if any functions that return structures or unions are defined or
called. (In languages where you can return an array, this also elicits a
warning.)
- -Wno-aggressive-loop-optimizations
- Warn if in a loop with constant number of iterations the compiler detects
undefined behavior in some statement during one or more of the
iterations.
- -Wno-attributes
- Do not warn if an unexpected
"__attribute__" is used, such as
unrecognized attributes, function attributes applied to variables, etc.
This does not stop errors for incorrect use of supported attributes.
- -Wno-builtin-macro-redefined
- Do not warn if certain built-in macros are redefined. This suppresses
warnings for redefinition of
"__TIMESTAMP__",
"__TIME__",
"__DATE__",
"__FILE__", and
"__BASE_FILE__".
- -Wstrict-prototypes (C and Objective-C only)
- Warn if a function is declared or defined without specifying the argument
types. (An old-style function definition is permitted without a warning if
preceded by a declaration that specifies the argument types.)
- -Wold-style-declaration (C and Objective-C only)
- Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
"static" are not the first things in a
declaration. This warning is also enabled by -Wextra.
- -Wold-style-definition (C and Objective-C only)
- Warn if an old-style function definition is used. A warning is given even
if there is a previous prototype.
- -Wmissing-parameter-type (C and Objective-C only)
- A function parameter is declared without a type specifier in K&R-style
functions:
void foo(bar) { }
This warning is also enabled by -Wextra.
- -Wmissing-prototypes (C and Objective-C only)
- Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself provides
a prototype. Use this option to detect global functions that do not have a
matching prototype declaration in a header file. This option is not valid
for C++ because all function declarations provide prototypes and a
non-matching declaration will declare an overload rather than conflict
with an earlier declaration. Use -Wmissing-declarations to detect
missing declarations in C++.
- -Wmissing-declarations
- Warn if a global function is defined without a previous declaration. Do so
even if the definition itself provides a prototype. Use this option to
detect global functions that are not declared in header files. In C, no
warnings are issued for functions with previous non-prototype
declarations; use -Wmissing-prototype to detect missing prototypes.
In C++, no warnings are issued for function templates, or for inline
functions, or for functions in anonymous namespaces.
- -Wmissing-field-initializers
- Warn if a structure's initializer has some fields missing. For example,
the following code causes such a warning, because
"x.h" is implicitly zero:
struct s { int f, g, h; };
struct s x = { 3, 4 };
This option does not warn about designated initializers, so
the following modification does not trigger a warning:
struct s { int f, g, h; };
struct s x = { .f = 3, .g = 4 };
This warning is included in -Wextra. To get other
-Wextra warnings without this one, use -Wextra
-Wno-missing-field-initializers.
- -Wno-multichar
- Do not warn if a multicharacter constant ('FOOF') is used. Usually
they indicate a typo in the user's code, as they have
implementation-defined values, and should not be used in portable
code.
- -Wnormalized=<none|id|nfc|nfkc>
- In ISO C and ISO C++, two identifiers are different if they are different
sequences of characters. However, sometimes when characters outside the
basic ASCII character set are used, you can have two different character
sequences that look the same. To avoid confusion, the ISO 10646 standard
sets out some normalization rules which when applied ensure that
two sequences that look the same are turned into the same sequence. GCC
can warn you if you are using identifiers that have not been normalized;
this option controls that warning.
There are four levels of warning supported by GCC. The default
is -Wnormalized=nfc, which warns about any identifier that is not
in the ISO 10646 "C" normalized form, NFC. NFC is the
recommended form for most uses.
Unfortunately, there are some characters allowed in
identifiers by ISO C and ISO C++ that, when turned into NFC, are not
allowed in identifiers. That is, there's no way to use these symbols in
portable ISO C or C++ and have all your identifiers in NFC.
-Wnormalized=id suppresses the warning for these characters. It
is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
You can switch the warning off for all characters by writing
-Wnormalized=none. You should only do this if you are using some
other normalization scheme (like "D"), because otherwise you
can easily create bugs that are literally impossible to see.
Some characters in ISO 10646 have distinct meanings but look
identical in some fonts or display methodologies, especially once
formatting has been applied. For instance
"\u207F", "SUPERSCRIPT LATIN
SMALL LETTER N", displays just like a regular
"n" that has been placed in a
superscript. ISO 10646 defines the NFKC normalization scheme to
convert all these into a standard form as well, and GCC warns if your
code is not in NFKC if you use -Wnormalized=nfkc. This warning is
comparable to warning about every identifier that contains the letter O
because it might be confused with the digit 0, and so is not the
default, but may be useful as a local coding convention if the
programming environment cannot be fixed to display these characters
distinctly.
- -Wno-deprecated
- Do not warn about usage of deprecated features.
- -Wno-deprecated-declarations
- Do not warn about uses of functions, variables, and types marked as
deprecated by using the "deprecated"
attribute.
- -Wno-overflow
- Do not warn about compile-time overflow in constant expressions.
- -Woverride-init (C and Objective-C only)
- Warn if an initialized field without side effects is overridden when using
designated initializers.
This warning is included in -Wextra. To get other
-Wextra warnings without this one, use -Wextra
-Wno-override-init.
- -Wpacked
- Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure. Such
structures may be mis-aligned for little benefit. For instance, in this
code, the variable "f.x" in
"struct bar" is misaligned even though
"struct bar" does not itself have the
packed attribute:
struct foo {
int x;
char a, b, c, d;
} __attribute__((packed));
struct bar {
char z;
struct foo f;
};
- -Wpacked-bitfield-compat
- The 4.1, 4.2 and 4.3 series of GCC ignore the
"packed" attribute on bit-fields of type
"char". This has been fixed in GCC 4.4
but the change can lead to differences in the structure layout. GCC
informs you when the offset of such a field has changed in GCC 4.4. For
example there is no longer a 4-bit padding between field
"a" and
"b" in this structure:
struct foo
{
char a:4;
char b:8;
} __attribute__ ((packed));
This warning is enabled by default. Use
-Wno-packed-bitfield-compat to disable this warning.
- -Wpadded
- Warn if padding is included in a structure, either to align an element of
the structure or to align the whole structure. Sometimes when this happens
it is possible to rearrange the fields of the structure to reduce the
padding and so make the structure smaller.
- -Wredundant-decls
- Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.
- -Wnested-externs (C and Objective-C only)
- Warn if an "extern" declaration is
encountered within a function.
- -Wno-inherited-variadic-ctor
- Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by
default because the ellipsis is not inherited.
- -Winline
- Warn if a function that is declared as inline cannot be inlined. Even with
this option, the compiler does not warn about failures to inline functions
declared in system headers.
The compiler uses a variety of heuristics to determine whether
or not to inline a function. For example, the compiler takes into
account the size of the function being inlined and the amount of
inlining that has already been done in the current function. Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by -Winline to appear or disappear.
- -Wno-invalid-offsetof (C++ and Objective-C++ only)
- Suppress warnings from applying the offsetof macro to a non-POD
type. According to the 1998 ISO C++ standard, applying offsetof to
a non-POD type is undefined. In existing C++ implementations, however,
offsetof typically gives meaningful results even when applied to
certain kinds of non-POD types (such as a simple struct that fails
to be a POD type only by virtue of having a constructor). This flag is for
users who are aware that they are writing nonportable code and who have
deliberately chosen to ignore the warning about it.
The restrictions on offsetof may be relaxed in a future
version of the C++ standard.
- -Wno-int-to-pointer-cast
- Suppress warnings from casts to pointer type of an integer of a different
size. In C++, casting to a pointer type of smaller size is an error.
Wint-to-pointer-cast is enabled by default.
- -Wno-pointer-to-int-cast (C and Objective-C only)
- Suppress warnings from casts from a pointer to an integer type of a
different size.
- -Winvalid-pch
- Warn if a precompiled header is found in the search path but can't be
used.
- -Wlong-long
- Warn if long long type is used. This is enabled by either
-Wpedantic or -Wtraditional in ISO C90 and C++98 modes. To
inhibit the warning messages, use -Wno-long-long.
- -Wvariadic-macros
- Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU
alternate syntax when in pedantic ISO C99 mode. This is default. To
inhibit the warning messages, use -Wno-variadic-macros.
- -Wvarargs
- Warn upon questionable usage of the macros used to handle variable
arguments like va_start. This is default. To inhibit the warning
messages, use -Wno-varargs.
- -Wvector-operation-performance
- Warn if vector operation is not implemented via SIMD capabilities of the
architecture. Mainly useful for the performance tuning. Vector operation
can be implemented "piecewise", which
means that the scalar operation is performed on every vector element;
"in parallel", which means that the
vector operation is implemented using scalars of wider type, which
normally is more performance efficient; and "as a
single scalar", which means that vector fits into a scalar
type.
- -Wno-virtual-move-assign
- Suppress warnings about inheriting from a virtual base with a non-trivial
C++11 move assignment operator. This is dangerous because if the virtual
base is reachable along more than one path, it will be moved multiple
times, which can mean both objects end up in the moved-from state. If the
move assignment operator is written to avoid moving from a moved-from
object, this warning can be disabled.
- -Wvla
- Warn if variable length array is used in the code. -Wno-vla
prevents the -Wpedantic warning of the variable length array.
- -Wvolatile-register-var
- Warn if a register variable is declared volatile. The volatile modifier
does not inhibit all optimizations that may eliminate reads and/or writes
to register variables. This warning is enabled by -Wall.
- -Wdisabled-optimization
- Warn if a requested optimization pass is disabled. This warning does not
generally indicate that there is anything wrong with your code; it merely
indicates that GCC's optimizers are unable to handle the code effectively.
Often, the problem is that your code is too big or too complex; GCC
refuses to optimize programs when the optimization itself is likely to
take inordinate amounts of time.
- -Wpointer-sign (C and Objective-C only)
- Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C. It is implied by
-Wall and by -Wpedantic, which can be disabled with
-Wno-pointer-sign.
- -Wstack-protector
- This option is only active when -fstack-protector is active. It
warns about functions that are not protected against stack smashing.
- -Wno-mudflap
- Suppress warnings about constructs that cannot be instrumented by
-fmudflap.
- -Woverlength-strings
- Warn about string constants that are longer than the "minimum
maximum" length specified in the C standard. Modern compilers
generally allow string constants that are much longer than the standard's
minimum limit, but very portable programs should avoid using longer
strings.
The limit applies after string constant concatenation,
and does not count the trailing NUL. In C90, the limit was 509
characters; in C99, it was raised to 4095. C++98 does not specify a
normative minimum maximum, so we do not diagnose overlength strings in
C++.
This option is implied by -Wpedantic, and can be
disabled with -Wno-overlength-strings.
- -Wunsuffixed-float-constants (C and Objective-C only)
- Issue a warning for any floating constant that does not have a suffix.
When used together with -Wsystem-headers it warns about such
constants in system header files. This can be useful when preparing code
to use with the "FLOAT_CONST_DECIMAL64"
pragma from the decimal floating-point extension to C99.
GCC has various special options that are used for debugging either your program
or GCC:
- -g
- Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF 2). GDB can work with this debugging
information.
On most systems that use stabs format, -g enables use
of extra debugging information that only GDB can use; this extra
information makes debugging work better in GDB but probably makes other
debuggers crash or refuse to read the program. If you want to control
for certain whether to generate the extra information, use
-gstabs+, -gstabs, -gxcoff+, -gxcoff, or
-gvms (see below).
GCC allows you to use -g with -O. The shortcuts
taken by optimized code may occasionally produce surprising results:
some variables you declared may not exist at all; flow of control may
briefly move where you did not expect it; some statements may not be
executed because they compute constant results or their values are
already at hand; some statements may execute in different places because
they have been moved out of loops.
Nevertheless it proves possible to debug optimized output.
This makes it reasonable to use the optimizer for programs that might
have bugs.
The following options are useful when GCC is generated with
the capability for more than one debugging format.
- -gsplit-dwarf
- Separate as much dwarf debugging information as possible into a separate
output file with the extension .dwo. This option allows the build system
to avoid linking files with debug information. To be useful, this option
requires a debugger capable of reading .dwo files.
- -ggdb
- Produce debugging information for use by GDB. This means to use the most
expressive format available (DWARF 2, stabs, or the native format if
neither of those are supported), including GDB extensions if at all
possible.
- -gpubnames
- Generate dwarf .debug_pubnames and .debug_pubtypes sections.
- -gstabs
- Produce debugging information in stabs format (if that is supported),
without GDB extensions. This is the format used by DBX on most BSD
systems. On MIPS, Alpha and System V Release 4 systems this option
produces stabs debugging output that is not understood by DBX or SDB. On
System V Release 4 systems this option requires the GNU assembler.
- -feliminate-unused-debug-symbols
- Produce debugging information in stabs format (if that is supported), for
only symbols that are actually used.
- -femit-class-debug-always
- Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class. This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this option
increases the size of debugging information by as much as a factor of
two.
- -fdebug-types-section
- When using DWARF Version 4 or higher, type DIEs can be put into their own
".debug_types" section instead of making
them part of the ".debug_info" section.
It is more efficient to put them in a separate comdat sections since the
linker can then remove duplicates. But not all DWARF consumers support
".debug_types" sections yet and on some
objects ".debug_types" produces larger
instead of smaller debugging information.
- -gstabs+
- Produce debugging information in stabs format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read
the program.
- -gcoff
- Produce debugging information in COFF format (if that is supported). This
is the format used by SDB on most System V systems prior to System V
Release 4.
- -gxcoff
- Produce debugging information in XCOFF format (if that is supported). This
is the format used by the DBX debugger on IBM RS/6000 systems.
- -gxcoff+
- Produce debugging information in XCOFF format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The use of
these extensions is likely to make other debuggers crash or refuse to read
the program, and may cause assemblers other than the GNU assembler (GAS)
to fail with an error.
- -gdwarf-version
- Produce debugging information in DWARF format (if that is supported). The
value of version may be either 2, 3 or 4; the default version for
most targets is 4.
Note that with DWARF Version 2, some ports require and always
use some non-conflicting DWARF 3 extensions in the unwind tables.
Version 4 may require GDB 7.0 and
-fvar-tracking-assignments for maximum benefit.
- -grecord-gcc-switches
- This switch causes the command-line options used to invoke the compiler
that may affect code generation to be appended to the DW_AT_producer
attribute in DWARF debugging information. The options are concatenated
with spaces separating them from each other and from the compiler version.
See also -frecord-gcc-switches for another way of storing compiler
options into the object file. This is the default.
- -gno-record-gcc-switches
- Disallow appending command-line options to the DW_AT_producer attribute in
DWARF debugging information.
- -gstrict-dwarf
- Disallow using extensions of later DWARF standard version than selected
with -gdwarf-version. On most targets using non-conflicting
DWARF extensions from later standard versions is allowed.
- -gno-strict-dwarf
- Allow using extensions of later DWARF standard version than selected with
-gdwarf-version.
- -gvms
- Produce debugging information in Alpha/VMS debug format (if that is
supported). This is the format used by DEBUG on Alpha/VMS systems.
- -glevel
- -ggdblevel
- -gstabslevel
- -gcofflevel
- -gxcofflevel
- -gvmslevel
- Request debugging information and also use level to specify how
much information. The default level is 2.
Level 0 produces no debug information at all. Thus, -g0
negates -g.
Level 1 produces minimal information, enough for making
backtraces in parts of the program that you don't plan to debug. This
includes descriptions of functions and external variables, but no
information about local variables and no line numbers.
Level 3 includes extra information, such as all the macro
definitions present in the program. Some debuggers support macro
expansion when you use -g3.
-gdwarf-2 does not accept a concatenated debug level,
because GCC used to support an option -gdwarf that meant to
generate debug information in version 1 of the DWARF format (which is
very different from version 2), and it would have been too confusing.
That debug format is long obsolete, but the option cannot be changed
now. Instead use an additional -glevel option to change
the debug level for DWARF.
- -gtoggle
- Turn off generation of debug info, if leaving out this option generates
it, or turn it on at level 2 otherwise. The position of this argument in
the command line does not matter; it takes effect after all other options
are processed, and it does so only once, no matter how many times it is
given. This is mainly intended to be used with
-fcompare-debug.
- -fsanitize=address
- Enable AddressSanitizer, a fast memory error detector. Memory access
instructions will be instrumented to detect out-of-bounds and
use-after-free bugs. See
<http://code.google.com/p/address-sanitizer/> for more
details.
- -fsanitize=thread
- Enable ThreadSanitizer, a fast data race detector. Memory access
instructions will be instrumented to detect data race bugs. See
<http://code.google.com/p/data-race-test/wiki/ThreadSanitizer>
for more details.
- -fdump-final-insns[=file]
- Dump the final internal representation (RTL) to file. If the
optional argument is omitted (or if file is
"."), the name of the dump file is
determined by appending ".gkd" to the
compilation output file name.
- -fcompare-debug[=opts]
- If no error occurs during compilation, run the compiler a second time,
adding opts and -fcompare-debug-second to the arguments
passed to the second compilation. Dump the final internal representation
in both compilations, and print an error if they differ.
If the equal sign is omitted, the default -gtoggle is
used.
The environment variable GCC_COMPARE_DEBUG, if defined,
non-empty and nonzero, implicitly enables -fcompare-debug. If
GCC_COMPARE_DEBUG is defined to a string starting with a dash,
then it is used for opts, otherwise the default -gtoggle
is used.
-fcompare-debug=, with the equal sign but without
opts, is equivalent to -fno-compare-debug, which disables
the dumping of the final representation and the second compilation,
preventing even GCC_COMPARE_DEBUG from taking effect.
To verify full coverage during -fcompare-debug testing,
set GCC_COMPARE_DEBUG to say
-fcompare-debug-not-overridden, which GCC rejects as an invalid
option in any actual compilation (rather than preprocessing, assembly or
linking). To get just a warning, setting GCC_COMPARE_DEBUG to
-w%n-fcompare-debug not overridden will do.
- -fcompare-debug-second
- This option is implicitly passed to the compiler for the second
compilation requested by -fcompare-debug, along with options to
silence warnings, and omitting other options that would cause side-effect
compiler outputs to files or to the standard output. Dump files and
preserved temporary files are renamed so as to contain the
".gk" additional extension during the
second compilation, to avoid overwriting those generated by the first.
When this option is passed to the compiler driver, it causes
the first compilation to be skipped, which makes it useful for
little other than debugging the compiler proper.
- -feliminate-dwarf2-dups
- Compress DWARF 2 debugging information by eliminating duplicated
information about each symbol. This option only makes sense when
generating DWARF 2 debugging information with -gdwarf-2.
- -femit-struct-debug-baseonly
- Emit debug information for struct-like types only when the base name of
the compilation source file matches the base name of file in which the
struct is defined.
This option substantially reduces the size of debugging
information, but at significant potential loss in type information to
the debugger. See -femit-struct-debug-reduced for a less
aggressive option. See -femit-struct-debug-detailed for more
detailed control.
This option works only with DWARF 2.
- -femit-struct-debug-reduced
- Emit debug information for struct-like types only when the base name of
the compilation source file matches the base name of file in which the
type is defined, unless the struct is a template or defined in a system
header.
This option significantly reduces the size of debugging
information, with some potential loss in type information to the
debugger. See -femit-struct-debug-baseonly for a more aggressive
option. See -femit-struct-debug-detailed for more detailed
control.
This option works only with DWARF 2.
- -femit-struct-debug-detailed[=spec-list]
- Specify the struct-like types for which the compiler generates debug
information. The intent is to reduce duplicate struct debug information
between different object files within the same program.
This option is a detailed version of
-femit-struct-debug-reduced and
-femit-struct-debug-baseonly, which serves for most needs.
A specification has the
syntax[dir:|ind:][ord:|gen:](any|sys|base|none)
The optional first word limits the specification to structs
that are used directly (dir:) or used indirectly (ind:). A
struct type is used directly when it is the type of a variable, member.
Indirect uses arise through pointers to structs. That is, when use of an
incomplete struct is valid, the use is indirect. An example is struct
one direct; struct two * indirect;.
The optional second word limits the specification to ordinary
structs (ord:) or generic structs (gen:). Generic structs
are a bit complicated to explain. For C++, these are non-explicit
specializations of template classes, or non-template classes within the
above. Other programming languages have generics, but
-femit-struct-debug-detailed does not yet implement them.
The third word specifies the source files for those structs
for which the compiler should emit debug information. The values
none and any have the normal meaning. The value
base means that the base of name of the file in which the type
declaration appears must match the base of the name of the main
compilation file. In practice, this means that when compiling
foo.c, debug information is generated for types declared in that
file and foo.h, but not other header files. The value sys
means those types satisfying base or declared in system or
compiler headers.
You may need to experiment to determine the best settings for
your application.
The default is -femit-struct-debug-detailed=all.
This option works only with DWARF 2.
- -fno-merge-debug-strings
- Direct the linker to not merge together strings in the debugging
information that are identical in different object files. Merging is not
supported by all assemblers or linkers. Merging decreases the size of the
debug information in the output file at the cost of increasing link
processing time. Merging is enabled by default.
- -fdebug-prefix-map=old=new
- When compiling files in directory old, record
debugging information describing them as in new
instead.
- -fno-dwarf2-cfi-asm
- Emit DWARF 2 unwind info as compiler generated
".eh_frame" section instead of using GAS
".cfi_*" directives.
- -p
- Generate extra code to write profile information suitable for the analysis
program prof. You must use this option when compiling the source
files you want data about, and you must also use it when linking.
- -pg
- Generate extra code to write profile information suitable for the analysis
program gprof. You must use this option when compiling the source
files you want data about, and you must also use it when linking.
- -Q
- Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.
- -ftime-report
- Makes the compiler print some statistics about the time consumed by each
pass when it finishes.
- -fmem-report
- Makes the compiler print some statistics about permanent memory allocation
when it finishes.
- -fmem-report-wpa
- Makes the compiler print some statistics about permanent memory allocation
for the WPA phase only.
- -fpre-ipa-mem-report
- -fpost-ipa-mem-report
- Makes the compiler print some statistics about permanent memory allocation
before or after interprocedural optimization.
- -fprofile-report
- Makes the compiler print some statistics about consistency of the
(estimated) profile and effect of individual passes.
- -fstack-usage
- Makes the compiler output stack usage information for the program, on a
per-function basis. The filename for the dump is made by appending
.su to the auxname. auxname is generated from the
name of the output file, if explicitly specified and it is not an
executable, otherwise it is the basename of the source file. An entry is
made up of three fields:
- The name of the function.
- A number of bytes.
- One or more qualifiers: "static",
"dynamic",
"bounded".
The qualifier "static" means
that the function manipulates the stack statically: a fixed number of bytes
are allocated for the frame on function entry and released on function exit;
no stack adjustments are otherwise made in the function. The second field is
this fixed number of bytes.
The qualifier "dynamic" means
that the function manipulates the stack dynamically: in addition to the
static allocation described above, stack adjustments are made in the body of
the function, for example to push/pop arguments around function calls. If
the qualifier "bounded" is also present,
the amount of these adjustments is bounded at compile time and the second
field is an upper bound of the total amount of stack used by the function.
If it is not present, the amount of these adjustments is not bounded at
compile time and the second field only represents the bounded part.
- -fprofile-arcs
- Add code so that program flow arcs are instrumented. During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns. When the compiled
program exits it saves this data to a file called
auxname.gcda for each source file. The data may be
used for profile-directed optimizations (-fbranch-probabilities),
or for test coverage analysis (-ftest-coverage). Each object file's
auxname is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file. In both cases any suffix is removed (e.g.
foo.gcda for input file dir/foo.c, or dir/foo.gcda
for output file specified as -o dir/foo.o).
- --coverage
- This option is used to compile and link code instrumented for coverage
analysis. The option is a synonym for -fprofile-arcs
-ftest-coverage (when compiling) and -lgcov (when linking).
See the documentation for those options for more details.
- Compile the source files with -fprofile-arcs plus optimization and
code generation options. For test coverage analysis, use the additional
-ftest-coverage option. You do not need to profile every source
file in a program.
- Link your object files with -lgcov or -fprofile-arcs (the
latter implies the former).
- Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Also
"fork" calls are detected and correctly
handled (double counting will not happen).
- For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
-fbranch-probabilities.
- For test coverage analysis, use gcov to produce human readable
information from the .gcno and .gcda files. Refer to the
gcov documentation for further information.
With -fprofile-arcs, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph. Only
arcs that are not on the spanning tree have to be instrumented: the compiler
adds code to count the number of times that these arcs are executed. When an
arc is the only exit or only entrance to a block, the instrumentation code
can be added to the block; otherwise, a new basic block must be created to
hold the instrumentation code.
- -ftest-coverage
- Produce a notes file that the gcov code-coverage utility can use to
show program coverage. Each source file's note file is called
auxname.gcno. Refer to the -fprofile-arcs
option above for a description of auxname and instructions on how
to generate test coverage data. Coverage data matches the source files
more closely if you do not optimize.
- -fdbg-cnt-list
- Print the name and the counter upper bound for all debug counters.
- -fdbg-cnt=counter-value-list
- Set the internal debug counter upper bound. counter-value-list is a
comma-separated list of name:value pairs which sets the
upper bound of each debug counter name to value. All debug
counters have the initial upper bound of
"UINT_MAX"; thus
"dbg_cnt()" returns true always unless
the upper bound is set by this option. For example, with
-fdbg-cnt=dce:10,tail_call:0,
"dbg_cnt(dce)" returns true only for
first 10 invocations.
- -fenable-kind-pass
- -fdisable-kind-pass=range-list
- This is a set of options that are used to explicitly disable/enable
optimization passes. These options are intended for use for debugging GCC.
Compiler users should use regular options for enabling/disabling passes
instead.
- -fdisable-ipa-pass
- Disable IPA pass pass. pass is the pass name. If the same
pass is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.
- -fdisable-rtl-pass
- -fdisable-rtl-pass=range-list
- Disable RTL pass pass. pass is the pass name. If the same
pass is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.
range-list is a comma-separated list of function ranges or
assembler names. Each range is a number pair separated by a colon. The
range is inclusive in both ends. If the range is trivial, the number pair
can be simplified as a single number. If the function's call graph node's
uid falls within one of the specified ranges, the pass is
disabled for that function. The uid is shown in the function header
of a dump file, and the pass names can be dumped by using option
-fdump-passes.
- -fdisable-tree-pass
- -fdisable-tree-pass=range-list
- Disable tree pass pass. See -fdisable-rtl for the
description of option arguments.
- -fenable-ipa-pass
- Enable IPA pass pass. pass is the pass name. If the same
pass is statically invoked in the compiler multiple times, the pass name
should be appended with a sequential number starting from 1.
- -fenable-rtl-pass
- -fenable-rtl-pass=range-list
- Enable RTL pass pass. See -fdisable-rtl for option argument
description and examples.
- -fenable-tree-pass
- -fenable-tree-pass=range-list
- Enable tree pass pass. See -fdisable-rtl for the description
of option arguments.
Here are some examples showing uses of these options.
# disable ccp1 for all functions
-fdisable-tree-ccp1
# disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
# disable gcse2 for functions at the following ranges [1,1],
# [300,400], and [400,1000]
# disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,foo2
# disable early inlining
-fdisable-tree-einline
# disable ipa inlining
-fdisable-ipa-inline
# enable tree full unroll
-fenable-tree-unroll
- -dletters
- -fdump-rtl-pass
- -fdump-rtl-pass=filename
- Says to make debugging dumps during compilation at times specified by
letters. This is used for debugging the RTL-based passes of the
compiler. The file names for most of the dumps are made by appending a
pass number and a word to the dumpname, and the files are created
in the directory of the output file. In case of =filename
option, the dump is output on the given file instead of the pass numbered
dump files. Note that the pass number is computed statically as passes get
registered into the pass manager. Thus the numbering is not related to the
dynamic order of execution of passes. In particular, a pass installed by a
plugin could have a number over 200 even if it executed quite early.
dumpname is generated from the name of the output file, if
explicitly specified and it is not an executable, otherwise it is the
basename of the source file. These switches may have different effects
when -E is used for preprocessing.
Debug dumps can be enabled with a -fdump-rtl switch or
some -d option letters. Here are the possible letters for
use in pass and letters, and their meanings:
- -fdump-rtl-alignments
- Dump after branch alignments have been computed.
- -fdump-rtl-asmcons
- Dump after fixing rtl statements that have unsatisfied in/out
constraints.
- -fdump-rtl-auto_inc_dec
- Dump after auto-inc-dec discovery. This pass is only run on architectures
that have auto inc or auto dec instructions.
- -fdump-rtl-barriers
- Dump after cleaning up the barrier instructions.
- -fdump-rtl-bbpart
- Dump after partitioning hot and cold basic blocks.
- -fdump-rtl-bbro
- Dump after block reordering.
- -fdump-rtl-btl1
- -fdump-rtl-btl2
- -fdump-rtl-btl1 and -fdump-rtl-btl2 enable dumping after the
two branch target load optimization passes.
- -fdump-rtl-bypass
- Dump after jump bypassing and control flow optimizations.
- -fdump-rtl-combine
- Dump after the RTL instruction combination pass.
- -fdump-rtl-compgotos
- Dump after duplicating the computed gotos.
- -fdump-rtl-ce1
- -fdump-rtl-ce2
- -fdump-rtl-ce3
- -fdump-rtl-ce1, -fdump-rtl-ce2, and -fdump-rtl-ce3
enable dumping after the three if conversion passes.
- -fdump-rtl-cprop_hardreg
- Dump after hard register copy propagation.
- -fdump-rtl-csa
- Dump after combining stack adjustments.
- -fdump-rtl-cse1
- -fdump-rtl-cse2
- -fdump-rtl-cse1 and -fdump-rtl-cse2 enable dumping after the
two common subexpression elimination passes.
- -fdump-rtl-dce
- Dump after the standalone dead code elimination passes.
- -fdump-rtl-dbr
- Dump after delayed branch scheduling.
- -fdump-rtl-dce1
- -fdump-rtl-dce2
- -fdump-rtl-dce1 and -fdump-rtl-dce2 enable dumping after the
two dead store elimination passes.
- -fdump-rtl-eh
- Dump after finalization of EH handling code.
- -fdump-rtl-eh_ranges
- Dump after conversion of EH handling range regions.
- -fdump-rtl-expand
- Dump after RTL generation.
- -fdump-rtl-fwprop1
- -fdump-rtl-fwprop2
- -fdump-rtl-fwprop1 and -fdump-rtl-fwprop2 enable dumping
after the two forward propagation passes.
- -fdump-rtl-gcse1
- -fdump-rtl-gcse2
- -fdump-rtl-gcse1 and -fdump-rtl-gcse2 enable dumping after
global common subexpression elimination.
- -fdump-rtl-init-regs
- Dump after the initialization of the registers.
- -fdump-rtl-initvals
- Dump after the computation of the initial value sets.
- -fdump-rtl-into_cfglayout
- Dump after converting to cfglayout mode.
- -fdump-rtl-ira
- Dump after iterated register allocation.
- -fdump-rtl-jump
- Dump after the second jump optimization.
- -fdump-rtl-loop2
- -fdump-rtl-loop2 enables dumping after the rtl loop optimization
passes.
- -fdump-rtl-mach
- Dump after performing the machine dependent reorganization pass, if that
pass exists.
- -fdump-rtl-mode_sw
- Dump after removing redundant mode switches.
- -fdump-rtl-rnreg
- Dump after register renumbering.
- -fdump-rtl-outof_cfglayout
- Dump after converting from cfglayout mode.
- -fdump-rtl-peephole2
- Dump after the peephole pass.
- -fdump-rtl-postreload
- Dump after post-reload optimizations.
- -fdump-rtl-pro_and_epilogue
- Dump after generating the function prologues and epilogues.
- -fdump-rtl-regmove
- Dump after the register move pass.
- -fdump-rtl-sched1
- -fdump-rtl-sched2
- -fdump-rtl-sched1 and -fdump-rtl-sched2 enable dumping after
the basic block scheduling passes.
- -fdump-rtl-see
- Dump after sign extension elimination.
- -fdump-rtl-seqabstr
- Dump after common sequence discovery.
- -fdump-rtl-shorten
- Dump after shortening branches.
- -fdump-rtl-sibling
- Dump after sibling call optimizations.
- -fdump-rtl-split1
- -fdump-rtl-split2
- -fdump-rtl-split3
- -fdump-rtl-split4
- -fdump-rtl-split5
- -fdump-rtl-split1, -fdump-rtl-split2,
-fdump-rtl-split3, -fdump-rtl-split4 and
-fdump-rtl-split5 enable dumping after five rounds of instruction
splitting.
- -fdump-rtl-sms
- Dump after modulo scheduling. This pass is only run on some
architectures.
- -fdump-rtl-stack
- Dump after conversion from GCC's "flat register file" registers
to the x87's stack-like registers. This pass is only run on x86
variants.
- -fdump-rtl-subreg1
- -fdump-rtl-subreg2
- -fdump-rtl-subreg1 and -fdump-rtl-subreg2 enable dumping
after the two subreg expansion passes.
- -fdump-rtl-unshare
- Dump after all rtl has been unshared.
- -fdump-rtl-vartrack
- Dump after variable tracking.
- -fdump-rtl-vregs
- Dump after converting virtual registers to hard registers.
- -fdump-rtl-web
- Dump after live range splitting.
- -fdump-rtl-regclass
- -fdump-rtl-subregs_of_mode_init
- -fdump-rtl-subregs_of_mode_finish
- -fdump-rtl-dfinit
- -fdump-rtl-dfinish
- These dumps are defined but always produce empty files.
- -da
- -fdump-rtl-all
- Produce all the dumps listed above.
- -dA
- Annotate the assembler output with miscellaneous debugging
information.
- -dD
- Dump all macro definitions, at the end of preprocessing, in addition to
normal output.
- -dH
- Produce a core dump whenever an error occurs.
- -dp
- Annotate the assembler output with a comment indicating which pattern and
alternative is used. The length of each instruction is also printed.
- -dP
- Dump the RTL in the assembler output as a comment before each instruction.
Also turns on -dp annotation.
- -dx
- Just generate RTL for a function instead of compiling it. Usually used
with -fdump-rtl-expand.
- -fdump-noaddr
- When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different text / bss / data / heap /
stack / dso start locations.
- -fdump-unnumbered
- When doing debugging dumps, suppress instruction numbers and address
output. This makes it more feasible to use diff on debugging dumps for
compiler invocations with different options, in particular with and
without -g.
- -fdump-unnumbered-links
- When doing debugging dumps (see -d option above), suppress
instruction numbers for the links to the previous and next instructions in
a sequence.
- -fdump-translation-unit (C++ only)
- -fdump-translation-unit-options (C++ only)
- Dump a representation of the tree structure for the entire translation
unit to a file. The file name is made by appending .tu to the
source file name, and the file is created in the same directory as the
output file. If the -options form is used, options
controls the details of the dump as described for the -fdump-tree
options.
- -fdump-class-hierarchy (C++ only)
- -fdump-class-hierarchy-options (C++ only)
- Dump a representation of each class's hierarchy and virtual function table
layout to a file. The file name is made by appending .class to the
source file name, and the file is created in the same directory as the
output file. If the -options form is used, options
controls the details of the dump as described for the -fdump-tree
options.
- -fdump-ipa-switch
- Control the dumping at various stages of inter-procedural analysis
language tree to a file. The file name is generated by appending a switch
specific suffix to the source file name, and the file is created in the
same directory as the output file. The following dumps are possible:
- all
- Enables all inter-procedural analysis dumps.
- cgraph
- Dumps information about call-graph optimization, unused function removal,
and inlining decisions.
- inline
- Dump after function inlining.
- -fdump-passes
- Dump the list of optimization passes that are turned on and off by the
current command-line options.
- -fdump-statistics-option
- Enable and control dumping of pass statistics in a separate file. The file
name is generated by appending a suffix ending in .statistics to
the source file name, and the file is created in the same directory as the
output file. If the -option form is used, -stats
causes counters to be summed over the whole compilation unit while
-details dumps every event as the passes generate them. The default
with no option is to sum counters for each function compiled.
- -fdump-tree-switch
- -fdump-tree-switch-options
- -fdump-tree-switch-options=filename
- Control the dumping at various stages of processing the intermediate
language tree to a file. The file name is generated by appending a
switch-specific suffix to the source file name, and the file is created in
the same directory as the output file. In case of =filename
option, the dump is output on the given file instead of the auto named
dump files. If the -options form is used, options is
a list of - separated options which control the details of the
dump. Not all options are applicable to all dumps; those that are not
meaningful are ignored. The following options are available
- address
- Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use is
for tying up a dump file with a debug environment.
- asmname
- If "DECL_ASSEMBLER_NAME" has been set
for a given decl, use that in the dump instead of
"DECL_NAME". Its primary use is ease of
use working backward from mangled names in the assembly file.
- slim
- When dumping front-end intermediate representations, inhibit dumping of
members of a scope or body of a function merely because that scope has
been reached. Only dump such items when they are directly reachable by
some other path.
When dumping pretty-printed trees, this option inhibits
dumping the bodies of control structures.
When dumping RTL, print the RTL in slim (condensed) form
instead of the default LISP-like representation.
- raw
- Print a raw representation of the tree. By default, trees are
pretty-printed into a C-like representation.
- details
- Enable more detailed dumps (not honored by every dump option). Also
include information from the optimization passes.
- stats
- Enable dumping various statistics about the pass (not honored by every
dump option).
- blocks
- Enable showing basic block boundaries (disabled in raw dumps).
- graph
- For each of the other indicated dump files
(-fdump-rtl-pass), dump a representation of the control flow
graph suitable for viewing with GraphViz to
file.passid.pass.dot.
Each function in the file is pretty-printed as a subgraph, so that
GraphViz can render them all in a single plot.
This option currently only works for RTL dumps, and the RTL is
always dumped in slim form.
- vops
- Enable showing virtual operands for every statement.
- lineno
- Enable showing line numbers for statements.
- uid
- Enable showing the unique ID
("DECL_UID") for each variable.
- verbose
- Enable showing the tree dump for each statement.
- eh
- Enable showing the EH region number holding each statement.
- scev
- Enable showing scalar evolution analysis details.
- optimized
- Enable showing optimization information (only available in certain
passes).
- missed
- Enable showing missed optimization information (only available in certain
passes).
- notes
- Enable other detailed optimization information (only available in certain
passes).
- =filename
- Instead of an auto named dump file, output into the given file name. The
file names stdout and stderr are treated specially and are
considered already open standard streams. For example,
gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
-fdump-tree-pre=stderr file.c
outputs vectorizer dump into foo.dump, while the PRE
dump is output on to stderr. If two conflicting dump filenames
are given for the same pass, then the latter option overrides the
earlier one.
- all
- Turn on all options, except raw, slim, verbose and
lineno.
- optall
- Turn on all optimization options, i.e., optimized, missed,
and note.
The following tree dumps are possible:
- original
- Dump before any tree based optimization, to
file.original.
- optimized
- Dump after all tree based optimization, to
file.optimized.
- gimple
- Dump each function before and after the gimplification pass to a file. The
file name is made by appending .gimple to the source file
name.
- cfg
- Dump the control flow graph of each function to a file. The file name is
made by appending .cfg to the source file name.
- ch
- Dump each function after copying loop headers. The file name is made by
appending .ch to the source file name.
- ssa
- Dump SSA related information to a file. The file name is made by appending
.ssa to the source file name.
- alias
- Dump aliasing information for each function. The file name is made by
appending .alias to the source file name.
- ccp
- Dump each function after CCP. The file name is made by appending
.ccp to the source file name.
- storeccp
- Dump each function after STORE-CCP. The file name is made by appending
.storeccp to the source file name.
- pre
- Dump trees after partial redundancy elimination. The file name is made by
appending .pre to the source file name.
- fre
- Dump trees after full redundancy elimination. The file name is made by
appending .fre to the source file name.
- copyprop
- Dump trees after copy propagation. The file name is made by appending
.copyprop to the source file name.
- store_copyprop
- Dump trees after store copy-propagation. The file name is made by
appending .store_copyprop to the source file name.
- dce
- Dump each function after dead code elimination. The file name is made by
appending .dce to the source file name.
- mudflap
- Dump each function after adding mudflap instrumentation. The file name is
made by appending .mudflap to the source file name.
- sra
- Dump each function after performing scalar replacement of aggregates. The
file name is made by appending .sra to the source file name.
- sink
- Dump each function after performing code sinking. The file name is made by
appending .sink to the source file name.
- dom
- Dump each function after applying dominator tree optimizations. The file
name is made by appending .dom to the source file name.
- dse
- Dump each function after applying dead store elimination. The file name is
made by appending .dse to the source file name.
- phiopt
- Dump each function after optimizing PHI nodes into straightline code. The
file name is made by appending .phiopt to the source file
name.
- forwprop
- Dump each function after forward propagating single use variables. The
file name is made by appending .forwprop to the source file
name.
- copyrename
- Dump each function after applying the copy rename optimization. The file
name is made by appending .copyrename to the source file name.
- nrv
- Dump each function after applying the named return value optimization on
generic trees. The file name is made by appending .nrv to the
source file name.
- vect
- Dump each function after applying vectorization of loops. The file name is
made by appending .vect to the source file name.
- slp
- Dump each function after applying vectorization of basic blocks. The file
name is made by appending .slp to the source file name.
- vrp
- Dump each function after Value Range Propagation (VRP). The file name is
made by appending .vrp to the source file name.
- all
- Enable all the available tree dumps with the flags provided in this
option.
- -fopt-info
- -fopt-info-options
- -fopt-info-options=filename
- Controls optimization dumps from various optimization passes. If the
-options form is used, options is a list of -
separated options to select the dump details and optimizations. If
options is not specified, it defaults to all for details and
optall for optimization groups. If the filename is not
specified, it defaults to stderr. Note that the output
filename will be overwritten in case of multiple translation units.
If a combined output from multiple translation units is desired,
stderr should be used instead.
The options can be divided into two groups, 1) options
describing the verbosity of the dump, and 2) options describing which
optimizations should be included. The options from both the groups can
be freely mixed as they are non-overlapping. However, in case of any
conflicts, the latter options override the earlier options on the
command line. Though multiple -fopt-info options are accepted, only one
of them can have =filename. If other filenames are provided then
all but the first one are ignored.
The dump verbosity has the following options
- optimized
- Print information when an optimization is successfully applied. It is up
to a pass to decide which information is relevant. For example, the
vectorizer passes print the source location of loops which got
successfully vectorized.
- missed
- Print information about missed optimizations. Individual passes control
which information to include in the output. For example,
gcc -O2 -ftree-vectorize -fopt-info-vec-missed
will print information about missed optimization opportunities
from vectorization passes on stderr.
- note
- Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.
- all
- Print detailed optimization information. This includes optimized,
missed, and note.
The second set of options describes a group of optimizations and
may include one or more of the following.
- ipa
- Enable dumps from all interprocedural optimizations.
- loop
- Enable dumps from all loop optimizations.
- inline
- Enable dumps from all inlining optimizations.
- vec
- Enable dumps from all vectorization optimizations.
For example,
gcc -O3 -fopt-info-missed=missed.all
outputs missed optimization report from all the passes into
missed.all.
As another example,
gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
will output information about missed optimizations as well as
optimized locations from all the inlining passes into inline.txt.
If the filename is provided, then the dumps from all the
applicable optimizations are concatenated into the filename.
Otherwise the dump is output onto stderr. If options is
omitted, it defaults to all-optall, which means dump all available
optimization info from all the passes. In the following example, all
optimization info is output on to stderr.
gcc -O3 -fopt-info
Note that -fopt-info-vec-missed behaves the same as
-fopt-info-missed-vec.
As another example, consider
gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
Here the two output filenames vec.miss and loop.opt
are in conflict since only one output file is allowed. In this case, only
the first option takes effect and the subsequent options are ignored. Thus
only the vec.miss is produced which cotaints dumps from the
vectorizer about missed opportunities.
- -ftree-vectorizer-verbose=n
- This option is deprecated and is implemented in terms of
-fopt-info. Please use -fopt-info-kind form instead,
where kind is one of the valid opt-info options. It prints
additional optimization information. For n=0 no diagnostic
information is reported. If n=1 the vectorizer reports each loop
that got vectorized, and the total number of loops that got vectorized. If
n=2 the vectorizer reports locations which could not be vectorized
and the reasons for those. For any higher verbosity levels all the
analysis and transformation information from the vectorizer is reported.
Note that the information output by
-ftree-vectorizer-verbose option is sent to stderr. If the
equivalent form -fopt-info-options=filename
is used then the output is sent into filename instead.
- -frandom-seed=string
- This option provides a seed that GCC uses in place of random numbers in
generating certain symbol names that have to be different in every
compiled file. It is also used to place unique stamps in coverage data
files and the object files that produce them. You can use the
-frandom-seed option to produce reproducibly identical object
files.
The string should be different for every file you
compile.
- -fsched-verbose=n
- On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints. This information is
written to standard error, unless -fdump-rtl-sched1 or
-fdump-rtl-sched2 is specified, in which case it is output to the
usual dump listing file, .sched1 or .sched2 respectively.
However for n greater than nine, the output is always printed to
standard error.
For n greater than zero, -fsched-verbose outputs
the same information as -fdump-rtl-sched1 and
-fdump-rtl-sched2. For n greater than one, it also output
basic block probabilities, detailed ready list information and unit/insn
info. For n greater than two, it includes RTL at abort point,
control-flow and regions info. And for n over four,
-fsched-verbose also includes dependence info.
- -save-temps
- -save-temps=cwd
- Store the usual "temporary" intermediate files permanently;
place them in the current directory and name them based on the source
file. Thus, compiling foo.c with -c -save-temps produces
files foo.i and foo.s, as well as foo.o. This creates
a preprocessed foo.i output file even though the compiler now
normally uses an integrated preprocessor.
When used in combination with the -x command-line
option, -save-temps is sensible enough to avoid over writing an
input source file with the same extension as an intermediate file. The
corresponding intermediate file may be obtained by renaming the source
file before using -save-temps.
If you invoke GCC in parallel, compiling several different
source files that share a common base name in different subdirectories
or the same source file compiled for multiple output destinations, it is
likely that the different parallel compilers will interfere with each
other, and overwrite the temporary files. For instance:
gcc -save-temps -o outdir1/foo.o indir1/foo.c&
gcc -save-temps -o outdir2/foo.o indir2/foo.c&
may result in foo.i and foo.o being written to
simultaneously by both compilers.
- -save-temps=obj
- Store the usual "temporary" intermediate files permanently. If
the -o option is used, the temporary files are based on the object
file. If the -o option is not used, the -save-temps=obj
switch behaves like -save-temps.
For example:
gcc -save-temps=obj -c foo.c
gcc -save-temps=obj -c bar.c -o dir/xbar.o
gcc -save-temps=obj foobar.c -o dir2/yfoobar
creates foo.i, foo.s, dir/xbar.i,
dir/xbar.s, dir2/yfoobar.i, dir2/yfoobar.s, and
dir2/yfoobar.o.
- -time[=file]
- Report the CPU time taken by each subprocess in the compilation sequence.
For C source files, this is the compiler proper and assembler (plus the
linker if linking is done).
Without the specification of an output file, the output looks
like this:
# cc1 0.12 0.01
# as 0.00 0.01
The first number on each line is the "user time",
that is time spent executing the program itself. The second number is
"system time", time spent executing operating system routines
on behalf of the program. Both numbers are in seconds.
With the specification of an output file, the output is
appended to the named file, and it looks like this:
0.12 0.01 cc1 <options>
0.00 0.01 as <options>
The "user time" and the "system time" are
moved before the program name, and the options passed to the program are
displayed, so that one can later tell what file was being compiled, and
with which options.
- -fvar-tracking
- Run variable tracking pass. It computes where variables are stored at each
position in code. Better debugging information is then generated (if the
debugging information format supports this information).
It is enabled by default when compiling with optimization
(-Os, -O, -O2, ...), debugging information
(-g) and the debug info format supports it.
- -fvar-tracking-assignments
- Annotate assignments to user variables early in the compilation and
attempt to carry the annotations over throughout the compilation all the
way to the end, in an attempt to improve debug information while
optimizing. Use of -gdwarf-4 is recommended along with it.
It can be enabled even if var-tracking is disabled, in which
case annotations are created and maintained, but discarded at the
end.
- -fvar-tracking-assignments-toggle
- Toggle -fvar-tracking-assignments, in the same way that
-gtoggle toggles -g.
- -print-file-name=library
- Print the full absolute name of the library file library that would
be used when linking---and don't do anything else. With this option, GCC
does not compile or link anything; it just prints the file name.
- -print-multi-directory
- Print the directory name corresponding to the multilib selected by any
other switches present in the command line. This directory is supposed to
exist in GCC_EXEC_PREFIX.
- -print-multi-lib
- Print the mapping from multilib directory names to compiler switches that
enable them. The directory name is separated from the switches by
;, and each switch starts with an @ instead of the -,
without spaces between multiple switches. This is supposed to ease shell
processing.
- -print-multi-os-directory
- Print the path to OS libraries for the selected multilib, relative to some
lib subdirectory. If OS libraries are present in the lib
subdirectory and no multilibs are used, this is usually just ., if
OS libraries are present in libsuffix sibling
directories this prints e.g. ../lib64, ../lib or
../lib32, or if OS libraries are present in
lib/subdir subdirectories it prints e.g.
amd64, sparcv9 or ev6.
- -print-multiarch
- Print the path to OS libraries for the selected multiarch, relative to
some lib subdirectory.
- -print-prog-name=program
- Like -print-file-name, but searches for a program such as
cpp.
- -print-libgcc-file-name
- Same as -print-file-name=libgcc.a.
This is useful when you use -nostdlib or
-nodefaultlibs but you do want to link with libgcc.a. You
can do:
gcc -nostdlib <files>... `gcc -print-libgcc-file-name`
- -print-search-dirs
- Print the name of the configured installation directory and a list of
program and library directories gcc searches---and don't do
anything else.
This is useful when gcc prints the error message
installation problem, cannot exec cpp0: No such file or
directory. To resolve this you either need to put cpp0 and
the other compiler components where gcc expects to find them, or
you can set the environment variable GCC_EXEC_PREFIX to the
directory where you installed them. Don't forget the trailing
/.
- -print-sysroot
- Print the target sysroot directory that is used during compilation. This
is the target sysroot specified either at configure time or using the
--sysroot option, possibly with an extra suffix that depends on
compilation options. If no target sysroot is specified, the option prints
nothing.
- -print-sysroot-headers-suffix
- Print the suffix added to the target sysroot when searching for headers,
or give an error if the compiler is not configured with such a
suffix---and don't do anything else.
- -dumpmachine
- Print the compiler's target machine (for example,
i686-pc-linux-gnu)---and don't do anything else.
- -dumpversion
- Print the compiler version (for example, 3.0)---and don't do
anything else.
- -dumpspecs
- Print the compiler's built-in specs---and don't do anything else. (This is
used when GCC itself is being built.)
- -fno-eliminate-unused-debug-types
- Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging information for all
types declared in a compilation unit, regardless of whether or not they
are actually used in that compilation unit, for example if, in the
debugger, you want to cast a value to a type that is not actually used in
your program (but is declared). More often, however, this results in a
significant amount of wasted space.
These options control various sorts of optimizations.
Without any optimization option, the compiler's goal is to reduce
the cost of compilation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a breakpoint
between statements, you can then assign a new value to any variable or
change the program counter to any other statement in the function and get
exactly the results you expect from the source code.
Turning on optimization flags makes the compiler attempt to
improve the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.
The compiler performs optimization based on the knowledge it has
of the program. Compiling multiple files at once to a single output file
mode allows the compiler to use information gained from all of the files
when compiling each of them.
Not all optimizations are controlled directly by a flag. Only
optimizations that have a flag are listed in this section.
Most optimizations are only enabled if an -O level is set
on the command line. Otherwise they are disabled, even if individual
optimization flags are specified.
Depending on the target and how GCC was configured, a slightly
different set of optimizations may be enabled at each -O level than
those listed here. You can invoke GCC with -Q --help=optimizers to
find out the exact set of optimizations that are enabled at each level.
- -O
- -O1
- Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.
With -O, the compiler tries to reduce code size and
execution time, without performing any optimizations that take a great
deal of compilation time.
-O turns on the following optimization flags:
-fauto-inc-dec -fcompare-elim
-fcprop-registers -fdce -fdefer-pop
-fdelayed-branch -fdse -fguess-branch-probability
-fif-conversion2 -fif-conversion -fipa-pure-const
-fipa-profile -fipa-reference -fmerge-constants
-fsplit-wide-types -ftree-bit-ccp
-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-copyrename -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre
-ftree-phiprop -ftree-slsr -ftree-sra
-ftree-pta -ftree-ter -funit-at-a-time
-O also turns on -fomit-frame-pointer on
machines where doing so does not interfere with debugging.
- -O2
- Optimize even more. GCC performs nearly all supported optimizations that
do not involve a space-speed tradeoff. As compared to -O, this
option increases both compilation time and the performance of the
generated code.
-O2 turns on all optimization flags specified by
-O. It also turns on the following optimization flags:
-fthread-jumps -falign-functions -falign-jumps
-falign-loops -falign-labels -fcaller-saves
-fcrossjumping -fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks -fdevirtualize
-fexpensive-optimizations -fgcse -fgcse-lm
-fhoist-adjacent-loads -finline-small-functions
-findirect-inlining -fipa-sra
-foptimize-sibling-calls -fpartial-inlining
-fpeephole2 -fregmove -freorder-blocks
-freorder-functions -frerun-cse-after-loop
-fsched-interblock -fsched-spec -fschedule-insns
-fschedule-insns2 -fstrict-aliasing -fstrict-overflow
-ftree-switch-conversion -ftree-tail-merge -ftree-pre
-ftree-vrp
Please note the warning under -fgcse about invoking
-O2 on programs that use computed gotos.
- -O3
- Optimize yet more. -O3 turns on all optimizations specified by
-O2 and also turns on the -finline-functions,
-funswitch-loops, -fpredictive-commoning,
-fgcse-after-reload, -ftree-vectorize,
-fvect-cost-model, -ftree-partial-pre and
-fipa-cp-clone options.
- -O0
- Reduce compilation time and make debugging produce the expected results.
This is the default.
- -Os
- Optimize for size. -Os enables all -O2 optimizations that do
not typically increase code size. It also performs further optimizations
designed to reduce code size.
-Os disables the following optimization flags:
-falign-functions -falign-jumps -falign-loops -falign-labels
-freorder-blocks -freorder-blocks-and-partition
-fprefetch-loop-arrays -ftree-vect-loop-version
- -Ofast
- Disregard strict standards compliance. -Ofast enables all
-O3 optimizations. It also enables optimizations that are not valid
for all standard-compliant programs. It turns on -ffast-math and
the Fortran-specific -fno-protect-parens and
-fstack-arrays.
- -Og
- Optimize debugging experience. -Og enables optimizations that do
not interfere with debugging. It should be the optimization level of
choice for the standard edit-compile-debug cycle, offering a reasonable
level of optimization while maintaining fast compilation and a good
debugging experience.
If you use multiple -O options, with or without level
numbers, the last such option is the one that is effective.
Options of the form -fflag specify
machine-independent flags. Most flags have both positive and negative forms;
the negative form of -ffoo is -fno-foo. In the table below,
only one of the forms is listed---the one you typically use. You can figure
out the other form by either removing no- or adding it.
The following options control specific optimizations. They are
either activated by -O options or are related to ones that are. You
can use the following flags in the rare cases when "fine-tuning"
of optimizations to be performed is desired.
- -fno-default-inline
- Do not make member functions inline by default merely because they are
defined inside the class scope (C++ only). Otherwise, when you specify
-O, member functions defined inside class scope are compiled inline
by default; i.e., you don't need to add inline in front of the
member function name.
- -fno-defer-pop
- Always pop the arguments to each function call as soon as that function
returns. For machines that must pop arguments after a function call, the
compiler normally lets arguments accumulate on the stack for several
function calls and pops them all at once.
Disabled at levels -O, -O2, -O3,
-Os.
- -fforward-propagate
- Perform a forward propagation pass on RTL. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling
is active, two passes are performed and the second is scheduled after loop
unrolling.
This option is enabled by default at optimization levels
-O, -O2, -O3, -Os.
- -ffp-contract=style
- -ffp-contract=off disables floating-point expression contraction.
-ffp-contract=fast enables floating-point expression contraction
such as forming of fused multiply-add operations if the target has native
support for them. -ffp-contract=on enables floating-point
expression contraction if allowed by the language standard. This is
currently not implemented and treated equal to -ffp-contract=off.
The default is -ffp-contract=fast.
- -fomit-frame-pointer
- Don't keep the frame pointer in a register for functions that don't need
one. This avoids the instructions to save, set up and restore frame
pointers; it also makes an extra register available in many functions.
It also makes debugging impossible on some machines.
On some machines, such as the VAX, this flag has no effect,
because the standard calling sequence automatically handles the frame
pointer and nothing is saved by pretending it doesn't exist. The
machine-description macro
"FRAME_POINTER_REQUIRED" controls
whether a target machine supports this flag.
Starting with GCC version 4.6, the default setting (when not
optimizing for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86
targets has been changed to -fomit-frame-pointer. The default can
be reverted to -fno-omit-frame-pointer by configuring GCC with
the --enable-frame-pointer configure option.
Enabled at levels -O, -O2, -O3,
-Os.
- -foptimize-sibling-calls
- Optimize sibling and tail recursive calls.
Enabled at levels -O2, -O3, -Os.
- -fno-inline
- Do not expand any functions inline apart from those marked with the
"always_inline" attribute. This is the
default when not optimizing.
Single functions can be exempted from inlining by marking them
with the "noinline" attribute.
- -finline-small-functions
- Integrate functions into their callers when their body is smaller than
expected function call code (so overall size of program gets smaller). The
compiler heuristically decides which functions are simple enough to be
worth integrating in this way. This inlining applies to all functions,
even those not declared inline.
Enabled at level -O2.
- -findirect-inlining
- Inline also indirect calls that are discovered to be known at compile time
thanks to previous inlining. This option has any effect only when inlining
itself is turned on by the -finline-functions or
-finline-small-functions options.
Enabled at level -O2.
- -finline-functions
- Consider all functions for inlining, even if they are not declared inline.
The compiler heuristically decides which functions are worth integrating
in this way.
If all calls to a given function are integrated, and the
function is declared "static", then
the function is normally not output as assembler code in its own
right.
Enabled at level -O3.
- -finline-functions-called-once
- Consider all "static" functions called
once for inlining into their caller even if they are not marked
"inline". If a call to a given function
is integrated, then the function is not output as assembler code in its
own right.
Enabled at levels -O1, -O2, -O3 and
-Os.
- -fearly-inlining
- Inline functions marked by
"always_inline" and functions whose body
seems smaller than the function call overhead early before doing
-fprofile-generate instrumentation and real inlining pass. Doing so
makes profiling significantly cheaper and usually inlining faster on
programs having large chains of nested wrapper functions.
Enabled by default.
- -fipa-sra
- Perform interprocedural scalar replacement of aggregates, removal of
unused parameters and replacement of parameters passed by reference by
parameters passed by value.
Enabled at levels -O2, -O3 and -Os.
- -finline-limit=n
- By default, GCC limits the size of functions that can be inlined. This
flag allows coarse control of this limit. n is the size of
functions that can be inlined in number of pseudo instructions.
Inlining is actually controlled by a number of parameters,
which may be specified individually by using --param
name=value. The -finline-limit=n
option sets some of these parameters as follows:
- max-inline-insns-single
- is set to n/2.
- max-inline-insns-auto
- is set to n/2.
See below for a documentation of the individual parameters
controlling inlining and for the defaults of these parameters.
Note: there may be no value to -finline-limit that
results in default behavior.
Note: pseudo instruction represents, in this particular
context, an abstract measurement of function's size. In no way does it
represent a count of assembly instructions and as such its exact meaning
might change from one release to an another.
- -fno-keep-inline-dllexport
- This is a more fine-grained version of -fkeep-inline-functions,
which applies only to functions that are declared using the
"dllexport" attribute or declspec
- -fkeep-inline-functions
- In C, emit "static" functions that are
declared "inline" into the object file,
even if the function has been inlined into all of its callers. This switch
does not affect functions using the "extern
inline" extension in GNU C90. In C++, emit any and all inline
functions into the object file.
- -fkeep-static-consts
- Emit variables declared "static const"
when optimization isn't turned on, even if the variables aren't
referenced.
GCC enables this option by default. If you want to force the
compiler to check if a variable is referenced, regardless of whether or
not optimization is turned on, use the -fno-keep-static-consts
option.
- -fmerge-constants
- Attempt to merge identical constants (string constants and floating-point
constants) across compilation units.
This option is the default for optimized compilation if the
assembler and linker support it. Use -fno-merge-constants to
inhibit this behavior.
Enabled at levels -O, -O2, -O3,
-Os.
- -fmerge-all-constants
- Attempt to merge identical constants and identical variables.
This option implies -fmerge-constants. In addition to
-fmerge-constants this considers e.g. even constant initialized
arrays or initialized constant variables with integral or floating-point
types. Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct
locations, so using this option results in non-conforming behavior.
- -fmodulo-sched
- Perform swing modulo scheduling immediately before the first scheduling
pass. This pass looks at innermost loops and reorders their instructions
by overlapping different iterations.
- -fmodulo-sched-allow-regmoves
- Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are deleted,
which triggers the generation of reg-moves based on the life-range
analysis. This option is effective only with -fmodulo-sched
enabled.
- -fno-branch-count-reg
- Do not use "decrement and branch" instructions on a count
register, but instead generate a sequence of instructions that decrement a
register, compare it against zero, then branch based upon the result. This
option is only meaningful on architectures that support such instructions,
which include x86, PowerPC, IA-64 and S/390.
The default is -fbranch-count-reg.
- -fno-function-cse
- Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.
This option results in less efficient code, but some strange
hacks that alter the assembler output may be confused by the
optimizations performed when this option is not used.
The default is -ffunction-cse
- -fno-zero-initialized-in-bss
- If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS. This can save space in the resulting
code.
This option turns off this behavior because some programs
explicitly rely on variables going to the data section---e.g., so that
the resulting executable can find the beginning of that section and/or
make assumptions based on that.
The default is -fzero-initialized-in-bss.
- -fmudflap -fmudflapth -fmudflapir
- For front-ends that support it (C and C++), instrument all risky
pointer/array dereferencing operations, some standard library string/heap
functions, and some other associated constructs with range/validity tests.
Modules so instrumented should be immune to buffer overflows, invalid heap
use, and some other classes of C/C++ programming errors. The
instrumentation relies on a separate runtime library (libmudflap),
which is linked into a program if -fmudflap is given at link time.
Run-time behavior of the instrumented program is controlled by the
MUDFLAP_OPTIONS environment variable. See
"env MUDFLAP_OPTIONS=-help a.out" for
its options.
Use -fmudflapth instead of -fmudflap to compile
and to link if your program is multi-threaded. Use -fmudflapir,
in addition to -fmudflap or -fmudflapth, if
instrumentation should ignore pointer reads. This produces less
instrumentation (and therefore faster execution) and still provides some
protection against outright memory corrupting writes, but allows
erroneously read data to propagate within a program.
- -fthread-jumps
- Perform optimizations that check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first
branch is redirected to either the destination of the second branch or a
point immediately following it, depending on whether the condition is
known to be true or false.
Enabled at levels -O2, -O3, -Os.
- -fsplit-wide-types
- When using a type that occupies multiple registers, such as
"long long" on a
32-bit system, split the registers apart and allocate them independently.
This normally generates better code for those types, but may make
debugging more difficult.
Enabled at levels -O, -O2, -O3,
-Os.
- -fcse-follow-jumps
- In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For example,
when CSE encounters an "if" statement
with an "else" clause, CSE follows the
jump when the condition tested is false.
Enabled at levels -O2, -O3, -Os.
- -fcse-skip-blocks
- This is similar to -fcse-follow-jumps, but causes CSE to follow
jumps that conditionally skip over blocks. When CSE encounters a simple
"if" statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around the body of
the "if".
Enabled at levels -O2, -O3, -Os.
- -frerun-cse-after-loop
- Re-run common subexpression elimination after loop optimizations are
performed.
Enabled at levels -O2, -O3, -Os.
- -fgcse
- Perform a global common subexpression elimination pass. This pass also
performs global constant and copy propagation.
Note: When compiling a program using computed gotos, a
GCC extension, you may get better run-time performance if you disable
the global common subexpression elimination pass by adding
-fno-gcse to the command line.
Enabled at levels -O2, -O3, -Os.
- -fgcse-lm
- When -fgcse-lm is enabled, global common subexpression elimination
attempts to move loads that are only killed by stores into themselves.
This allows a loop containing a load/store sequence to be changed to a
load outside the loop, and a copy/store within the loop.
Enabled by default when -fgcse is enabled.
- -fgcse-sm
- When -fgcse-sm is enabled, a store motion pass is run after global
common subexpression elimination. This pass attempts to move stores out of
loops. When used in conjunction with -fgcse-lm, loops containing a
load/store sequence can be changed to a load before the loop and a store
after the loop.
Not enabled at any optimization level.
- -fgcse-las
- When -fgcse-las is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).
Not enabled at any optimization level.
- -fgcse-after-reload
- When -fgcse-after-reload is enabled, a redundant load elimination
pass is performed after reload. The purpose of this pass is to clean up
redundant spilling.
- -faggressive-loop-optimizations
- This option tells the loop optimizer to use language constraints to derive
bounds for the number of iterations of a loop. This assumes that loop code
does not invoke undefined behavior by for example causing signed integer
overflows or out-of-bound array accesses. The bounds for the number of
iterations of a loop are used to guide loop unrolling and peeling and loop
exit test optimizations. This option is enabled by default.
- -funsafe-loop-optimizations
- This option tells the loop optimizer to assume that loop indices do not
overflow, and that loops with nontrivial exit condition are not infinite.
This enables a wider range of loop optimizations even if the loop
optimizer itself cannot prove that these assumptions are valid. If you use
-Wunsafe-loop-optimizations, the compiler warns you if it finds
this kind of loop.
- -fcrossjumping
- Perform cross-jumping transformation. This transformation unifies
equivalent code and saves code size. The resulting code may or may not
perform better than without cross-jumping.
Enabled at levels -O2, -O3, -Os.
- -fauto-inc-dec
- Combine increments or decrements of addresses with memory accesses. This
pass is always skipped on architectures that do not have instructions to
support this. Enabled by default at -O and higher on architectures
that support this.
- -fdce
- Perform dead code elimination (DCE) on RTL. Enabled by default at
-O and higher.
- -fdse
- Perform dead store elimination (DSE) on RTL. Enabled by default at
-O and higher.
- -fif-conversion
- Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs
instructions, and some tricks doable by standard arithmetics. The use of
conditional execution on chips where it is available is controlled by
"if-conversion2".
Enabled at levels -O, -O2, -O3,
-Os.
- -fif-conversion2
- Use conditional execution (where available) to transform conditional jumps
into branch-less equivalents.
Enabled at levels -O, -O2, -O3,
-Os.
- -fdelete-null-pointer-checks
- Assume that programs cannot safely dereference null pointers, and that no
code or data element resides there. This enables simple constant folding
optimizations at all optimization levels. In addition, other optimization
passes in GCC use this flag to control global dataflow analyses that
eliminate useless checks for null pointers; these assume that if a pointer
is checked after it has already been dereferenced, it cannot be null.
Note however that in some environments this assumption is not
true. Use -fno-delete-null-pointer-checks to disable this
optimization for programs that depend on that behavior.
Some targets, especially embedded ones, disable this option at
all levels. Otherwise it is enabled at all levels: -O0,
-O1, -O2, -O3, -Os. Passes that use the
information are enabled independently at different optimization
levels.
- -fdevirtualize
- Attempt to convert calls to virtual functions to direct calls. This is
done both within a procedure and interprocedurally as part of indirect
inlining ("-findirect-inlining") and
interprocedural constant propagation (-fipa-cp). Enabled at levels
-O2, -O3, -Os.
- -fexpensive-optimizations
- Perform a number of minor optimizations that are relatively expensive.
Enabled at levels -O2, -O3, -Os.
- -free
- Attempt to remove redundant extension instructions. This is especially
helpful for the x86-64 architecture, which implicitly zero-extends in
64-bit registers after writing to their lower 32-bit half.
Enabled for x86 at levels -O2, -O3.
- -foptimize-register-move
- -fregmove
- Attempt to reassign register numbers in move instructions and as operands
of other simple instructions in order to maximize the amount of register
tying. This is especially helpful on machines with two-operand
instructions.
Note -fregmove and -foptimize-register-move are
the same optimization.
Enabled at levels -O2, -O3, -Os.
- -fira-algorithm=algorithm
- Use the specified coloring algorithm for the integrated register
allocator. The algorithm argument can be priority, which
specifies Chow's priority coloring, or CB, which specifies
Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented for
all architectures, but for those targets that do support it, it is the
default because it generates better code.
- -fira-region=region
- Use specified regions for the integrated register allocator. The
region argument should be one of the following:
- all
- Use all loops as register allocation regions. This can give the best
results for machines with a small and/or irregular register set.
- mixed
- Use all loops except for loops with small register pressure as the
regions. This value usually gives the best results in most cases and for
most architectures, and is enabled by default when compiling with
optimization for speed (-O, -O2, ...).
- one
- Use all functions as a single region. This typically results in the
smallest code size, and is enabled by default for -Os or
-O0.
- -fira-hoist-pressure
- Use IRA to evaluate register pressure in the code hoisting pass for
decisions to hoist expressions. This option usually results in smaller
code, but it can slow the compiler down.
This option is enabled at level -Os for all
targets.
- -fira-loop-pressure
- Use IRA to evaluate register pressure in loops for decisions to move loop
invariants. This option usually results in generation of faster and
smaller code on machines with large register files (>= 32 registers),
but it can slow the compiler down.
This option is enabled at level -O3 for some
targets.
- -fno-ira-share-save-slots
- Disable sharing of stack slots used for saving call-used hard registers
living through a call. Each hard register gets a separate stack slot, and
as a result function stack frames are larger.
- -fno-ira-share-spill-slots
- Disable sharing of stack slots allocated for pseudo-registers. Each
pseudo-register that does not get a hard register gets a separate stack
slot, and as a result function stack frames are larger.
- -fira-verbose=n
- Control the verbosity of the dump file for the integrated register
allocator. The default value is 5. If the value n is greater or
equal to 10, the dump output is sent to stderr using the same format as
n minus 10.
- -fdelayed-branch
- If supported for the target machine, attempt to reorder instructions to
exploit instruction slots available after delayed branch instructions.
Enabled at levels -O, -O2, -O3,
-Os.
- -fschedule-insns
- If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable. This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating-point instruction is required.
Enabled at levels -O2, -O3.
- -fschedule-insns2
- Similar to -fschedule-insns, but requests an additional pass of
instruction scheduling after register allocation has been done. This is
especially useful on machines with a relatively small number of registers
and where memory load instructions take more than one cycle.
Enabled at levels -O2, -O3, -Os.
- -fno-sched-interblock
- Don't schedule instructions across basic blocks. This is normally enabled
by default when scheduling before register allocation, i.e. with
-fschedule-insns or at -O2 or higher.
- -fno-sched-spec
- Don't allow speculative motion of non-load instructions. This is normally
enabled by default when scheduling before register allocation, i.e. with
-fschedule-insns or at -O2 or higher.
- -fsched-pressure
- Enable register pressure sensitive insn scheduling before register
allocation. This only makes sense when scheduling before register
allocation is enabled, i.e. with -fschedule-insns or at -O2
or higher. Usage of this option can improve the generated code and
decrease its size by preventing register pressure increase above the
number of available hard registers and subsequent spills in register
allocation.
- -fsched-spec-load
- Allow speculative motion of some load instructions. This only makes sense
when scheduling before register allocation, i.e. with
-fschedule-insns or at -O2 or higher.
- -fsched-spec-load-dangerous
- Allow speculative motion of more load instructions. This only makes sense
when scheduling before register allocation, i.e. with
-fschedule-insns or at -O2 or higher.
- -fsched-stalled-insns
- -fsched-stalled-insns=n
- Define how many insns (if any) can be moved prematurely from the queue of
stalled insns into the ready list during the second scheduling pass.
-fno-sched-stalled-insns means that no insns are moved prematurely,
-fsched-stalled-insns=0 means there is no limit on how many queued
insns can be moved prematurely. -fsched-stalled-insns without a
value is equivalent to -fsched-stalled-insns=1.
- -fsched-stalled-insns-dep
- -fsched-stalled-insns-dep=n
- Define how many insn groups (cycles) are examined for a dependency on a
stalled insn that is a candidate for premature removal from the queue of
stalled insns. This has an effect only during the second scheduling pass,
and only if -fsched-stalled-insns is used.
-fno-sched-stalled-insns-dep is equivalent to
-fsched-stalled-insns-dep=0. -fsched-stalled-insns-dep
without a value is equivalent to -fsched-stalled-insns-dep=1.
- -fsched2-use-superblocks
- When scheduling after register allocation, use superblock scheduling. This
allows motion across basic block boundaries, resulting in faster
schedules. This option is experimental, as not all machine descriptions
used by GCC model the CPU closely enough to avoid unreliable results from
the algorithm.
This only makes sense when scheduling after register
allocation, i.e. with -fschedule-insns2 or at -O2 or
higher.
- -fsched-group-heuristic
- Enable the group heuristic in the scheduler. This heuristic favors the
instruction that belongs to a schedule group. This is enabled by default
when scheduling is enabled, i.e. with -fschedule-insns or
-fschedule-insns2 or at -O2 or higher.
- -fsched-critical-path-heuristic
- Enable the critical-path heuristic in the scheduler. This heuristic favors
instructions on the critical path. This is enabled by default when
scheduling is enabled, i.e. with -fschedule-insns or
-fschedule-insns2 or at -O2 or higher.
- -fsched-spec-insn-heuristic
- Enable the speculative instruction heuristic in the scheduler. This
heuristic favors speculative instructions with greater dependency
weakness. This is enabled by default when scheduling is enabled, i.e. with
-fschedule-insns or -fschedule-insns2 or at -O2 or
higher.
- -fsched-rank-heuristic
- Enable the rank heuristic in the scheduler. This heuristic favors the
instruction belonging to a basic block with greater size or frequency.
This is enabled by default when scheduling is enabled, i.e. with
-fschedule-insns or -fschedule-insns2 or at -O2 or
higher.
- -fsched-last-insn-heuristic
- Enable the last-instruction heuristic in the scheduler. This heuristic
favors the instruction that is less dependent on the last instruction
scheduled. This is enabled by default when scheduling is enabled, i.e.
with -fschedule-insns or -fschedule-insns2 or at -O2
or higher.
- -fsched-dep-count-heuristic
- Enable the dependent-count heuristic in the scheduler. This heuristic
favors the instruction that has more instructions depending on it. This is
enabled by default when scheduling is enabled, i.e. with
-fschedule-insns or -fschedule-insns2 or at -O2 or
higher.
- -freschedule-modulo-scheduled-loops
- Modulo scheduling is performed before traditional scheduling. If a loop is
modulo scheduled, later scheduling passes may change its schedule. Use
this option to control that behavior.
- -fselective-scheduling
- Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the first scheduler pass.
- -fselective-scheduling2
- Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the second scheduler pass.
- -fsel-sched-pipelining
- Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of -fselective-scheduling or
-fselective-scheduling2 is turned on.
- -fsel-sched-pipelining-outer-loops
- When pipelining loops during selective scheduling, also pipeline outer
loops. This option has no effect unless -fsel-sched-pipelining is
turned on.
- -fshrink-wrap
- Emit function prologues only before parts of the function that need it,
rather than at the top of the function. This flag is enabled by default at
-O and higher.
- -fcaller-saves
- Enable allocation of values to registers that are clobbered by function
calls, by emitting extra instructions to save and restore the registers
around such calls. Such allocation is done only when it seems to result in
better code.
This option is always enabled by default on certain machines,
usually those which have no call-preserved registers to use instead.
Enabled at levels -O2, -O3, -Os.
- -fcombine-stack-adjustments
- Tracks stack adjustments (pushes and pops) and stack memory references and
then tries to find ways to combine them.
Enabled by default at -O1 and higher.
- -fconserve-stack
- Attempt to minimize stack usage. The compiler attempts to use less stack
space, even if that makes the program slower. This option implies setting
the large-stack-frame parameter to 100 and the
large-stack-frame-growth parameter to 400.
- -ftree-reassoc
- Perform reassociation on trees. This flag is enabled by default at
-O and higher.
- -ftree-pre
- Perform partial redundancy elimination (PRE) on trees. This flag is
enabled by default at -O2 and -O3.
- -ftree-partial-pre
- Make partial redundancy elimination (PRE) more aggressive. This flag is
enabled by default at -O3.
- -ftree-forwprop
- Perform forward propagation on trees. This flag is enabled by default at
-O and higher.
- -ftree-fre
- Perform full redundancy elimination (FRE) on trees. The difference between
FRE and PRE is that FRE only considers expressions that are computed on
all paths leading to the redundant computation. This analysis is faster
than PRE, though it exposes fewer redundancies. This flag is enabled by
default at -O and higher.
- -ftree-phiprop
- Perform hoisting of loads from conditional pointers on trees. This pass is
enabled by default at -O and higher.
- -fhoist-adjacent-loads
- Speculatively hoist loads from both branches of an if-then-else if the
loads are from adjacent locations in the same structure and the target
architecture has a conditional move instruction. This flag is enabled by
default at -O2 and higher.
- -ftree-copy-prop
- Perform copy propagation on trees. This pass eliminates unnecessary copy
operations. This flag is enabled by default at -O and higher.
- -fipa-pure-const
- Discover which functions are pure or constant. Enabled by default at
-O and higher.
- -fipa-reference
- Discover which static variables do not escape the compilation unit.
Enabled by default at -O and higher.
- -fipa-pta
- Perform interprocedural pointer analysis and interprocedural modification
and reference analysis. This option can cause excessive memory and
compile-time usage on large compilation units. It is not enabled by
default at any optimization level.
- -fipa-profile
- Perform interprocedural profile propagation. The functions called only
from cold functions are marked as cold. Also functions executed once (such
as "cold",
"noreturn", static constructors or
destructors) are identified. Cold functions and loop less parts of
functions executed once are then optimized for size. Enabled by default at
-O and higher.
- -fipa-cp
- Perform interprocedural constant propagation. This optimization analyzes
the program to determine when values passed to functions are constants and
then optimizes accordingly. This optimization can substantially increase
performance if the application has constants passed to functions. This
flag is enabled by default at -O2, -Os and -O3.
- -fipa-cp-clone
- Perform function cloning to make interprocedural constant propagation
stronger. When enabled, interprocedural constant propagation performs
function cloning when externally visible function can be called with
constant arguments. Because this optimization can create multiple copies
of functions, it may significantly increase code size (see --param
ipcp-unit-growth=value). This flag is enabled by default at
-O3.
- -ftree-sink
- Perform forward store motion on trees. This flag is enabled by default at
-O and higher.
- -ftree-bit-ccp
- Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information. This pass only operates on local scalar
variables and is enabled by default at -O and higher. It requires
that -ftree-ccp is enabled.
- -ftree-ccp
- Perform sparse conditional constant propagation (CCP) on trees. This pass
only operates on local scalar variables and is enabled by default at
-O and higher.
- -ftree-switch-conversion
- Perform conversion of simple initializations in a switch to
initializations from a scalar array. This flag is enabled by default at
-O2 and higher.
- -ftree-tail-merge
- Look for identical code sequences. When found, replace one with a jump to
the other. This optimization is known as tail merging or cross jumping.
This flag is enabled by default at -O2 and higher. The compilation
time in this pass can be limited using max-tail-merge-comparisons
parameter and max-tail-merge-iterations parameter.
- -ftree-dce
- Perform dead code elimination (DCE) on trees. This flag is enabled by
default at -O and higher.
- -ftree-builtin-call-dce
- Perform conditional dead code elimination (DCE) for calls to built-in
functions that may set "errno" but are
otherwise side-effect free. This flag is enabled by default at -O2
and higher if -Os is not also specified.
- -ftree-dominator-opts
- Perform a variety of simple scalar cleanups (constant/copy propagation,
redundancy elimination, range propagation and expression simplification)
based on a dominator tree traversal. This also performs jump threading (to
reduce jumps to jumps). This flag is enabled by default at -O and
higher.
- -ftree-dse
- Perform dead store elimination (DSE) on trees. A dead store is a store
into a memory location that is later overwritten by another store without
any intervening loads. In this case the earlier store can be deleted. This
flag is enabled by default at -O and higher.
- -ftree-ch
- Perform loop header copying on trees. This is beneficial since it
increases effectiveness of code motion optimizations. It also saves one
jump. This flag is enabled by default at -O and higher. It is not
enabled for -Os, since it usually increases code size.
- -ftree-loop-optimize
- Perform loop optimizations on trees. This flag is enabled by default at
-O and higher.
- -ftree-loop-linear
- Perform loop interchange transformations on tree. Same as
-floop-interchange. To use this code transformation, GCC has to be
configured with --with-ppl and --with-cloog to enable the
Graphite loop transformation infrastructure.
- -floop-interchange
- Perform loop interchange transformations on loops. Interchanging two
nested loops switches the inner and outer loops. For example, given a loop
like:
DO J = 1, M
DO I = 1, N
A(J, I) = A(J, I) * C
ENDDO
ENDDO
loop interchange transforms the loop as if it were
written:
DO I = 1, N
DO J = 1, M
A(J, I) = A(J, I) * C
ENDDO
ENDDO
which can be beneficial when
"N" is larger than the caches, because
in Fortran, the elements of an array are stored in memory contiguously
by column, and the original loop iterates over rows, potentially
creating at each access a cache miss. This optimization applies to all
the languages supported by GCC and is not limited to Fortran. To use
this code transformation, GCC has to be configured with
--with-ppl and --with-cloog to enable the Graphite loop
transformation infrastructure.
- -floop-strip-mine
- Perform loop strip mining transformations on loops. Strip mining splits a
loop into two nested loops. The outer loop has strides equal to the strip
size and the inner loop has strides of the original loop within a strip.
The strip length can be changed using the loop-block-tile-size
parameter. For example, given a loop like:
DO I = 1, N
A(I) = A(I) + C
ENDDO
loop strip mining transforms the loop as if it were
written:
DO II = 1, N, 51
DO I = II, min (II + 50, N)
A(I) = A(I) + C
ENDDO
ENDDO
This optimization applies to all the languages supported by
GCC and is not limited to Fortran. To use this code transformation, GCC
has to be configured with --with-ppl and --with-cloog to
enable the Graphite loop transformation infrastructure.
- -floop-block
- Perform loop blocking transformations on loops. Blocking strip mines each
loop in the loop nest such that the memory accesses of the element loops
fit inside caches. The strip length can be changed using the
loop-block-tile-size parameter. For example, given a loop like:
DO I = 1, N
DO J = 1, M
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
loop blocking transforms the loop as if it were written:
DO II = 1, N, 51
DO JJ = 1, M, 51
DO I = II, min (II + 50, N)
DO J = JJ, min (JJ + 50, M)
A(J, I) = B(I) + C(J)
ENDDO
ENDDO
ENDDO
ENDDO
which can be beneficial when
"M" is larger than the caches, because
the innermost loop iterates over a smaller amount of data which can be
kept in the caches. This optimization applies to all the languages
supported by GCC and is not limited to Fortran. To use this code
transformation, GCC has to be configured with --with-ppl and
--with-cloog to enable the Graphite loop transformation
infrastructure.
- -fgraphite-identity
- Enable the identity transformation for graphite. For every SCoP we
generate the polyhedral representation and transform it back to gimple.
Using -fgraphite-identity we can check the costs or benefits of the
GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal
optimizations are also performed by the code generator CLooG, like index
splitting and dead code elimination in loops.
- -floop-nest-optimize
- Enable the ISL based loop nest optimizer. This is a generic loop nest
optimizer based on the Pluto optimization algorithms. It calculates a loop
structure optimized for data-locality and parallelism. This option is
experimental.
- -floop-parallelize-all
- Use the Graphite data dependence analysis to identify loops that can be
parallelized. Parallelize all the loops that can be analyzed to not
contain loop carried dependences without checking that it is profitable to
parallelize the loops.
- -fcheck-data-deps
- Compare the results of several data dependence analyzers. This option is
used for debugging the data dependence analyzers.
- -ftree-loop-if-convert
- Attempt to transform conditional jumps in the innermost loops to
branch-less equivalents. The intent is to remove control-flow from the
innermost loops in order to improve the ability of the vectorization pass
to handle these loops. This is enabled by default if vectorization is
enabled.
- -ftree-loop-if-convert-stores
- Attempt to also if-convert conditional jumps containing memory writes.
This transformation can be unsafe for multi-threaded programs as it
transforms conditional memory writes into unconditional memory writes. For
example,
for (i = 0; i < N; i++)
if (cond)
A[i] = expr;
is transformed to
for (i = 0; i < N; i++)
A[i] = cond ? expr : A[i];
potentially producing data races.
- -ftree-loop-distribution
- Perform loop distribution. This flag can improve cache performance on big
loop bodies and allow further loop optimizations, like parallelization or
vectorization, to take place. For example, the loop
DO I = 1, N
A(I) = B(I) + C
D(I) = E(I) * F
ENDDO
is transformed to
DO I = 1, N
A(I) = B(I) + C
ENDDO
DO I = 1, N
D(I) = E(I) * F
ENDDO
- -ftree-loop-distribute-patterns
- Perform loop distribution of patterns that can be code generated with
calls to a library. This flag is enabled by default at -O3.
This pass distributes the initialization loops and generates a
call to memset zero. For example, the loop
DO I = 1, N
A(I) = 0
B(I) = A(I) + I
ENDDO
is transformed to
DO I = 1, N
A(I) = 0
ENDDO
DO I = 1, N
B(I) = A(I) + I
ENDDO
and the initialization loop is transformed into a call to
memset zero.
- -ftree-loop-im
- Perform loop invariant motion on trees. This pass moves only invariants
that are hard to handle at RTL level (function calls, operations that
expand to nontrivial sequences of insns). With -funswitch-loops it
also moves operands of conditions that are invariant out of the loop, so
that we can use just trivial invariantness analysis in loop unswitching.
The pass also includes store motion.
- -ftree-loop-ivcanon
- Create a canonical counter for number of iterations in loops for which
determining number of iterations requires complicated analysis. Later
optimizations then may determine the number easily. Useful especially in
connection with unrolling.
- -fivopts
- Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.
- -ftree-parallelize-loops=n
- Parallelize loops, i.e., split their iteration space to run in n threads.
This is only possible for loops whose iterations are independent and can
be arbitrarily reordered. The optimization is only profitable on
multiprocessor machines, for loops that are CPU-intensive, rather than
constrained e.g. by memory bandwidth. This option implies -pthread,
and thus is only supported on targets that have support for
-pthread.
- -ftree-pta
- Perform function-local points-to analysis on trees. This flag is enabled
by default at -O and higher.
- -ftree-sra
- Perform scalar replacement of aggregates. This pass replaces structure
references with scalars to prevent committing structures to memory too
early. This flag is enabled by default at -O and higher.
- -ftree-copyrename
- Perform copy renaming on trees. This pass attempts to rename compiler
temporaries to other variables at copy locations, usually resulting in
variable names which more closely resemble the original variables. This
flag is enabled by default at -O and higher.
- -ftree-coalesce-inlined-vars
- Tell the copyrename pass (see -ftree-copyrename) to attempt to
combine small user-defined variables too, but only if they were inlined
from other functions. It is a more limited form of
-ftree-coalesce-vars. This may harm debug information of such
inlined variables, but it will keep variables of the inlined-into function
apart from each other, such that they are more likely to contain the
expected values in a debugging session. This was the default in GCC
versions older than 4.7.
- -ftree-coalesce-vars
- Tell the copyrename pass (see -ftree-copyrename) to attempt to
combine small user-defined variables too, instead of just compiler
temporaries. This may severely limit the ability to debug an optimized
program compiled with -fno-var-tracking-assignments. In the negated
form, this flag prevents SSA coalescing of user variables, including
inlined ones. This option is enabled by default.
- -ftree-ter
- Perform temporary expression replacement during the SSA->normal phase.
Single use/single def temporaries are replaced at their use location with
their defining expression. This results in non-GIMPLE code, but gives the
expanders much more complex trees to work on resulting in better RTL
generation. This is enabled by default at -O and higher.
- -ftree-slsr
- Perform straight-line strength reduction on trees. This recognizes related
expressions involving multiplications and replaces them by less expensive
calculations when possible. This is enabled by default at -O and
higher.
- -ftree-vectorize
- Perform loop vectorization on trees. This flag is enabled by default at
-O3.
- -ftree-slp-vectorize
- Perform basic block vectorization on trees. This flag is enabled by
default at -O3 and when -ftree-vectorize is enabled.
- -ftree-vect-loop-version
- Perform loop versioning when doing loop vectorization on trees. When a
loop appears to be vectorizable except that data alignment or data
dependence cannot be determined at compile time, then vectorized and
non-vectorized versions of the loop are generated along with run-time
checks for alignment or dependence to control which version is executed.
This option is enabled by default except at level -Os where it is
disabled.
- -fvect-cost-model
- Enable cost model for vectorization. This option is enabled by default at
-O3.
- -ftree-vrp
- Perform Value Range Propagation on trees. This is similar to the constant
propagation pass, but instead of values, ranges of values are propagated.
This allows the optimizers to remove unnecessary range checks like array
bound checks and null pointer checks. This is enabled by default at
-O2 and higher. Null pointer check elimination is only done if
-fdelete-null-pointer-checks is enabled.
- -ftracer
- Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations
to do a better job.
- -funroll-loops
- Unroll loops whose number of iterations can be determined at compile time
or upon entry to the loop. -funroll-loops implies
-frerun-cse-after-loop. This option makes code larger, and may or
may not make it run faster.
- -funroll-all-loops
- Unroll all loops, even if their number of iterations is uncertain when the
loop is entered. This usually makes programs run more slowly.
-funroll-all-loops implies the same options as
-funroll-loops,
- -fsplit-ivs-in-unroller
- Enables expression of values of induction variables in later iterations of
the unrolled loop using the value in the first iteration. This breaks long
dependency chains, thus improving efficiency of the scheduling passes.
A combination of -fweb and CSE is often sufficient to
obtain the same effect. However, that is not reliable in cases where the
loop body is more complicated than a single basic block. It also does
not work at all on some architectures due to restrictions in the CSE
pass.
This optimization is enabled by default.
- -fvariable-expansion-in-unroller
- With this option, the compiler creates multiple copies of some local
variables when unrolling a loop, which can result in superior code.
- -fpartial-inlining
- Inline parts of functions. This option has any effect only when inlining
itself is turned on by the -finline-functions or
-finline-small-functions options.
Enabled at level -O2.
- -fpredictive-commoning
- Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous iterations of
loops.
This option is enabled at level -O3.
- -fprefetch-loop-arrays
- If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.
This option may generate better or worse code; results are
highly dependent on the structure of loops within the source code.
Disabled at level -Os.
- -fno-peephole
- -fno-peephole2
- Disable any machine-specific peephole optimizations. The difference
between -fno-peephole and -fno-peephole2 is in how they are
implemented in the compiler; some targets use one, some use the other, a
few use both.
-fpeephole is enabled by default. -fpeephole2
enabled at levels -O2, -O3, -Os.
- -fno-guess-branch-probability
- Do not guess branch probabilities using heuristics.
GCC uses heuristics to guess branch probabilities if they are
not provided by profiling feedback (-fprofile-arcs). These
heuristics are based on the control flow graph. If some branch
probabilities are specified by __builtin_expect, then the
heuristics are used to guess branch probabilities for the rest of the
control flow graph, taking the __builtin_expect info into
account. The interactions between the heuristics and
__builtin_expect can be complex, and in some cases, it may be
useful to disable the heuristics so that the effects of
__builtin_expect are easier to understand.
The default is -fguess-branch-probability at levels
-O, -O2, -O3, -Os.
- -freorder-blocks
- Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
Enabled at levels -O2, -O3.
- -freorder-blocks-and-partition
- In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and .o files, to improve paging and
cache locality performance.
This optimization is automatically turned off in the presence
of exception handling, for linkonce sections, for functions with a
user-defined section attribute and on any architecture that does not
support named sections.
- -freorder-functions
- Reorder functions in the object file in order to improve code locality.
This is implemented by using special subsections
".text.hot" for most frequently executed
functions and ".text.unlikely" for
unlikely executed functions. Reordering is done by the linker so object
file format must support named sections and linker must place them in a
reasonable way.
Also profile feedback must be available to make this option
effective. See -fprofile-arcs for details.
Enabled at levels -O2, -O3, -Os.
- -fstrict-aliasing
- Allow the compiler to assume the strictest aliasing rules applicable to
the language being compiled. For C (and C++), this activates optimizations
based on the type of expressions. In particular, an object of one type is
assumed never to reside at the same address as an object of a different
type, unless the types are almost the same. For example, an
"unsigned int" can alias an
"int", but not a
"void*" or a
"double". A character type may alias any
other type.
Pay special attention to code like this:
union a_union {
int i;
double d;
};
int f() {
union a_union t;
t.d = 3.0;
return t.i;
}
The practice of reading from a different union member than the
one most recently written to (called "type-punning") is
common. Even with -fstrict-aliasing, type-punning is allowed,
provided the memory is accessed through the union type. So, the code
above works as expected. However, this code might not:
int f() {
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;
}
Similarly, access by taking the address, casting the resulting
pointer and dereferencing the result has undefined behavior, even if the
cast uses a union type, e.g.:
int f() {
double d = 3.0;
return ((union a_union *) &d)->i;
}
The -fstrict-aliasing option is enabled at levels
-O2, -O3, -Os.
- -fstrict-overflow
- Allow the compiler to assume strict signed overflow rules, depending on
the language being compiled. For C (and C++) this means that overflow when
doing arithmetic with signed numbers is undefined, which means that the
compiler may assume that it does not happen. This permits various
optimizations. For example, the compiler assumes that an expression like
"i + 10 > i" is always true for
signed "i". This assumption is only
valid if signed overflow is undefined, as the expression is false if
"i + 10" overflows when using twos
complement arithmetic. When this option is in effect any attempt to
determine whether an operation on signed numbers overflows must be written
carefully to not actually involve overflow.
This option also allows the compiler to assume strict pointer
semantics: given a pointer to an object, if adding an offset to that
pointer does not produce a pointer to the same object, the addition is
undefined. This permits the compiler to conclude that
"p + u > p"
is always true for a pointer "p" and
unsigned integer "u". This assumption
is only valid because pointer wraparound is undefined, as the expression
is false if "p + u" overflows using
twos complement arithmetic.
See also the -fwrapv option. Using -fwrapv means
that integer signed overflow is fully defined: it wraps. When
-fwrapv is used, there is no difference between
-fstrict-overflow and -fno-strict-overflow for integers.
With -fwrapv certain types of overflow are permitted. For
example, if the compiler gets an overflow when doing arithmetic on
constants, the overflowed value can still be used with -fwrapv,
but not otherwise.
The -fstrict-overflow option is enabled at levels
-O2, -O3, -Os.
- -falign-functions
- -falign-functions=n
- Align the start of functions to the next power-of-two greater than
n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next 32-byte boundary,
but -falign-functions=24 aligns to the next 32-byte boundary only
if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are
equivalent and mean that functions are not aligned.
Some assemblers only support this flag when n is a
power of two; in that case, it is rounded up.
If n is not specified or is zero, use a
machine-dependent default.
Enabled at levels -O2, -O3.
- -falign-labels
- -falign-labels=n
- Align all branch targets to a power-of-two boundary, skipping up to
n bytes like -falign-functions. This option can easily make
code slower, because it must insert dummy operations for when the branch
target is reached in the usual flow of the code.
-fno-align-labels and -falign-labels=1 are
equivalent and mean that labels are not aligned.
If -falign-loops or -falign-jumps are applicable
and are greater than this value, then their values are used instead.
If n is not specified or is zero, use a
machine-dependent default which is very likely to be 1, meaning
no alignment.
Enabled at levels -O2, -O3.
- -falign-loops
- -falign-loops=n
- Align loops to a power-of-two boundary, skipping up to n bytes like
-falign-functions. If the loops are executed many times, this makes
up for any execution of the dummy operations.
-fno-align-loops and -falign-loops=1 are
equivalent and mean that loops are not aligned.
If n is not specified or is zero, use a
machine-dependent default.
Enabled at levels -O2, -O3.
- -falign-jumps
- -falign-jumps=n
- Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes
like -falign-functions. In this case, no dummy operations need be
executed.
-fno-align-jumps and -falign-jumps=1 are
equivalent and mean that loops are not aligned.
If n is not specified or is zero, use a
machine-dependent default.
Enabled at levels -O2, -O3.
- -funit-at-a-time
- This option is left for compatibility reasons. -funit-at-a-time has
no effect, while -fno-unit-at-a-time implies
-fno-toplevel-reorder and -fno-section-anchors.
Enabled by default.
- -fno-toplevel-reorder
- Do not reorder top-level functions, variables, and
"asm" statements. Output them in the
same order that they appear in the input file. When this option is used,
unreferenced static variables are not removed. This option is intended to
support existing code that relies on a particular ordering. For new code,
it is better to use attributes.
Enabled at level -O0. When disabled explicitly, it also
implies -fno-section-anchors, which is otherwise enabled at
-O0 on some targets.
- -fweb
- Constructs webs as commonly used for register allocation purposes and
assign each web individual pseudo register. This allows the register
allocation pass to operate on pseudos directly, but also strengthens
several other optimization passes, such as CSE, loop optimizer and trivial
dead code remover. It can, however, make debugging impossible, since
variables no longer stay in a "home register".
Enabled by default with -funroll-loops.
- -fwhole-program
- Assume that the current compilation unit represents the whole program
being compiled. All public functions and variables with the exception of
"main" and those merged by attribute
"externally_visible" become static
functions and in effect are optimized more aggressively by interprocedural
optimizers.
This option should not be used in combination with
"-flto". Instead relying on a linker
plugin should provide safer and more precise information.
- -flto[=n]
- This option runs the standard link-time optimizer. When invoked with
source code, it generates GIMPLE (one of GCC's internal representations)
and writes it to special ELF sections in the object file. When the object
files are linked together, all the function bodies are read from these ELF
sections and instantiated as if they had been part of the same translation
unit.
To use the link-time optimizer, -flto needs to be
specified at compile time and during the final link. For example:
gcc -c -O2 -flto foo.c
gcc -c -O2 -flto bar.c
gcc -o myprog -flto -O2 foo.o bar.o
The first two invocations to GCC save a bytecode
representation of GIMPLE into special ELF sections inside foo.o
and bar.o. The final invocation reads the GIMPLE bytecode from
foo.o and bar.o, merges the two files into a single
internal image, and compiles the result as usual. Since both
foo.o and bar.o are merged into a single image, this
causes all the interprocedural analyses and optimizations in GCC to work
across the two files as if they were a single one. This means, for
example, that the inliner is able to inline functions in bar.o
into functions in foo.o and vice-versa.
Another (simpler) way to enable link-time optimization is:
gcc -o myprog -flto -O2 foo.c bar.c
The above generates bytecode for foo.c and
bar.c, merges them together into a single GIMPLE representation
and optimizes them as usual to produce myprog.
The only important thing to keep in mind is that to enable
link-time optimizations the -flto flag needs to be passed to both
the compile and the link commands.
To make whole program optimization effective, it is necessary
to make certain whole program assumptions. The compiler needs to know
what functions and variables can be accessed by libraries and runtime
outside of the link-time optimized unit. When supported by the linker,
the linker plugin (see -fuse-linker-plugin) passes information to
the compiler about used and externally visible symbols. When the linker
plugin is not available, -fwhole-program should be used to allow
the compiler to make these assumptions, which leads to more aggressive
optimization decisions.
Note that when a file is compiled with -flto, the
generated object file is larger than a regular object file because it
contains GIMPLE bytecodes and the usual final code. This means that
object files with LTO information can be linked as normal object files;
if -flto is not passed to the linker, no interprocedural
optimizations are applied.
Additionally, the optimization flags used to compile
individual files are not necessarily related to those used at link time.
For instance,
gcc -c -O0 -flto foo.c
gcc -c -O0 -flto bar.c
gcc -o myprog -flto -O3 foo.o bar.o
This produces individual object files with unoptimized
assembler code, but the resulting binary myprog is optimized at
-O3. If, instead, the final binary is generated without
-flto, then myprog is not optimized.
When producing the final binary with -flto, GCC only
applies link-time optimizations to those files that contain bytecode.
Therefore, you can mix and match object files and libraries with GIMPLE
bytecodes and final object code. GCC automatically selects which files
to optimize in LTO mode and which files to link without further
processing.
There are some code generation flags preserved by GCC when
generating bytecodes, as they need to be used during the final link
stage. Currently, the following options are saved into the GIMPLE
bytecode files: -fPIC, -fcommon and all the -m
target flags.
At link time, these options are read in and reapplied. Note
that the current implementation makes no attempt to recognize
conflicting values for these options. If different files have
conflicting option values (e.g., one file is compiled with -fPIC
and another isn't), the compiler simply uses the last value read from
the bytecode files. It is recommended, then, that you compile all the
files participating in the same link with the same options.
If LTO encounters objects with C linkage declared with
incompatible types in separate translation units to be linked together
(undefined behavior according to ISO C99 6.2.7), a non-fatal diagnostic
may be issued. The behavior is still undefined at run time.
Another feature of LTO is that it is possible to apply
interprocedural optimizations on files written in different languages.
This requires support in the language front end. Currently, the C, C++
and Fortran front ends are capable of emitting GIMPLE bytecodes, so
something like this should work:
gcc -c -flto foo.c
g++ -c -flto bar.cc
gfortran -c -flto baz.f90
g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
Notice that the final link is done with g++ to get the
C++ runtime libraries and -lgfortran is added to get the Fortran
runtime libraries. In general, when mixing languages in LTO mode, you
should use the same link command options as when mixing languages in a
regular (non-LTO) compilation; all you need to add is -flto to
all the compile and link commands.
If object files containing GIMPLE bytecode are stored in a
library archive, say libfoo.a, it is possible to extract and use
them in an LTO link if you are using a linker with plugin support. To
enable this feature, use the flag -fuse-linker-plugin at link
time:
gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
With the linker plugin enabled, the linker extracts the needed
GIMPLE files from libfoo.a and passes them on to the running GCC
to make them part of the aggregated GIMPLE image to be optimized.
If you are not using a linker with plugin support and/or do
not enable the linker plugin, then the objects inside libfoo.a
are extracted and linked as usual, but they do not participate in the
LTO optimization process.
Link-time optimizations do not require the presence of the
whole program to operate. If the program does not require any symbols to
be exported, it is possible to combine -flto and
-fwhole-program to allow the interprocedural optimizers to use
more aggressive assumptions which may lead to improved optimization
opportunities. Use of -fwhole-program is not needed when linker
plugin is active (see -fuse-linker-plugin).
The current implementation of LTO makes no attempt to generate
bytecode that is portable between different types of hosts. The bytecode
files are versioned and there is a strict version check, so bytecode
files generated in one version of GCC will not work with an older/newer
version of GCC.
Link-time optimization does not work well with generation of
debugging information. Combining -flto with -g is
currently experimental and expected to produce wrong results.
If you specify the optional n, the optimization and
code generation done at link time is executed in parallel using n
parallel jobs by utilizing an installed make program. The
environment variable MAKE may be used to override the program
used. The default value for n is 1.
You can also specify -flto=jobserver to use GNU make's
job server mode to determine the number of parallel jobs. This is useful
when the Makefile calling GCC is already executing in parallel. You must
prepend a + to the command recipe in the parent Makefile for this
to work. This option likely only works if MAKE is GNU make.
This option is disabled by default.
- -flto-partition=alg
- Specify the partitioning algorithm used by the link-time optimizer. The
value is either "1to1" to specify a
partitioning mirroring the original source files or
"balanced" to specify partitioning into
equally sized chunks (whenever possible) or
"max" to create new partition for every
symbol where possible. Specifying "none"
as an algorithm disables partitioning and streaming completely. The
default value is "balanced". While
"1to1" can be used as an workaround for
various code ordering issues, the "max"
partitioning is intended for internal testing only.
- -flto-compression-level=n
- This option specifies the level of compression used for intermediate
language written to LTO object files, and is only meaningful in
conjunction with LTO mode (-flto). Valid values are 0 (no
compression) to 9 (maximum compression). Values outside this range are
clamped to either 0 or 9. If the option is not given, a default balanced
compression setting is used.
- -flto-report
- Prints a report with internal details on the workings of the link-time
optimizer. The contents of this report vary from version to version. It is
meant to be useful to GCC developers when processing object files in LTO
mode (via -flto).
Disabled by default.
- -fuse-linker-plugin
- Enables the use of a linker plugin during link-time optimization. This
option relies on plugin support in the linker, which is available in gold
or in GNU ld 2.21 or newer.
This option enables the extraction of object files with GIMPLE
bytecode out of library archives. This improves the quality of
optimization by exposing more code to the link-time optimizer. This
information specifies what symbols can be accessed externally (by
non-LTO object or during dynamic linking). Resulting code quality
improvements on binaries (and shared libraries that use hidden
visibility) are similar to
"-fwhole-program". See -flto
for a description of the effect of this flag and how to use it.
This option is enabled by default when LTO support in GCC is
enabled and GCC was configured for use with a linker supporting plugins
(GNU ld 2.21 or newer or gold).
- -ffat-lto-objects
- Fat LTO objects are object files that contain both the intermediate
language and the object code. This makes them usable for both LTO linking
and normal linking. This option is effective only when compiling with
-flto and is ignored at link time.
-fno-fat-lto-objects improves compilation time over
plain LTO, but requires the complete toolchain to be aware of LTO. It
requires a linker with linker plugin support for basic functionality.
Additionally, nm, ar and ranlib need to support
linker plugins to allow a full-featured build environment (capable of
building static libraries etc). GCC provides the gcc-ar,
gcc-nm, gcc-ranlib wrappers to pass the right options to
these tools. With non fat LTO makefiles need to be modified to use
them.
The default is -ffat-lto-objects but this default is
intended to change in future releases when linker plugin enabled
environments become more common.
- -fcompare-elim
- After register allocation and post-register allocation instruction
splitting, identify arithmetic instructions that compute processor flags
similar to a comparison operation based on that arithmetic. If possible,
eliminate the explicit comparison operation.
This pass only applies to certain targets that cannot
explicitly represent the comparison operation before register allocation
is complete.
Enabled at levels -O, -O2, -O3,
-Os.
- -fuse-ld=bfd
- Use the bfd linker instead of the default linker.
- -fuse-ld=gold
- Use the gold linker instead of the default linker.
- -fcprop-registers
- After register allocation and post-register allocation instruction
splitting, perform a copy-propagation pass to try to reduce scheduling
dependencies and occasionally eliminate the copy.
Enabled at levels -O, -O2, -O3,
-Os.
- -fprofile-correction
- Profiles collected using an instrumented binary for multi-threaded
programs may be inconsistent due to missed counter updates. When this
option is specified, GCC uses heuristics to correct or smooth out such
inconsistencies. By default, GCC emits an error message when an
inconsistent profile is detected.
- -fprofile-dir=path
- Set the directory to search for the profile data files in to path.
This option affects only the profile data generated by
-fprofile-generate, -ftest-coverage, -fprofile-arcs
and used by -fprofile-use and -fbranch-probabilities and its
related options. Both absolute and relative paths can be used. By default,
GCC uses the current directory as path, thus the profile data file
appears in the same directory as the object file.
- -fprofile-generate
- -fprofile-generate=path
- Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization. You must use -fprofile-generate both when compiling
and when linking your program.
The following options are enabled:
"-fprofile-arcs",
"-fprofile-values",
"-fvpt".
If path is specified, GCC looks at the path to
find the profile feedback data files. See -fprofile-dir.
- -fprofile-use
- -fprofile-use=path
- Enable profile feedback directed optimizations, and optimizations
generally profitable only with profile feedback available.
The following options are enabled:
"-fbranch-probabilities",
"-fvpt",
"-funroll-loops",
"-fpeel-loops",
"-ftracer",
"-ftree-vectorize",
"ftree-loop-distribute-patterns"
By default, GCC emits an error message if the feedback
profiles do not match the source code. This error can be turned into a
warning by using -Wcoverage-mismatch. Note this may result in
poorly optimized code.
If path is specified, GCC looks at the path to
find the profile feedback data files. See -fprofile-dir.
The following options control compiler behavior regarding
floating-point arithmetic. These options trade off between speed and
correctness. All must be specifically enabled.
- -ffloat-store
- Do not store floating-point variables in registers, and inhibit other
options that might change whether a floating-point value is taken from a
register or memory.
This option prevents undesirable excess precision on machines
such as the 68000 where the floating registers (of the 68881) keep more
precision than a "double" is supposed
to have. Similarly for the x86 architecture. For most programs, the
excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use -ffloat-store for such
programs, after modifying them to store all pertinent intermediate
computations into variables.
- -fexcess-precision=style
- This option allows further control over excess precision on machines where
floating-point registers have more precision than the IEEE
"float" and
"double" types and the processor does
not support operations rounding to those types. By default,
-fexcess-precision=fast is in effect; this means that operations
are carried out in the precision of the registers and that it is
unpredictable when rounding to the types specified in the source code
takes place. When compiling C, if -fexcess-precision=standard is
specified then excess precision follows the rules specified in ISO C99; in
particular, both casts and assignments cause values to be rounded to their
semantic types (whereas -ffloat-store only affects assignments).
This option is enabled by default for C if a strict conformance option
such as -std=c99 is used.
-fexcess-precision=standard is not implemented for
languages other than C, and has no effect if
-funsafe-math-optimizations or -ffast-math is specified.
On the x86, it also has no effect if -mfpmath=sse or
-mfpmath=sse+387 is specified; in the former case, IEEE semantics
apply without excess precision, and in the latter, rounding is
unpredictable.
- -ffast-math
- Sets -fno-math-errno, -funsafe-math-optimizations,
-ffinite-math-only, -fno-rounding-math,
-fno-signaling-nans and -fcx-limited-range.
This option causes the preprocessor macro
"__FAST_MATH__" to be defined.
This option is not turned on by any -O option besides
-Ofast since it can result in incorrect output for programs that
depend on an exact implementation of IEEE or ISO rules/specifications
for math functions. It may, however, yield faster code for programs that
do not require the guarantees of these specifications.
- -fno-math-errno
- Do not set "errno" after calling math
functions that are executed with a single instruction, e.g.,
"sqrt". A program that relies on IEEE
exceptions for math error handling may want to use this flag for speed
while maintaining IEEE arithmetic compatibility.
This option is not turned on by any -O option since it
can result in incorrect output for programs that depend on an exact
implementation of IEEE or ISO rules/specifications for math functions.
It may, however, yield faster code for programs that do not require the
guarantees of these specifications.
The default is -fmath-errno.
On Darwin systems, the math library never sets
"errno". There is therefore no reason
for the compiler to consider the possibility that it might, and
-fno-math-errno is the default.
- -funsafe-math-optimizations
- Allow optimizations for floating-point arithmetic that (a) assume that
arguments and results are valid and (b) may violate IEEE or ANSI
standards. When used at link-time, it may include libraries or startup
files that change the default FPU control word or other similar
optimizations.
This option is not turned on by any -O option since it
can result in incorrect output for programs that depend on an exact
implementation of IEEE or ISO rules/specifications for math functions.
It may, however, yield faster code for programs that do not require the
guarantees of these specifications. Enables -fno-signed-zeros,
-fno-trapping-math, -fassociative-math and
-freciprocal-math.
The default is -fno-unsafe-math-optimizations.
- -fassociative-math
- Allow re-association of operands in series of floating-point operations.
This violates the ISO C and C++ language standard by possibly changing
computation result. NOTE: re-ordering may change the sign of zero as well
as ignore NaNs and inhibit or create underflow or overflow (and thus
cannot be used on code that relies on rounding behavior like
"(x + 2**52) - 2**52". May also reorder
floating-point comparisons and thus may not be used when ordered
comparisons are required. This option requires that both
-fno-signed-zeros and -fno-trapping-math be in effect.
Moreover, it doesn't make much sense with -frounding-math. For
Fortran the option is automatically enabled when both
-fno-signed-zeros and -fno-trapping-math are in effect.
The default is -fno-associative-math.
- -freciprocal-math
- Allow the reciprocal of a value to be used instead of dividing by the
value if this enables optimizations. For example "x
/ y" can be replaced with "x *
(1/y)", which is useful if
"(1/y)" is subject to common
subexpression elimination. Note that this loses precision and increases
the number of flops operating on the value.
The default is -fno-reciprocal-math.
- -ffinite-math-only
- Allow optimizations for floating-point arithmetic that assume that
arguments and results are not NaNs or +-Infs.
This option is not turned on by any -O option since it
can result in incorrect output for programs that depend on an exact
implementation of IEEE or ISO rules/specifications for math functions.
It may, however, yield faster code for programs that do not require the
guarantees of these specifications.
The default is -fno-finite-math-only.
- -fno-signed-zeros
- Allow optimizations for floating-point arithmetic that ignore the
signedness of zero. IEEE arithmetic specifies the behavior of distinct
+0.0 and -0.0 values, which then prohibits simplification of expressions
such as x+0.0 or 0.0*x (even with -ffinite-math-only). This option
implies that the sign of a zero result isn't significant.
The default is -fsigned-zeros.
- -fno-trapping-math
- Compile code assuming that floating-point operations cannot generate
user-visible traps. These traps include division by zero, overflow,
underflow, inexact result and invalid operation. This option requires that
-fno-signaling-nans be in effect. Setting this option may allow
faster code if one relies on "non-stop" IEEE arithmetic, for
example.
This option should never be turned on by any -O option
since it can result in incorrect output for programs that depend on an
exact implementation of IEEE or ISO rules/specifications for math
functions.
The default is -ftrapping-math.
- -frounding-math
- Disable transformations and optimizations that assume default
floating-point rounding behavior. This is round-to-zero for all floating
point to integer conversions, and round-to-nearest for all other
arithmetic truncations. This option should be specified for programs that
change the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode. This option disables constant folding of
floating-point expressions at compile time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.
The default is -fno-rounding-math.
This option is experimental and does not currently guarantee
to disable all GCC optimizations that are affected by rounding mode.
Future versions of GCC may provide finer control of this setting using
C99's "FENV_ACCESS" pragma. This
command-line option will be used to specify the default state for
"FENV_ACCESS".
- -fsignaling-nans
- Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs. This option implies -ftrapping-math.
This option causes the preprocessor macro
"__SUPPORT_SNAN__" to be defined.
The default is -fno-signaling-nans.
This option is experimental and does not currently guarantee
to disable all GCC optimizations that affect signaling NaN behavior.
- -fsingle-precision-constant
- Treat floating-point constants as single precision instead of implicitly
converting them to double-precision constants.
- -fcx-limited-range
- When enabled, this option states that a range reduction step is not needed
when performing complex division. Also, there is no checking whether the
result of a complex multiplication or division is
"NaN + I*NaN",
with an attempt to rescue the situation in that case. The default is
-fno-cx-limited-range, but is enabled by -ffast-math.
This option controls the default setting of the ISO C99
"CX_LIMITED_RANGE" pragma.
Nevertheless, the option applies to all languages.
- -fcx-fortran-rules
- Complex multiplication and division follow Fortran rules. Range reduction
is done as part of complex division, but there is no checking whether the
result of a complex multiplication or division is
"NaN + I*NaN",
with an attempt to rescue the situation in that case.
The default is -fno-cx-fortran-rules.
The following options control optimizations that may improve
performance, but are not enabled by any -O options. This section
includes experimental options that may produce broken code.
- -fbranch-probabilities
- After running a program compiled with -fprofile-arcs, you can
compile it a second time using -fbranch-probabilities, to improve
optimizations based on the number of times each branch was taken. When a
program compiled with -fprofile-arcs exits, it saves arc execution
counts to a file called sourcename.gcda for each
source file. The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code and
the same optimization options for both compilations.
With -fbranch-probabilities, GCC puts a
REG_BR_PROB note on each JUMP_INSN and CALL_INSN.
These can be used to improve optimization. Currently, they are only used
in one place: in reorg.c, instead of guessing which path a branch
is most likely to take, the REG_BR_PROB values are used to
exactly determine which path is taken more often.
- -fprofile-values
- If combined with -fprofile-arcs, it adds code so that some data
about values of expressions in the program is gathered.
With -fbranch-probabilities, it reads back the data
gathered from profiling values of expressions for usage in
optimizations.
Enabled with -fprofile-generate and
-fprofile-use.
- -fvpt
- If combined with -fprofile-arcs, this option instructs the compiler
to add code to gather information about values of expressions.
With -fbranch-probabilities, it reads back the data
gathered and actually performs the optimizations based on them.
Currently the optimizations include specialization of division
operations using the knowledge about the value of the denominator.
- -frename-registers
- Attempt to avoid false dependencies in scheduled code by making use of
registers left over after register allocation. This optimization most
benefits processors with lots of registers. Depending on the debug
information format adopted by the target, however, it can make debugging
impossible, since variables no longer stay in a "home register".
Enabled by default with -funroll-loops and
-fpeel-loops.
- -ftracer
- Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations
to do a better job.
Enabled with -fprofile-use.
- -funroll-loops
- Unroll loops whose number of iterations can be determined at compile time
or upon entry to the loop. -funroll-loops implies
-frerun-cse-after-loop, -fweb and -frename-registers.
It also turns on complete loop peeling (i.e. complete removal of loops
with a small constant number of iterations). This option makes code
larger, and may or may not make it run faster.
Enabled with -fprofile-use.
- -funroll-all-loops
- Unroll all loops, even if their number of iterations is uncertain when the
loop is entered. This usually makes programs run more slowly.
-funroll-all-loops implies the same options as
-funroll-loops.
- -fpeel-loops
- Peels loops for which there is enough information that they do not roll
much (from profile feedback). It also turns on complete loop peeling (i.e.
complete removal of loops with small constant number of iterations).
Enabled with -fprofile-use.
- -fmove-loop-invariants
- Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
at level -O1
- -funswitch-loops
- Move branches with loop invariant conditions out of the loop, with
duplicates of the loop on both branches (modified according to result of
the condition).
- -ffunction-sections
- -fdata-sections
- Place each function or data item into its own section in the output file
if the target supports arbitrary sections. The name of the function or the
name of the data item determines the section's name in the output file.
Use these options on systems where the linker can perform
optimizations to improve locality of reference in the instruction space.
Most systems using the ELF object format and SPARC processors running
Solaris 2 have linkers with such optimizations. AIX may have these
optimizations in the future.
Only use these options when there are significant benefits
from doing so. When you specify these options, the assembler and linker
create larger object and executable files and are also slower. You
cannot use "gprof" on all systems if
you specify this option, and you may have problems with debugging if you
specify both this option and -g.
- -fbranch-target-load-optimize
- Perform branch target register load optimization before prologue /
epilogue threading. The use of target registers can typically be exposed
only during reload, thus hoisting loads out of loops and doing inter-block
scheduling needs a separate optimization pass.
- -fbranch-target-load-optimize2
- Perform branch target register load optimization after prologue / epilogue
threading.
- -fbtr-bb-exclusive
- When performing branch target register load optimization, don't reuse
branch target registers within any basic block.
- -fstack-protector
- Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call
"alloca", and functions with buffers
larger than 8 bytes. The guards are initialized when a function is entered
and then checked when the function exits. If a guard check fails, an error
message is printed and the program exits.
- -fstack-protector-all
- Like -fstack-protector except that all functions are
protected.
- -fstack-protector-strong
- Like -fstack-protector but includes additional functions to be
protected --- those that have local array definitions, or have references
to local frame addresses.
- -fsection-anchors
- Try to reduce the number of symbolic address calculations by using shared
"anchor" symbols to address nearby objects. This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.
For example, the implementation of the following function
"foo":
static int a, b, c;
int foo (void) { return a + b + c; }
usually calculates the addresses of all three variables, but
if you compile it with -fsection-anchors, it accesses the
variables from a common anchor point instead. The effect is similar to
the following pseudocode (which isn't valid C):
int foo (void)
{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
}
Not all targets support this option.
- --param name=value
- In some places, GCC uses various constants to control the amount of
optimization that is done. For example, GCC does not inline functions that
contain more than a certain number of instructions. You can control some
of these constants on the command line using the --param option.
The names of specific parameters, and the meaning of the
values, are tied to the internals of the compiler, and are subject to
change without notice in future releases.
In each case, the value is an integer. The allowable
choices for name are:
- predictable-branch-outcome
- When branch is predicted to be taken with probability lower than this
threshold (in percent), then it is considered well predictable. The
default is 10.
- max-crossjump-edges
- The maximum number of incoming edges to consider for cross-jumping. The
algorithm used by -fcrossjumping is O(N^2) in the number of edges
incoming to each block. Increasing values mean more aggressive
optimization, making the compilation time increase with probably small
improvement in executable size.
- min-crossjump-insns
- The minimum number of instructions that must be matched at the end of two
blocks before cross-jumping is performed on them. This value is ignored in
the case where all instructions in the block being cross-jumped from are
matched. The default value is 5.
- max-grow-copy-bb-insns
- The maximum code size expansion factor when copying basic blocks instead
of jumping. The expansion is relative to a jump instruction. The default
value is 8.
- max-goto-duplication-insns
- The maximum number of instructions to duplicate to a block that jumps to a
computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors
computed gotos early in the compilation process, and unfactors them as
late as possible. Only computed jumps at the end of a basic blocks with no
more than max-goto-duplication-insns are unfactored. The default value is
8.
- max-delay-slot-insn-search
- The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions are searched, the time savings from filling the delay slot
are minimal, so stop searching. Increasing values mean more aggressive
optimization, making the compilation time increase with probably small
improvement in execution time.
- max-delay-slot-live-search
- When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register information.
Increasing this arbitrarily chosen value means more aggressive
optimization, increasing the compilation time. This parameter should be
removed when the delay slot code is rewritten to maintain the control-flow
graph.
- max-gcse-memory
- The approximate maximum amount of memory that can be allocated in order to
perform the global common subexpression elimination optimization. If more
memory than specified is required, the optimization is not done.
- max-gcse-insertion-ratio
- If the ratio of expression insertions to deletions is larger than this
value for any expression, then RTL PRE inserts or removes the expression
and thus leaves partially redundant computations in the instruction
stream. The default value is 20.
- max-pending-list-length
- The maximum number of pending dependencies scheduling allows before
flushing the current state and starting over. Large functions with few
branches or calls can create excessively large lists which needlessly
consume memory and resources.
- max-modulo-backtrack-attempts
- The maximum number of backtrack attempts the scheduler should make when
modulo scheduling a loop. Larger values can exponentially increase
compilation time.
- max-inline-insns-single
- Several parameters control the tree inliner used in GCC. This number sets
the maximum number of instructions (counted in GCC's internal
representation) in a single function that the tree inliner considers for
inlining. This only affects functions declared inline and methods
implemented in a class declaration (C++). The default value is 400.
- max-inline-insns-auto
- When you use -finline-functions (included in -O3), a lot of
functions that would otherwise not be considered for inlining by the
compiler are investigated. To those functions, a different (more
restrictive) limit compared to functions declared inline can be applied.
The default value is 40.
- inline-min-speedup
- When estimated performance improvement of caller + callee runtime exceeds
this threshold (in precent), the function can be inlined regardless the
limit on --param max-inline-insns-single and --param
max-inline-insns-auto.
- large-function-insns
- The limit specifying really large functions. For functions larger than
this limit after inlining, inlining is constrained by --param
large-function-growth. This parameter is useful primarily to avoid
extreme compilation time caused by non-linear algorithms used by the back
end. The default value is 2700.
- large-function-growth
- Specifies maximal growth of large function caused by inlining in percents.
The default value is 100 which limits large function growth to 2.0 times
the original size.
- large-unit-insns
- The limit specifying large translation unit. Growth caused by inlining of
units larger than this limit is limited by --param
inline-unit-growth. For small units this might be too tight. For
example, consider a unit consisting of function A that is inline and B
that just calls A three times. If B is small relative to A, the growth of
unit is 300\% and yet such inlining is very sane. For very large units
consisting of small inlineable functions, however, the overall unit growth
limit is needed to avoid exponential explosion of code size. Thus for
smaller units, the size is increased to --param large-unit-insns
before applying --param inline-unit-growth. The default is
10000.
- inline-unit-growth
- Specifies maximal overall growth of the compilation unit caused by
inlining. The default value is 30 which limits unit growth to 1.3 times
the original size.
- ipcp-unit-growth
- Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation. The default value is 10 which limits
unit growth to 1.1 times the original size.
- large-stack-frame
- The limit specifying large stack frames. While inlining the algorithm is
trying to not grow past this limit too much. The default value is 256
bytes.
- large-stack-frame-growth
- Specifies maximal growth of large stack frames caused by inlining in
percents. The default value is 1000 which limits large stack frame growth
to 11 times the original size.
- max-inline-insns-recursive
- max-inline-insns-recursive-auto
- Specifies the maximum number of instructions an out-of-line copy of a
self-recursive inline function can grow into by performing recursive
inlining.
For functions declared inline, --param
max-inline-insns-recursive is taken into account. For functions not
declared inline, recursive inlining happens only when
-finline-functions (included in -O3) is enabled and
--param max-inline-insns-recursive-auto is used. The default
value is 450.
- max-inline-recursive-depth
- max-inline-recursive-depth-auto
- Specifies the maximum recursion depth used for recursive inlining.
For functions declared inline, --param
max-inline-recursive-depth is taken into account. For functions not
declared inline, recursive inlining happens only when
-finline-functions (included in -O3) is enabled and
--param max-inline-recursive-depth-auto is used. The default
value is 8.
- min-inline-recursive-probability
- Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.
When profile feedback is available (see
-fprofile-generate) the actual recursion depth can be guessed
from probability that function recurses via a given call expression.
This parameter limits inlining only to call expressions whose
probability exceeds the given threshold (in percents). The default value
is 10.
- early-inlining-insns
- Specify growth that the early inliner can make. In effect it increases the
amount of inlining for code having a large abstraction penalty. The
default value is 10.
- max-early-inliner-iterations
- max-early-inliner-iterations
- Limit of iterations of the early inliner. This basically bounds the number
of nested indirect calls the early inliner can resolve. Deeper chains are
still handled by late inlining.
- comdat-sharing-probability
- comdat-sharing-probability
- Probability (in percent) that C++ inline function with comdat visibility
are shared across multiple compilation units. The default value is
20.
- min-vect-loop-bound
- The minimum number of iterations under which loops are not vectorized when
-ftree-vectorize is used. The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization. The default value is 0.
- gcse-cost-distance-ratio
- Scaling factor in calculation of maximum distance an expression can be
moved by GCSE optimizations. This is currently supported only in the code
hoisting pass. The bigger the ratio, the more aggressive code hoisting is
with simple expressions, i.e., the expressions that have cost less than
gcse-unrestricted-cost. Specifying 0 disables hoisting of simple
expressions. The default value is 10.
- gcse-unrestricted-cost
- Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain the distance an
expression can travel. This is currently supported only in the code
hoisting pass. The lesser the cost, the more aggressive code hoisting is.
Specifying 0 allows all expressions to travel unrestricted distances. The
default value is 3.
- max-hoist-depth
- The depth of search in the dominator tree for expressions to hoist. This
is used to avoid quadratic behavior in hoisting algorithm. The value of 0
does not limit on the search, but may slow down compilation of huge
functions. The default value is 30.
- max-tail-merge-comparisons
- The maximum amount of similar bbs to compare a bb with. This is used to
avoid quadratic behavior in tree tail merging. The default value is
10.
- max-tail-merge-iterations
- The maximum amount of iterations of the pass over the function. This is
used to limit compilation time in tree tail merging. The default value is
2.
- max-unrolled-insns
- The maximum number of instructions that a loop may have to be unrolled. If
a loop is unrolled, this parameter also determines how many times the loop
code is unrolled.
- max-average-unrolled-insns
- The maximum number of instructions biased by probabilities of their
execution that a loop may have to be unrolled. If a loop is unrolled, this
parameter also determines how many times the loop code is unrolled.
- max-unroll-times
- The maximum number of unrollings of a single loop.
- max-peeled-insns
- The maximum number of instructions that a loop may have to be peeled. If a
loop is peeled, this parameter also determines how many times the loop
code is peeled.
- max-peel-times
- The maximum number of peelings of a single loop.
- max-peel-branches
- The maximum number of branches on the hot path through the peeled
sequence.
- max-completely-peeled-insns
- The maximum number of insns of a completely peeled loop.
- max-completely-peel-times
- The maximum number of iterations of a loop to be suitable for complete
peeling.
- max-completely-peel-loop-nest-depth
- The maximum depth of a loop nest suitable for complete peeling.
- max-unswitch-insns
- The maximum number of insns of an unswitched loop.
- max-unswitch-level
- The maximum number of branches unswitched in a single loop.
- lim-expensive
- The minimum cost of an expensive expression in the loop invariant
motion.
- iv-consider-all-candidates-bound
- Bound on number of candidates for induction variables, below which all
candidates are considered for each use in induction variable
optimizations. If there are more candidates than this, only the most
relevant ones are considered to avoid quadratic time complexity.
- iv-max-considered-uses
- The induction variable optimizations give up on loops that contain more
induction variable uses.
- iv-always-prune-cand-set-bound
- If the number of candidates in the set is smaller than this value, always
try to remove unnecessary ivs from the set when adding a new one.
- scev-max-expr-size
- Bound on size of expressions used in the scalar evolutions analyzer. Large
expressions slow the analyzer.
- scev-max-expr-complexity
- Bound on the complexity of the expressions in the scalar evolutions
analyzer. Complex expressions slow the analyzer.
- omega-max-vars
- The maximum number of variables in an Omega constraint system. The default
value is 128.
- omega-max-geqs
- The maximum number of inequalities in an Omega constraint system. The
default value is 256.
- omega-max-eqs
- The maximum number of equalities in an Omega constraint system. The
default value is 128.
- omega-max-wild-cards
- The maximum number of wildcard variables that the Omega solver is able to
insert. The default value is 18.
- omega-hash-table-size
- The size of the hash table in the Omega solver. The default value is
550.
- omega-max-keys
- The maximal number of keys used by the Omega solver. The default value is
500.
- omega-eliminate-redundant-constraints
- When set to 1, use expensive methods to eliminate all redundant
constraints. The default value is 0.
- vect-max-version-for-alignment-checks
- The maximum number of run-time checks that can be performed when doing
loop versioning for alignment in the vectorizer. See option
-ftree-vect-loop-version for more information.
- vect-max-version-for-alias-checks
- The maximum number of run-time checks that can be performed when doing
loop versioning for alias in the vectorizer. See option
-ftree-vect-loop-version for more information.
- max-iterations-to-track
- The maximum number of iterations of a loop the brute-force algorithm for
analysis of the number of iterations of the loop tries to evaluate.
- hot-bb-count-ws-permille
- A basic block profile count is considered hot if it contributes to the
given permillage (i.e. 0...1000) of the entire profiled execution.
- hot-bb-frequency-fraction
- Select fraction of the entry block frequency of executions of basic block
in function given basic block needs to have to be considered hot.
- max-predicted-iterations
- The maximum number of loop iterations we predict statically. This is
useful in cases where a function contains a single loop with known bound
and another loop with unknown bound. The known number of iterations is
predicted correctly, while the unknown number of iterations average to
roughly 10. This means that the loop without bounds appears artificially
cold relative to the other one.
- align-threshold
- Select fraction of the maximal frequency of executions of a basic block in
a function to align the basic block.
- align-loop-iterations
- A loop expected to iterate at least the selected number of iterations is
aligned.
- tracer-dynamic-coverage
- tracer-dynamic-coverage-feedback
- This value is used to limit superblock formation once the given percentage
of executed instructions is covered. This limits unnecessary code size
expansion.
The tracer-dynamic-coverage-feedback is used only when
profile feedback is available. The real profiles (as opposed to
statically estimated ones) are much less balanced allowing the threshold
to be larger value.
- tracer-max-code-growth
- Stop tail duplication once code growth has reached given percentage. This
is a rather artificial limit, as most of the duplicates are eliminated
later in cross jumping, so it may be set to much higher values than is the
desired code growth.
- tracer-min-branch-ratio
- Stop reverse growth when the reverse probability of best edge is less than
this threshold (in percent).
- tracer-min-branch-ratio
- tracer-min-branch-ratio-feedback
- Stop forward growth if the best edge has probability lower than this
threshold.
Similarly to tracer-dynamic-coverage two values are
present, one for compilation for profile feedback and one for
compilation without. The value for compilation with profile feedback
needs to be more conservative (higher) in order to make tracer
effective.
- stack-clash-protection-guard-size
- Specify the size of the operating system provided stack guard as 2 raised
to num bytes. The default value is 12 (4096 bytes). Acceptable
values are between 12 and 30. Higher values may reduce the number of
explicit probes, but a value larger than the operating system provided
guard will leave code vulnerable to stack clash style attacks.
- stack-clash-protection-probe-interval
- Stack clash protection involves probing stack space as it is allocated.
This param controls the maximum distance between probes into the stack as
2 raised to num bytes. Acceptable values are between 10 and 16 and
defaults to 12. Higher values may reduce the number of explicit probes,
but a value larger than the operating system provided guard will leave
code vulnerable to stack clash style attacks.
- max-cse-path-length
- The maximum number of basic blocks on path that CSE considers. The default
is 10.
- max-cse-insns
- The maximum number of instructions CSE processes before flushing. The
default is 1000.
- ggc-min-expand
- GCC uses a garbage collector to manage its own memory allocation. This
parameter specifies the minimum percentage by which the garbage
collector's heap should be allowed to expand between collections. Tuning
this may improve compilation speed; it has no effect on code generation.
The default is 30% + 70% * (RAM/1GB) with an upper bound of
100% when RAM >= 1GB. If
"getrlimit" is available, the notion
of "RAM" is the smallest of actual RAM and
"RLIMIT_DATA" or
"RLIMIT_AS". If GCC is not able to
calculate RAM on a particular platform, the lower bound of 30% is used.
Setting this parameter and ggc-min-heapsize to zero causes a full
collection to occur at every opportunity. This is extremely slow, but
can be useful for debugging.
- ggc-min-heapsize
- Minimum size of the garbage collector's heap before it begins bothering to
collect garbage. The first collection occurs after the heap expands by
ggc-min-expand% beyond ggc-min-heapsize. Again, tuning this
may improve compilation speed, and has no effect on code generation.
The default is the smaller of RAM/8, RLIMIT_RSS, or a limit
that tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of 131072
(128 megabytes). If GCC is not able to calculate RAM on a particular
platform, the lower bound is used. Setting this parameter very large
effectively disables garbage collection. Setting this parameter and
ggc-min-expand to zero causes a full collection to occur at every
opportunity.
- max-reload-search-insns
- The maximum number of instruction reload should look backward for
equivalent register. Increasing values mean more aggressive optimization,
making the compilation time increase with probably slightly better
performance. The default value is 100.
- max-cselib-memory-locations
- The maximum number of memory locations cselib should take into account.
Increasing values mean more aggressive optimization, making the
compilation time increase with probably slightly better performance. The
default value is 500.
- reorder-blocks-duplicate
- reorder-blocks-duplicate-feedback
- Used by the basic block reordering pass to decide whether to use
unconditional branch or duplicate the code on its destination. Code is
duplicated when its estimated size is smaller than this value multiplied
by the estimated size of unconditional jump in the hot spots of the
program.
The reorder-block-duplicate-feedback is used only when
profile feedback is available. It may be set to higher values than
reorder-block-duplicate since information about the hot spots is
more accurate.
- max-sched-ready-insns
- The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass. Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit. The default value is 100.
- max-sched-region-blocks
- The maximum number of blocks in a region to be considered for interblock
scheduling. The default value is 10.
- max-pipeline-region-blocks
- The maximum number of blocks in a region to be considered for pipelining
in the selective scheduler. The default value is 15.
- max-sched-region-insns
- The maximum number of insns in a region to be considered for interblock
scheduling. The default value is 100.
- max-pipeline-region-insns
- The maximum number of insns in a region to be considered for pipelining in
the selective scheduler. The default value is 200.
- min-spec-prob
- The minimum probability (in percents) of reaching a source block for
interblock speculative scheduling. The default value is 40.
- max-sched-extend-regions-iters
- The maximum number of iterations through CFG to extend regions. A value of
0 (the default) disables region extensions.
- max-sched-insn-conflict-delay
- The maximum conflict delay for an insn to be considered for speculative
motion. The default value is 3.
- sched-spec-prob-cutoff
- The minimal probability of speculation success (in percents), so that
speculative insns are scheduled. The default value is 40.
- sched-spec-state-edge-prob-cutoff
- The minimum probability an edge must have for the scheduler to save its
state across it. The default value is 10.
- sched-mem-true-dep-cost
- Minimal distance (in CPU cycles) between store and load targeting same
memory locations. The default value is 1.
- selsched-max-lookahead
- The maximum size of the lookahead window of selective scheduling. It is a
depth of search for available instructions. The default value is 50.
- selsched-max-sched-times
- The maximum number of times that an instruction is scheduled during
selective scheduling. This is the limit on the number of iterations
through which the instruction may be pipelined. The default value is
2.
- selsched-max-insns-to-rename
- The maximum number of best instructions in the ready list that are
considered for renaming in the selective scheduler. The default value is
2.
- sms-min-sc
- The minimum value of stage count that swing modulo scheduler generates.
The default value is 2.
- max-last-value-rtl
- The maximum size measured as number of RTLs that can be recorded in an
expression in combiner for a pseudo register as last known value of that
register. The default is 10000.
- integer-share-limit
- Small integer constants can use a shared data structure, reducing the
compiler's memory usage and increasing its speed. This sets the maximum
value of a shared integer constant. The default value is 256.
- ssp-buffer-size
- The minimum size of buffers (i.e. arrays) that receive stack smashing
protection when -fstack-protection is used.
- max-jump-thread-duplication-stmts
- Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.
- max-fields-for-field-sensitive
- Maximum number of fields in a structure treated in a field sensitive
manner during pointer analysis. The default is zero for -O0 and
-O1, and 100 for -Os, -O2, and -O3.
- prefetch-latency
- Estimate on average number of instructions that are executed before
prefetch finishes. The distance prefetched ahead is proportional to this
constant. Increasing this number may also lead to less streams being
prefetched (see simultaneous-prefetches).
- simultaneous-prefetches
- Maximum number of prefetches that can run at the same time.
- l1-cache-line-size
- The size of cache line in L1 cache, in bytes.
- l1-cache-size
- The size of L1 cache, in kilobytes.
- l2-cache-size
- The size of L2 cache, in kilobytes.
- min-insn-to-prefetch-ratio
- The minimum ratio between the number of instructions and the number of
prefetches to enable prefetching in a loop.
- prefetch-min-insn-to-mem-ratio
- The minimum ratio between the number of instructions and the number of
memory references to enable prefetching in a loop.
- use-canonical-types
- Whether the compiler should use the "canonical" type system. By
default, this should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. However, if bugs
in the canonical type system are causing compilation failures, set this
value to 0 to disable canonical types.
- switch-conversion-max-branch-ratio
- Switch initialization conversion refuses to create arrays that are bigger
than switch-conversion-max-branch-ratio times the number of
branches in the switch.
- max-partial-antic-length
- Maximum length of the partial antic set computed during the tree partial
redundancy elimination optimization (-ftree-pre) when optimizing at
-O3 and above. For some sorts of source code the enhanced partial
redundancy elimination optimization can run away, consuming all of the
memory available on the host machine. This parameter sets a limit on the
length of the sets that are computed, which prevents the runaway behavior.
Setting a value of 0 for this parameter allows an unlimited set
length.
- sccvn-max-scc-size
- Maximum size of a strongly connected component (SCC) during SCCVN
processing. If this limit is hit, SCCVN processing for the whole function
is not done and optimizations depending on it are disabled. The default
maximum SCC size is 10000.
- sccvn-max-alias-queries-per-access
- Maximum number of alias-oracle queries we perform when looking for
redundancies for loads and stores. If this limit is hit the search is
aborted and the load or store is not considered redundant. The number of
queries is algorithmically limited to the number of stores on all paths
from the load to the function entry. The default maxmimum number of
queries is 1000.
- ira-max-loops-num
- IRA uses regional register allocation by default. If a function contains
more loops than the number given by this parameter, only at most the given
number of the most frequently-executed loops form regions for regional
register allocation. The default value of the parameter is 100.
- ira-max-conflict-table-size
- Although IRA uses a sophisticated algorithm to compress the conflict
table, the table can still require excessive amounts of memory for huge
functions. If the conflict table for a function could be more than the
size in MB given by this parameter, the register allocator instead uses a
faster, simpler, and lower-quality algorithm that does not require
building a pseudo-register conflict table. The default value of the
parameter is 2000.
- ira-loop-reserved-regs
- IRA can be used to evaluate more accurate register pressure in loops for
decisions to move loop invariants (see -O3). The number of
available registers reserved for some other purposes is given by this
parameter. The default value of the parameter is 2, which is the minimal
number of registers needed by typical instructions. This value is the best
found from numerous experiments.
- loop-invariant-max-bbs-in-loop
- Loop invariant motion can be very expensive, both in compilation time and
in amount of needed compile-time memory, with very large loops. Loops with
more basic blocks than this parameter won't have loop invariant motion
optimization performed on them. The default value of the parameter is 1000
for -O1 and 10000 for -O2 and above.
- loop-max-datarefs-for-datadeps
- Building data dapendencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no handled
by the optimizations using loop data dependencies. The default value is
1000.
- max-vartrack-size
- Sets a maximum number of hash table slots to use during variable tracking
dataflow analysis of any function. If this limit is exceeded with variable
tracking at assignments enabled, analysis for that function is retried
without it, after removing all debug insns from the function. If the limit
is exceeded even without debug insns, var tracking analysis is completely
disabled for the function. Setting the parameter to zero makes it
unlimited.
- max-vartrack-expr-depth
- Sets a maximum number of recursion levels when attempting to map variable
names or debug temporaries to value expressions. This trades compilation
time for more complete debug information. If this is set too low, value
expressions that are available and could be represented in debug
information may end up not being used; setting this higher may enable the
compiler to find more complex debug expressions, but compile time and
memory use may grow. The default is 12.
- min-nondebug-insn-uid
- Use uids starting at this parameter for nondebug insns. The range below
the parameter is reserved exclusively for debug insns created by
-fvar-tracking-assignments, but debug insns may get
(non-overlapping) uids above it if the reserved range is exhausted.
- ipa-sra-ptr-growth-factor
- IPA-SRA replaces a pointer to an aggregate with one or more new parameters
only when their cumulative size is less or equal to
ipa-sra-ptr-growth-factor times the size of the original pointer
parameter.
- tm-max-aggregate-size
- When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are saved with
the logging functions as opposed to save/restore code sequence pairs. This
option only applies when using -fgnu-tm.
- graphite-max-nb-scop-params
- To avoid exponential effects in the Graphite loop transforms, the number
of parameters in a Static Control Part (SCoP) is bounded. The default
value is 10 parameters. A variable whose value is unknown at compilation
time and defined outside a SCoP is a parameter of the SCoP.
- graphite-max-bbs-per-function
- To avoid exponential effects in the detection of SCoPs, the size of the
functions analyzed by Graphite is bounded. The default value is 100 basic
blocks.
- loop-block-tile-size
- Loop blocking or strip mining transforms, enabled with -floop-block
or -floop-strip-mine, strip mine each loop in the loop nest by a
given number of iterations. The strip length can be changed using the
loop-block-tile-size parameter. The default value is 51
iterations.
- ipa-cp-value-list-size
- IPA-CP attempts to track all possible values and types passed to a
function's parameter in order to propagate them and perform
devirtualization. ipa-cp-value-list-size is the maximum number of
values and types it stores per one formal parameter of a function.
- lto-partitions
- Specify desired number of partitions produced during WHOPR compilation.
The number of partitions should exceed the number of CPUs used for
compilation. The default value is 32.
- lto-minpartition
- Size of minimal partition for WHOPR (in estimated instructions). This
prevents expenses of splitting very small programs into too many
partitions.
- cxx-max-namespaces-for-diagnostic-help
- The maximum number of namespaces to consult for suggestions when C++ name
lookup fails for an identifier. The default is 1000.
- sink-frequency-threshold
- The maximum relative execution frequency (in percents) of the target block
relative to a statement's original block to allow statement sinking of a
statement. Larger numbers result in more aggressive statement sinking. The
default value is 75. A small positive adjustment is applied for statements
with memory operands as those are even more profitable so sink.
- max-stores-to-sink
- The maximum number of conditional stores paires that can be sunk. Set to 0
if either vectorization (-ftree-vectorize) or if-conversion
(-ftree-loop-if-convert) is disabled. The default is 2.
- allow-load-data-races
- Allow optimizers to introduce new data races on loads. Set to 1 to allow,
otherwise to 0. This option is enabled by default unless implicitly set by
the -fmemory-model= option.
- allow-store-data-races
- Allow optimizers to introduce new data races on stores. Set to 1 to allow,
otherwise to 0. This option is enabled by default unless implicitly set by
the -fmemory-model= option.
- allow-packed-load-data-races
- Allow optimizers to introduce new data races on packed data loads. Set to
1 to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the -fmemory-model= option.
- allow-packed-store-data-races
- Allow optimizers to introduce new data races on packed data stores. Set to
1 to allow, otherwise to 0. This option is enabled by default unless
implicitly set by the -fmemory-model= option.
- case-values-threshold
- The smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. If the value is 0,
use the default for the machine. The default is 0.
- tree-reassoc-width
- Set the maximum number of instructions executed in parallel in
reassociated tree. This parameter overrides target dependent heuristics
used by default if has non zero value.
- sched-pressure-algorithm
- Choose between the two available implementations of
-fsched-pressure. Algorithm 1 is the original implementation and is
the more likely to prevent instructions from being reordered. Algorithm 2
was designed to be a compromise between the relatively conservative
approach taken by algorithm 1 and the rather aggressive approach taken by
the default scheduler. It relies more heavily on having a regular register
file and accurate register pressure classes. See haifa-sched.c in
the GCC sources for more details.
The default choice depends on the target.
- max-slsr-cand-scan
- Set the maximum number of existing candidates that will be considered when
seeking a basis for a new straight-line strength reduction candidate.
These options control the C preprocessor, which is run on each C source file
before actual compilation.
If you use the -E option, nothing is done except
preprocessing. Some of these options make sense only together with -E
because they cause the preprocessor output to be unsuitable for actual
compilation.
- -Wp,option
- You can use -Wp,option to bypass the compiler driver and
pass option directly through to the preprocessor. If option
contains commas, it is split into multiple options at the commas. However,
many options are modified, translated or interpreted by the compiler
driver before being passed to the preprocessor, and -Wp forcibly
bypasses this phase. The preprocessor's direct interface is undocumented
and subject to change, so whenever possible you should avoid using
-Wp and let the driver handle the options instead.
- -Xpreprocessor option
- Pass option as an option to the preprocessor. You can use this to
supply system-specific preprocessor options that GCC does not recognize.
If you want to pass an option that takes an argument, you must
use -Xpreprocessor twice, once for the option and once for the
argument.
- -no-integrated-cpp
- Perform preprocessing as a separate pass before compilation. By default,
GCC performs preprocessing as an integrated part of input tokenization and
parsing. If this option is provided, the appropriate language front end
(cc1, cc1plus, or cc1obj for C, C++, and Objective-C,
respectively) is instead invoked twice, once for preprocessing only and
once for actual compilation of the preprocessed input. This option may be
useful in conjunction with the -B or -wrapper options to
specify an alternate preprocessor or perform additional processing of the
program source between normal preprocessing and compilation.
- -D name
- Predefine name as a macro, with definition
1.
- -D name=definition
- The contents of definition are tokenized and processed as if they
appeared during translation phase three in a #define directive. In
particular, the definition will be truncated by embedded newline
characters.
If you are invoking the preprocessor from a shell or
shell-like program you may need to use the shell's quoting syntax to
protect characters such as spaces that have a meaning in the shell
syntax.
If you wish to define a function-like macro on the command
line, write its argument list with surrounding parentheses before the
equals sign (if any). Parentheses are meaningful to most shells, so you
will need to quote the option. With sh and csh,
-D'name(args...)=definition'
works.
-D and -U options are processed in the order
they are given on the command line. All -imacros file and
-include file options are processed after all -D
and -U options.
- -U name
- Cancel any previous definition of name, either built in or provided
with a -D option.
- -undef
- Do not predefine any system-specific or GCC-specific macros. The standard
predefined macros remain defined.
- -I dir
- Add the directory dir to the list of directories to be searched for
header files. Directories named by -I are searched before the
standard system include directories. If the directory dir is a
standard system include directory, the option is ignored to ensure that
the default search order for system directories and the special treatment
of system headers are not defeated . If dir begins with
"=", then the
"=" will be replaced by the sysroot
prefix; see --sysroot and -isysroot.
- -o file
- Write output to file. This is the same as specifying file as
the second non-option argument to cpp. gcc has a different
interpretation of a second non-option argument, so you must use -o
to specify the output file.
- -Wall
- Turns on all optional warnings which are desirable for normal code. At
present this is -Wcomment, -Wtrigraphs, -Wmultichar
and a warning about integer promotion causing a change of sign in
"#if" expressions. Note that many of the
preprocessor's warnings are on by default and have no options to control
them.
- -Wcomment
- -Wcomments
- Warn whenever a comment-start sequence /* appears in a /*
comment, or whenever a backslash-newline appears in a // comment.
(Both forms have the same effect.)
- -Wtrigraphs
- Most trigraphs in comments cannot affect the meaning of the program.
However, a trigraph that would form an escaped newline (??/ at the
end of a line) can, by changing where the comment begins or ends.
Therefore, only trigraphs that would form escaped newlines produce
warnings inside a comment.
This option is implied by -Wall. If -Wall is not
given, this option is still enabled unless trigraphs are enabled. To get
trigraph conversion without warnings, but get the other -Wall
warnings, use -trigraphs -Wall -Wno-trigraphs.
- -Wtraditional
- Warn about certain constructs that behave differently in traditional and
ISO C. Also warn about ISO C constructs that have no traditional C
equivalent, and problematic constructs which should be avoided.
- -Wundef
- Warn whenever an identifier which is not a macro is encountered in an
#if directive, outside of defined. Such identifiers are
replaced with zero.
- -Wunused-macros
- Warn about macros defined in the main file that are unused. A macro is
used if it is expanded or tested for existence at least once. The
preprocessor will also warn if the macro has not been used at the time it
is redefined or undefined.
Built-in macros, macros defined on the command line, and
macros defined in include files are not warned about.
Note: If a macro is actually used, but only used in
skipped conditional blocks, then CPP will report it as unused. To avoid
the warning in such a case, you might improve the scope of the macro's
definition by, for example, moving it into the first skipped block.
Alternatively, you could provide a dummy use with something like:
#if defined the_macro_causing_the_warning
#endif
- -Wendif-labels
- Warn whenever an #else or an #endif are followed by text.
This usually happens in code of the form
#if FOO
...
#else FOO
...
#endif FOO
The second and third "FOO"
should be in comments, but often are not in older programs. This warning
is on by default.
- -Werror
- Make all warnings into hard errors. Source code which triggers warnings
will be rejected.
- -Wsystem-headers
- Issue warnings for code in system headers. These are normally unhelpful in
finding bugs in your own code, therefore suppressed. If you are
responsible for the system library, you may want to see them.
- -w
- Suppress all warnings, including those which GNU CPP issues by
default.
- -pedantic
- Issue all the mandatory diagnostics listed in the C standard. Some of them
are left out by default, since they trigger frequently on harmless
code.
- -pedantic-errors
- Issue all the mandatory diagnostics, and make all mandatory diagnostics
into errors. This includes mandatory diagnostics that GCC issues without
-pedantic but treats as warnings.
- -M
- Instead of outputting the result of preprocessing, output a rule suitable
for make describing the dependencies of the main source file. The
preprocessor outputs one make rule containing the object file name
for that source file, a colon, and the names of all the included files,
including those coming from -include or -imacros command
line options.
Unless specified explicitly (with -MT or -MQ),
the object file name consists of the name of the source file with any
suffix replaced with object file suffix and with any leading directory
parts removed. If there are many included files then the rule is split
into several lines using \-newline. The rule has no commands.
This option does not suppress the preprocessor's debug output,
such as -dM. To avoid mixing such debug output with the
dependency rules you should explicitly specify the dependency output
file with -MF, or use an environment variable like
DEPENDENCIES_OUTPUT. Debug output will still be sent to the
regular output stream as normal.
Passing -M to the driver implies -E, and
suppresses warnings with an implicit -w.
- -MM
- Like -M but do not mention header files that are found in system
header directories, nor header files that are included, directly or
indirectly, from such a header.
This implies that the choice of angle brackets or double
quotes in an #include directive does not in itself determine
whether that header will appear in -MM dependency output. This is
a slight change in semantics from GCC versions 3.0 and earlier.
- -MF file
- When used with -M or -MM, specifies a file to write the
dependencies to. If no -MF switch is given the preprocessor sends
the rules to the same place it would have sent preprocessed output.
When used with the driver options -MD or -MMD,
-MF overrides the default dependency output file.
- -MG
- In conjunction with an option such as -M requesting dependency
generation, -MG assumes missing header files are generated files
and adds them to the dependency list without raising an error. The
dependency filename is taken directly from the
"#include" directive without prepending
any path. -MG also suppresses preprocessed output, as a missing
header file renders this useless.
This feature is used in automatic updating of makefiles.
- -MP
- This option instructs CPP to add a phony target for each dependency other
than the main file, causing each to depend on nothing. These dummy rules
work around errors make gives if you remove header files without
updating the Makefile to match.
This is typical output:
test.o: test.c test.h
test.h:
- -MT target
- Change the target of the rule emitted by dependency generation. By default
CPP takes the name of the main input file, deletes any directory
components and any file suffix such as .c, and appends the
platform's usual object suffix. The result is the target.
An -MT option will set the target to be exactly the
string you specify. If you want multiple targets, you can specify them
as a single argument to -MT, or use multiple -MT
options.
For example, -MT '$(objpfx)foo.o' might give
$(objpfx)foo.o: foo.c
- -MQ target
- Same as -MT, but it quotes any characters which are special to
Make. -MQ '$(objpfx)foo.o' gives
$$(objpfx)foo.o: foo.c
The default target is automatically quoted, as if it were
given with -MQ.
- -MD
- -MD is equivalent to -M -MF file, except that
-E is not implied. The driver determines file based on
whether an -o option is given. If it is, the driver uses its
argument but with a suffix of .d, otherwise it takes the name of
the input file, removes any directory components and suffix, and applies a
.d suffix.
If -MD is used in conjunction with -E, any
-o switch is understood to specify the dependency output file,
but if used without -E, each -o is understood to specify a
target object file.
Since -E is not implied, -MD can be used to
generate a dependency output file as a side-effect of the compilation
process.
- -MMD
- Like -MD except mention only user header files, not system header
files.
- -fpch-deps
- When using precompiled headers, this flag will cause the dependency-output
flags to also list the files from the precompiled header's dependencies.
If not specified only the precompiled header would be listed and not the
files that were used to create it because those files are not consulted
when a precompiled header is used.
- -fpch-preprocess
- This option allows use of a precompiled header together with -E. It
inserts a special "#pragma",
"#pragma GCC pch_preprocess
"filename "" in the
output to mark the place where the precompiled header was found, and its
filename. When -fpreprocessed is in use, GCC recognizes this
"#pragma" and loads the PCH.
This option is off by default, because the resulting
preprocessed output is only really suitable as input to GCC. It is
switched on by -save-temps.
You should not write this
"#pragma" in your own code, but it is
safe to edit the filename if the PCH file is available in a different
location. The filename may be absolute or it may be relative to GCC's
current directory.
- -x c
- -x c++
- -x objective-c
- -x assembler-with-cpp
- Specify the source language: C, C++, Objective-C, or assembly. This has
nothing to do with standards conformance or extensions; it merely selects
which base syntax to expect. If you give none of these options, cpp will
deduce the language from the extension of the source file: .c,
.cc, .m, or .S. Some other common extensions for C++
and assembly are also recognized. If cpp does not recognize the extension,
it will treat the file as C; this is the most generic mode.
Note: Previous versions of cpp accepted a -lang
option which selected both the language and the standards conformance
level. This option has been removed, because it conflicts with the
-l option.
- -std=standard
- -ansi
- Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.
standard may be one of:
- "c90"
- "c89"
- "iso9899:1990"
- The ISO C standard from 1990. c90 is the customary shorthand for
this version of the standard.
The -ansi option is equivalent to -std=c90.
- "iso9899:199409"
- The 1990 C standard, as amended in 1994.
- "iso9899:1999"
- "c99"
- "iso9899:199x"
- "c9x"
- The revised ISO C standard, published in December 1999. Before
publication, this was known as C9X.
- "iso9899:2011"
- "c11"
- "c1x"
- The revised ISO C standard, published in December 2011. Before
publication, this was known as C1X.
- "gnu90"
- "gnu89"
- The 1990 C standard plus GNU extensions. This is the default.
- "gnu99"
- "gnu9x"
- The 1999 C standard plus GNU extensions.
- "gnu11"
- "gnu1x"
- The 2011 C standard plus GNU extensions.
- "c++98"
- The 1998 ISO C++ standard plus amendments.
- "gnu++98"
- The same as -std=c++98 plus GNU extensions. This is the default for
C++ code.
- -I-
- Split the include path. Any directories specified with -I options
before -I- are searched only for headers requested with
"#include "file"";
they are not searched for
"#include <
file>". If additional directories
are specified with -I options after the -I-, those
directories are searched for all #include directives.
In addition, -I- inhibits the use of the directory of
the current file directory as the first search directory for
"#include "file"".
This option has been deprecated.
- -nostdinc
- Do not search the standard system directories for header files. Only the
directories you have specified with -I options (and the directory
of the current file, if appropriate) are searched.
- -nostdinc++
- Do not search for header files in the C++-specific standard directories,
but do still search the other standard directories. (This option is used
when building the C++ library.)
- -include file
- Process file as if "#include
"file"" appeared as the first line of the primary
source file. However, the first directory searched for file is the
preprocessor's working directory instead of the directory
containing the main source file. If not found there, it is searched for in
the remainder of the "#include
"..."" search chain as normal.
If multiple -include options are given, the files are
included in the order they appear on the command line.
- -imacros file
- Exactly like -include, except that any output produced by scanning
file is thrown away. Macros it defines remain defined. This allows
you to acquire all the macros from a header without also processing its
declarations.
All files specified by -imacros are processed before
all files specified by -include.
- -idirafter dir
- Search dir for header files, but do it after all directories
specified with -I and the standard system directories have been
exhausted. dir is treated as a system include directory. If
dir begins with "=", then the
"=" will be replaced by the sysroot
prefix; see --sysroot and -isysroot.
- -iprefix prefix
- Specify prefix as the prefix for subsequent -iwithprefix
options. If the prefix represents a directory, you should include the
final /.
- -iwithprefix dir
- -iwithprefixbefore dir
- Append dir to the prefix specified previously with -iprefix,
and add the resulting directory to the include search path.
-iwithprefixbefore puts it in the same place -I would;
-iwithprefix puts it where -idirafter would.
- -isysroot dir
- This option is like the --sysroot option, but applies only to
header files (except for Darwin targets, where it applies to both header
files and libraries). See the --sysroot option for more
information.
- -imultilib dir
- Use dir as a subdirectory of the directory containing
target-specific C++ headers.
- -isystem dir
- Search dir for header files, after all directories specified by
-I but before the standard system directories. Mark it as a system
directory, so that it gets the same special treatment as is applied to the
standard system directories. If dir begins with
"=", then the
"=" will be replaced by the sysroot
prefix; see --sysroot and -isysroot.
- -iquote dir
- Search dir only for header files requested with
"#include "file"";
they are not searched for
"#include <
file>", before all directories
specified by -I and before the standard system directories. If
dir begins with "=", then the
"=" will be replaced by the sysroot
prefix; see --sysroot and -isysroot.
- -fdirectives-only
- When preprocessing, handle directives, but do not expand macros.
The option's behavior depends on the -E and
-fpreprocessed options.
With -E, preprocessing is limited to the handling of
directives such as "#define",
"#ifdef", and
"#error". Other preprocessor
operations, such as macro expansion and trigraph conversion are not
performed. In addition, the -dD option is implicitly enabled.
With -fpreprocessed, predefinition of command line and
most builtin macros is disabled. Macros such as
"__LINE__", which are contextually
dependent, are handled normally. This enables compilation of files
previously preprocessed with "-E
-fdirectives-only".
With both -E and -fpreprocessed, the rules for
-fpreprocessed take precedence. This enables full preprocessing
of files previously preprocessed with "-E
-fdirectives-only".
- -fdollars-in-identifiers
- Accept $ in identifiers.
- -fextended-identifiers
- Accept universal character names in identifiers. This option is
experimental; in a future version of GCC, it will be enabled by default
for C99 and C++.
- -fno-canonical-system-headers
- When preprocessing, do not shorten system header paths with
canonicalization.
- -fpreprocessed
- Indicate to the preprocessor that the input file has already been
preprocessed. This suppresses things like macro expansion, trigraph
conversion, escaped newline splicing, and processing of most directives.
The preprocessor still recognizes and removes comments, so that you can
pass a file preprocessed with -C to the compiler without problems.
In this mode the integrated preprocessor is little more than a tokenizer
for the front ends.
-fpreprocessed is implicit if the input file has one of
the extensions .i, .ii or .mi. These are the
extensions that GCC uses for preprocessed files created by
-save-temps.
- -ftabstop=width
- Set the distance between tab stops. This helps the preprocessor report
correct column numbers in warnings or errors, even if tabs appear on the
line. If the value is less than 1 or greater than 100, the option is
ignored. The default is 8.
- -fdebug-cpp
- This option is only useful for debugging GCC. When used with -E,
dumps debugging information about location maps. Every token in the output
is preceded by the dump of the map its location belongs to. The dump of
the map holding the location of a token would be:
{"P":F</file/path>;"F":F</includer/path>;"L":<line_num>;"C":<col_num>;"S":<system_header_p>;"M":<map_address>;"E":<macro_expansion_p>,"loc":<location>}
When used without -E, this option has no effect.
- -ftrack-macro-expansion[=level]
- Track locations of tokens across macro expansions. This allows the
compiler to emit diagnostic about the current macro expansion stack when a
compilation error occurs in a macro expansion. Using this option makes the
preprocessor and the compiler consume more memory. The level
parameter can be used to choose the level of precision of token location
tracking thus decreasing the memory consumption if necessary. Value
0 of level de-activates this option just as if no
-ftrack-macro-expansion was present on the command line. Value
1 tracks tokens locations in a degraded mode for the sake of
minimal memory overhead. In this mode all tokens resulting from the
expansion of an argument of a function-like macro have the same location.
Value 2 tracks tokens locations completely. This value is the most
memory hungry. When this option is given no argument, the default
parameter value is 2.
Note that -ftrack-macro-expansion=2 is activated by
default.
- -fexec-charset=charset
- Set the execution character set, used for string and character constants.
The default is UTF-8. charset can be any encoding supported by the
system's "iconv" library routine.
- -fwide-exec-charset=charset
- Set the wide execution character set, used for wide string and character
constants. The default is UTF-32 or UTF-16, whichever corresponds to the
width of "wchar_t". As with
-fexec-charset, charset can be any encoding supported by the
system's "iconv" library routine;
however, you will have problems with encodings that do not fit exactly in
"wchar_t".
- -finput-charset=charset
- Set the input character set, used for translation from the character set
of the input file to the source character set used by GCC. If the locale
does not specify, or GCC cannot get this information from the locale, the
default is UTF-8. This can be overridden by either the locale or this
command line option. Currently the command line option takes precedence if
there's a conflict. charset can be any encoding supported by the
system's "iconv" library routine.
- -fworking-directory
- Enable generation of linemarkers in the preprocessor output that will let
the compiler know the current working directory at the time of
preprocessing. When this option is enabled, the preprocessor will emit,
after the initial linemarker, a second linemarker with the current working
directory followed by two slashes. GCC will use this directory, when it's
present in the preprocessed input, as the directory emitted as the current
working directory in some debugging information formats. This option is
implicitly enabled if debugging information is enabled, but this can be
inhibited with the negated form -fno-working-directory. If the
-P flag is present in the command line, this option has no effect,
since no "#line" directives are emitted
whatsoever.
- -fno-show-column
- Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand the
column numbers, such as dejagnu.
- -A predicate=answer
- Make an assertion with the predicate predicate and answer
answer. This form is preferred to the older form -A
predicate(answer), which is still supported,
because it does not use shell special characters.
- -A -predicate=answer
- Cancel an assertion with the predicate predicate and answer
answer.
- -dCHARS
- CHARS is a sequence of one or more of the following characters, and
must not be preceded by a space. Other characters are interpreted by the
compiler proper, or reserved for future versions of GCC, and so are
silently ignored. If you specify characters whose behavior conflicts, the
result is undefined.
- M
- Instead of the normal output, generate a list of #define directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out what is
predefined in your version of the preprocessor. Assuming you have no file
foo.h, the command
touch foo.h; cpp -dM foo.h
will show all the predefined macros.
If you use -dM without the -E option, -dM
is interpreted as a synonym for -fdump-rtl-mach.
- D
- Like M except in two respects: it does not include the
predefined macros, and it outputs both the #define
directives and the result of preprocessing. Both kinds of output go to the
standard output file.
- N
- Like D, but emit only the macro names, not their expansions.
- I
- Output #include directives in addition to the result of
preprocessing.
- U
- Like D except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the output
is delayed until the use or test of the macro; and #undef
directives are also output for macros tested but undefined at the
time.
- -P
- Inhibit generation of linemarkers in the output from the preprocessor.
This might be useful when running the preprocessor on something that is
not C code, and will be sent to a program which might be confused by the
linemarkers.
- -C
- Do not discard comments. All comments are passed through to the output
file, except for comments in processed directives, which are deleted along
with the directive.
You should be prepared for side effects when using -C;
it causes the preprocessor to treat comments as tokens in their own
right. For example, comments appearing at the start of what would be a
directive line have the effect of turning that line into an ordinary
source line, since the first token on the line is no longer a
#.
- -CC
- Do not discard comments, including during macro expansion. This is like
-C, except that comments contained within macros are also passed
through to the output file where the macro is expanded.
In addition to the side-effects of the -C option, the
-CC option causes all C++-style comments inside a macro to be
converted to C-style comments. This is to prevent later use of that
macro from inadvertently commenting out the remainder of the source
line.
The -CC option is generally used to support lint
comments.
- -traditional-cpp
- Try to imitate the behavior of old-fashioned C preprocessors, as opposed
to ISO C preprocessors.
- -trigraphs
- Process trigraph sequences. These are three-character sequences, all
starting with ??, that are defined by ISO C to stand for single
characters. For example, ??/ stands for \, so '??/n'
is a character constant for a newline. By default, GCC ignores trigraphs,
but in standard-conforming modes it converts them. See the -std and
-ansi options.
The nine trigraphs and their replacements are
Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
Replacement: [ ] { } # \ ^ | ~
- -remap
- Enable special code to work around file systems which only permit very
short file names, such as MS-DOS.
- --help
- --target-help
- Print text describing all the command line options instead of
preprocessing anything.
- -v
- Verbose mode. Print out GNU CPP's version number at the beginning of
execution, and report the final form of the include path.
- -H
- Print the name of each header file used, in addition to other normal
activities. Each name is indented to show how deep in the #include
stack it is. Precompiled header files are also printed, even if they are
found to be invalid; an invalid precompiled header file is printed with
...x and a valid one with ...! .
- -version
- --version
- Print out GNU CPP's version number. With one dash, proceed to preprocess
as normal. With two dashes, exit immediately.
You can pass options to the assembler.
- -Wa,option
- Pass option as an option to the assembler. If option
contains commas, it is split into multiple options at the commas.
- -Xassembler option
- Pass option as an option to the assembler. You can use this to
supply system-specific assembler options that GCC does not recognize.
If you want to pass an option that takes an argument, you must
use -Xassembler twice, once for the option and once for the
argument.
These options come into play when the compiler links object files into an
executable output file. They are meaningless if the compiler is not doing a
link step.
- object-file-name
- A file name that does not end in a special recognized suffix is considered
to name an object file or library. (Object files are distinguished from
libraries by the linker according to the file contents.) If linking is
done, these object files are used as input to the linker.
- -c
- -S
- -E
- If any of these options is used, then the linker is not run, and object
file names should not be used as arguments.
- -llibrary
- -l library
- Search the library named library when linking. (The second
alternative with the library as a separate argument is only for POSIX
compliance and is not recommended.)
It makes a difference where in the command you write this
option; the linker searches and processes libraries and object files in
the order they are specified. Thus, foo.o -lz bar.o searches
library z after file foo.o but before bar.o. If
bar.o refers to functions in z, those functions may not be
loaded.
The linker searches a standard list of directories for the
library, which is actually a file named
liblibrary.a. The linker then uses this file as if
it had been specified precisely by name.
The directories searched include several standard system
directories plus any that you specify with -L.
Normally the files found this way are library files---archive
files whose members are object files. The linker handles an archive file
by scanning through it for members which define symbols that have so far
been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only
difference between using an -l option and specifying a file name
is that -l surrounds library with lib and .a
and searches several directories.
- -lobjc
- You need this special case of the -l option in order to link an
Objective-C or Objective-C++ program.
- -nostartfiles
- Do not use the standard system startup files when linking. The standard
system libraries are used normally, unless -nostdlib or
-nodefaultlibs is used.
- -nodefaultlibs
- Do not use the standard system libraries when linking. Only the libraries
you specify are passed to the linker, and options specifying linkage of
the system libraries, such as
"-static-libgcc" or
"-shared-libgcc", are ignored. The
standard startup files are used normally, unless -nostartfiles is
used.
The compiler may generate calls to
"memcmp",
"memset",
"memcpy" and
"memmove". These entries are usually
resolved by entries in libc. These entry points should be supplied
through some other mechanism when this option is specified.
- -nostdlib
- Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify are passed to the linker,
and options specifying linkage of the system libraries, such as
"-static-libgcc" or
"-shared-libgcc", are ignored.
The compiler may generate calls to
"memcmp",
"memset",
"memcpy" and
"memmove". These entries are usually
resolved by entries in libc. These entry points should be supplied
through some other mechanism when this option is specified.
One of the standard libraries bypassed by -nostdlib and
-nodefaultlibs is libgcc.a, a library of internal
subroutines which GCC uses to overcome shortcomings of particular
machines, or special needs for some languages.
In most cases, you need libgcc.a even when you want to
avoid other standard libraries. In other words, when you specify
-nostdlib or -nodefaultlibs you should usually specify
-lgcc as well. This ensures that you have no unresolved
references to internal GCC library subroutines. (An example of such an
internal subroutine is __main, used to ensure C++ constructors
are called.)
- -pie
- Produce a position independent executable on targets that support it. For
predictable results, you must also specify the same set of options used
for compilation (-fpie, -fPIE, or model suboptions) when you
specify this linker option.
- -rdynamic
- Pass the flag -export-dynamic to the ELF linker, on targets that
support it. This instructs the linker to add all symbols, not only used
ones, to the dynamic symbol table. This option is needed for some uses of
"dlopen" or to allow obtaining
backtraces from within a program.
- -s
- Remove all symbol table and relocation information from the
executable.
- -static
- On systems that support dynamic linking, this prevents linking with the
shared libraries. On other systems, this option has no effect.
- -shared
- Produce a shared object which can then be linked with other objects to
form an executable. Not all systems support this option. For predictable
results, you must also specify the same set of options used for
compilation (-fpic, -fPIC, or model suboptions) when you
specify this linker option.[1]
- -shared-libgcc
- -static-libgcc
- On systems that provide libgcc as a shared library, these options
force the use of either the shared or static version, respectively. If no
shared version of libgcc was built when the compiler was
configured, these options have no effect.
There are several situations in which an application should
use the shared libgcc instead of the static version. The most
common of these is when the application wishes to throw and catch
exceptions across different shared libraries. In that case, each of the
libraries as well as the application itself should use the shared
libgcc.
Therefore, the G++ and GCJ drivers automatically add
-shared-libgcc whenever you build a shared library or a main
executable, because C++ and Java programs typically use exceptions, so
this is the right thing to do.
If, instead, you use the GCC driver to create shared
libraries, you may find that they are not always linked with the shared
libgcc. If GCC finds, at its configuration time, that you have a
non-GNU linker or a GNU linker that does not support option
--eh-frame-hdr, it links the shared version of libgcc into
shared libraries by default. Otherwise, it takes advantage of the linker
and optimizes away the linking with the shared version of libgcc,
linking with the static version of libgcc by default. This allows
exceptions to propagate through such shared libraries, without incurring
relocation costs at library load time.
However, if a library or main executable is supposed to throw
or catch exceptions, you must link it using the G++ or GCJ driver, as
appropriate for the languages used in the program, or using the option
-shared-libgcc, such that it is linked with the shared
libgcc.
- -static-libasan
- When the -fsanitize=address option is used to link a program, the
GCC driver automatically links against libasan. If libasan
is available as a shared library, and the -static option is not
used, then this links against the shared version of libasan. The
-static-libasan option directs the GCC driver to link
libasan statically, without necessarily linking other libraries
statically.
- -static-libtsan
- When the -fsanitize=thread option is used to link a program, the
GCC driver automatically links against libtsan. If libtsan
is available as a shared library, and the -static option is not
used, then this links against the shared version of libtsan. The
-static-libtsan option directs the GCC driver to link
libtsan statically, without necessarily linking other libraries
statically.
- -static-libstdc++
- When the g++ program is used to link a C++ program, it normally
automatically links against libstdc++. If libstdc++ is
available as a shared library, and the -static option is not used,
then this links against the shared version of libstdc++. That is
normally fine. However, it is sometimes useful to freeze the version of
libstdc++ used by the program without going all the way to a fully
static link. The -static-libstdc++ option directs the g++
driver to link libstdc++ statically, without necessarily linking
other libraries statically.
- -symbolic
- Bind references to global symbols when building a shared object. Warn
about any unresolved references (unless overridden by the link editor
option -Xlinker -z -Xlinker defs). Only a few systems support this
option.
- -T script
- Use script as the linker script. This option is supported by most
systems using the GNU linker. On some targets, such as bare-board targets
without an operating system, the -T option may be required when
linking to avoid references to undefined symbols.
- -Xlinker option
- Pass option as an option to the linker. You can use this to supply
system-specific linker options that GCC does not recognize.
If you want to pass an option that takes a separate argument,
you must use -Xlinker twice, once for the option and once for the
argument. For example, to pass -assert definitions, you must
write -Xlinker -assert -Xlinker definitions. It does not work to
write -Xlinker "-assert definitions", because this
passes the entire string as a single argument, which is not what the
linker expects.
When using the GNU linker, it is usually more convenient to
pass arguments to linker options using the
option=value syntax than as separate arguments. For
example, you can specify -Xlinker -Map=output.map rather than
-Xlinker -Map -Xlinker output.map. Other linkers may not support
this syntax for command-line options.
- -Wl,option
- Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas. You can use this
syntax to pass an argument to the option. For example,
-Wl,-Map,output.map passes -Map output.map to the linker.
When using the GNU linker, you can also get the same effect with
-Wl,-Map=output.map.
- -u symbol
- Pretend the symbol symbol is undefined, to force linking of library
modules to define it. You can use -u multiple times with different
symbols to force loading of additional library modules.
These options specify directories to search for header files, for libraries and
for parts of the compiler:
- -Idir
- Add the directory dir to the head of the list of directories to be
searched for header files. This can be used to override a system header
file, substituting your own version, since these directories are searched
before the system header file directories. However, you should not use
this option to add directories that contain vendor-supplied system header
files (use -isystem for that). If you use more than one -I
option, the directories are scanned in left-to-right order; the standard
system directories come after.
If a standard system include directory, or a directory
specified with -isystem, is also specified with -I, the
-I option is ignored. The directory is still searched but as a
system directory at its normal position in the system include chain.
This is to ensure that GCC's procedure to fix buggy system headers and
the ordering for the "include_next"
directive are not inadvertently changed. If you really need to change
the search order for system directories, use the -nostdinc and/or
-isystem options.
- -iplugindir=dir
- Set the directory to search for plugins that are passed by
-fplugin=name instead of
-fplugin=path/name.so. This option is
not meant to be used by the user, but only passed by the driver.
- -iquotedir
- Add the directory dir to the head of the list of directories to be
searched for header files only for the case of #include
"file"; they are not searched for
#include <file>, otherwise just like
-I.
- -Ldir
- Add directory dir to the list of directories to be searched for
-l.
- -Bprefix
- This option specifies where to find the executables, libraries, include
files, and data files of the compiler itself.
The compiler driver program runs one or more of the
subprograms cpp, cc1, as and ld. It tries
prefix as a prefix for each program it tries to run, both with
and without machine/version/.
For each subprogram to be run, the compiler driver first tries
the -B prefix, if any. If that name is not found, or if -B
is not specified, the driver tries two standard prefixes,
/usr/lib/gcc/ and /usr/local/lib/gcc/. If neither of those
results in a file name that is found, the unmodified program name is
searched for using the directories specified in your PATH
environment variable.
The compiler checks to see if the path provided by the
-B refers to a directory, and if necessary it adds a directory
separator character at the end of the path.
-B prefixes that effectively specify directory names
also apply to libraries in the linker, because the compiler translates
these options into -L options for the linker. They also apply to
includes files in the preprocessor, because the compiler translates
these options into -isystem options for the preprocessor. In this
case, the compiler appends include to the prefix.
The runtime support file libgcc.a can also be searched
for using the -B prefix, if needed. If it is not found there, the
two standard prefixes above are tried, and that is all. The file is left
out of the link if it is not found by those means.
Another way to specify a prefix much like the -B prefix
is to use the environment variable GCC_EXEC_PREFIX.
As a special kludge, if the path provided by -B is
[dir/]stageN/, where N is a number in the
range 0 to 9, then it is replaced by [dir/]include. This is to
help with boot-strapping the compiler.
- -specs=file
- Process file after the compiler reads in the standard specs
file, in order to override the defaults which the gcc driver
program uses when determining what switches to pass to cc1,
cc1plus, as, ld, etc. More than one
-specs=file can be specified on the command line, and they
are processed in order, from left to right.
- --sysroot=dir
- Use dir as the logical root directory for headers and libraries.
For example, if the compiler normally searches for headers in
/usr/include and libraries in /usr/lib, it instead searches
dir/usr/include and dir/usr/lib.
If you use both this option and the -isysroot option,
then the --sysroot option applies to libraries, but the
-isysroot option applies to header files.
The GNU linker (beginning with version 2.16) has the necessary
support for this option. If your linker does not support this option,
the header file aspect of --sysroot still works, but the library
aspect does not.
- --no-sysroot-suffix
- For some targets, a suffix is added to the root directory specified with
--sysroot, depending on the other options used, so that headers may
for example be found in
dir/suffix/usr/include instead of
dir/usr/include. This option disables the addition
of such a suffix.
- -I-
- This option has been deprecated. Please use -iquote instead for
-I directories before the -I- and remove the -I-. Any
directories you specify with -I options before the -I-
option are searched only for the case of #include
"file"; they are not searched for #include
<file>.
If additional directories are specified with -I options
after the -I-, these directories are searched for all
#include directives. (Ordinarily all -I directories
are used this way.)
In addition, the -I- option inhibits the use of the
current directory (where the current input file came from) as the first
search directory for #include "file".
There is no way to override this effect of -I-. With -I.
you can specify searching the directory that is current when the
compiler is invoked. That is not exactly the same as what the
preprocessor does by default, but it is often satisfactory.
-I- does not inhibit the use of the standard system
directories for header files. Thus, -I- and -nostdinc are
independent.
The usual way to run GCC is to run the executable called gcc, or
machine-gcc when cross-compiling, or
machine-gcc-version to run a version other than the one
that was installed last.
Each target machine types can have its own special options, starting with
-m, to choose among various hardware models or configurations---for
example, 68010 vs 68020, floating coprocessor or none. A single installed
version of the compiler can compile for any model or configuration, according
to the options specified.
Some configurations of the compiler also support additional
special options, usually for compatibility with other compilers on the same
platform.
These options are defined for AArch64 implementations:
- -mbig-endian
- Generate big-endian code. This is the default when GCC is configured for
an aarch64_be-*-* target.
- -mgeneral-regs-only
- Generate code which uses only the general registers.
- -mlittle-endian
- Generate little-endian code. This is the default when GCC is configured
for an aarch64-*-* but not an aarch64_be-*-* target.
- -mcmodel=tiny
- Generate code for the tiny code model. The program and its statically
defined symbols must be within 1GB of each other. Pointers are 64 bits.
Programs can be statically or dynamically linked. This model is not fully
implemented and mostly treated as small.
- -mcmodel=small
- Generate code for the small code model. The program and its statically
defined symbols must be within 4GB of each other. Pointers are 64 bits.
Programs can be statically or dynamically linked. This is the default code
model.
- -mcmodel=large
- Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Pointers are 64 bits. Programs can be
statically linked only.
- -mstrict-align
- Do not assume that unaligned memory references will be handled by the
system.
- -momit-leaf-frame-pointer
- -mno-omit-leaf-frame-pointer
- Omit or keep the frame pointer in leaf functions. The former behaviour is
the default.
- -mtls-dialect=desc
- Use TLS descriptors as the thread-local storage mechanism for dynamic
accesses of TLS variables. This is the default.
- -mtls-dialect=traditional
- Use traditional TLS as the thread-local storage mechanism for dynamic
accesses of TLS variables.
- -mfix-cortex-a53-835769
- -mno-fix-cortex-a53-835769
- Enable or disable the workaround for the ARM Cortex-A53 erratum number
835769. This will involve inserting a NOP instruction between memory
instructions and 64-bit integer multiply-accumulate instructions.
- -march=name
- Specify the name of the target architecture, optionally suffixed by one or
more feature modifiers. This option has the form
-march=arch{+[no]feature}*, where the
only value for arch is armv8-a. The possible values for
feature are documented in the sub-section below.
Where conflicting feature modifiers are specified, the
right-most feature is used.
GCC uses this name to determine what kind of instructions it
can emit when generating assembly code. This option can be used in
conjunction with or instead of the -mcpu= option.
- -mcpu=name
- Specify the name of the target processor, optionally suffixed by one or
more feature modifiers. This option has the form
-mcpu=cpu{+[no]feature}*, where the
possible values for cpu are generic, large. The
possible values for feature are documented in the sub-section
below.
Where conflicting feature modifiers are specified, the
right-most feature is used.
GCC uses this name to determine what kind of instructions it
can emit when generating assembly code.
- -mtune=name
- Specify the name of the processor to tune the performance for. The code
will be tuned as if the target processor were of the type specified in
this option, but still using instructions compatible with the target
processor specified by a -mcpu= option. This option cannot be
suffixed by feature modifiers.
-march and -mcpu feature modifiers
Feature modifiers used with -march and -mcpu can be
one the following:
- crc
- Enable CRC extension.
- crypto
- Enable Crypto extension. This implies Advanced SIMD is enabled.
- fp
- Enable floating-point instructions.
- simd
- Enable Advanced SIMD instructions. This implies floating-point
instructions are enabled. This is the default for all current possible
values for options -march and -mcpu=.
These -m options are defined for Adapteva Epiphany:
- -mhalf-reg-file
- Don't allocate any register in the range
"r32"..."r63".
That allows code to run on hardware variants that lack these
registers.
- -mprefer-short-insn-regs
- Preferrentially allocate registers that allow short instruction
generation. This can result in increased instruction count, so this may
either reduce or increase overall code size.
- -mbranch-cost=num
- Set the cost of branches to roughly num "simple"
instructions. This cost is only a heuristic and is not guaranteed to
produce consistent results across releases.
- -mcmove
- Enable the generation of conditional moves.
- -mnops=num
- Emit num NOPs before every other generated instruction.
- -mno-soft-cmpsf
- For single-precision floating-point comparisons, emit an
"fsub" instruction and test the flags.
This is faster than a software comparison, but can get incorrect results
in the presence of NaNs, or when two different small numbers are compared
such that their difference is calculated as zero. The default is
-msoft-cmpsf, which uses slower, but IEEE-compliant, software
comparisons.
- -mstack-offset=num
- Set the offset between the top of the stack and the stack pointer. E.g., a
value of 8 means that the eight bytes in the range
"sp+0...sp+7" can be used by leaf
functions without stack allocation. Values other than 8 or
16 are untested and unlikely to work. Note also that this option
changes the ABI; compiling a program with a different stack offset than
the libraries have been compiled with generally does not work. This option
can be useful if you want to evaluate if a different stack offset would
give you better code, but to actually use a different stack offset to
build working programs, it is recommended to configure the toolchain with
the appropriate --with-stack-offset=num option.
- -mno-round-nearest
- Make the scheduler assume that the rounding mode has been set to
truncating. The default is -mround-nearest.
- -mlong-calls
- If not otherwise specified by an attribute, assume all calls might be
beyond the offset range of the "b" /
"bl" instructions, and therefore load
the function address into a register before performing a (otherwise
direct) call. This is the default.
- -mshort-calls
- If not otherwise specified by an attribute, assume all direct calls are in
the range of the "b" /
"bl" instructions, so use these
instructions for direct calls. The default is -mlong-calls.
- -msmall16
- Assume addresses can be loaded as 16-bit unsigned values. This does not
apply to function addresses for which -mlong-calls semantics are in
effect.
- -mfp-mode=mode
- Set the prevailing mode of the floating-point unit. This determines the
floating-point mode that is provided and expected at function call and
return time. Making this mode match the mode you predominantly need at
function start can make your programs smaller and faster by avoiding
unnecessary mode switches.
mode can be set to one the following values:
- caller
- Any mode at function entry is valid, and retained or restored when the
function returns, and when it calls other functions. This mode is useful
for compiling libraries or other compilation units you might want to
incorporate into different programs with different prevailing FPU modes,
and the convenience of being able to use a single object file outweighs
the size and speed overhead for any extra mode switching that might be
needed, compared with what would be needed with a more specific choice of
prevailing FPU mode.
- truncate
- This is the mode used for floating-point calculations with truncating
(i.e. round towards zero) rounding mode. That includes conversion from
floating point to integer.
- round-nearest
- This is the mode used for floating-point calculations with
round-to-nearest-or-even rounding mode.
- int
- This is the mode used to perform integer calculations in the FPU, e.g.
integer multiply, or integer multiply-and-accumulate.
The default is -mfp-mode=caller
- -mnosplit-lohi
- -mno-postinc
- -mno-postmodify
- Code generation tweaks that disable, respectively, splitting of 32-bit
loads, generation of post-increment addresses, and generation of
post-modify addresses. The defaults are msplit-lohi,
-mpost-inc, and -mpost-modify.
- -mnovect-double
- Change the preferred SIMD mode to SImode. The default is
-mvect-double, which uses DImode as preferred SIMD mode.
- -max-vect-align=num
- The maximum alignment for SIMD vector mode types. num may be 4 or
8. The default is 8. Note that this is an ABI change, even though many
library function interfaces are unaffected if they don't use SIMD vector
modes in places that affect size and/or alignment of relevant types.
- -msplit-vecmove-early
- Split vector moves into single word moves before reload. In theory this
can give better register allocation, but so far the reverse seems to be
generally the case.
- -m1reg-reg
- Specify a register to hold the constant -1, which makes loading small
negative constants and certain bitmasks faster. Allowable values for
reg are r43 and r63, which specify use of that
register as a fixed register, and none, which means that no
register is used for this purpose. The default is -m1reg-none.
These -m options are defined for Advanced RISC Machines (ARM)
architectures:
- -mabi=name
- Generate code for the specified ABI. Permissible values are:
apcs-gnu, atpcs, aapcs, aapcs-linux and
iwmmxt.
- -mapcs-frame
- Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code. Specifying -fomit-frame-pointer with
this option causes the stack frames not to be generated for leaf
functions. The default is -mno-apcs-frame.
- -mapcs
- This is a synonym for -mapcs-frame.
- -mthumb-interwork
- Generate code that supports calling between the ARM and Thumb instruction
sets. Without this option, on pre-v5 architectures, the two instruction
sets cannot be reliably used inside one program. The default is
-mno-thumb-interwork, since slightly larger code is generated when
-mthumb-interwork is specified. In AAPCS configurations this option
is meaningless.
- -mno-sched-prolog
- Prevent the reordering of instructions in the function prologue, or the
merging of those instruction with the instructions in the function's body.
This means that all functions start with a recognizable set of
instructions (or in fact one of a choice from a small set of different
function prologues), and this information can be used to locate the start
of functions inside an executable piece of code. The default is
-msched-prolog.
- -mfloat-abi=name
- Specifies which floating-point ABI to use. Permissible values are:
soft, softfp and hard.
Specifying soft causes GCC to generate output
containing library calls for floating-point operations. softfp
allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
hard allows generation of floating-point instructions and uses
FPU-specific calling conventions.
The default depends on the specific target configuration. Note
that the hard-float and soft-float ABIs are not link-compatible; you
must compile your entire program with the same ABI, and link with a
compatible set of libraries.
- -mlittle-endian
- Generate code for a processor running in little-endian mode. This is the
default for all standard configurations.
- -mbig-endian
- Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.
- -mwords-little-endian
- This option only applies when generating code for big-endian processors.
Generate code for a little-endian word order but a big-endian byte order.
That is, a byte order of the form 32107654. Note: this option
should only be used if you require compatibility with code for big-endian
ARM processors generated by versions of the compiler prior to 2.8. This
option is now deprecated.
- -march=name
- This specifies the name of the target ARM architecture. GCC uses this name
to determine what kind of instructions it can emit when generating
assembly code. This option can be used in conjunction with or instead of
the -mcpu= option. Permissible names are: armv2,
armv2a, armv3, armv3m, armv4, armv4t,
armv5, armv5t, armv5e, armv5te, armv6,
armv6j, armv6t2, armv6z, armv6zk,
armv6-m, armv7, armv7-a, armv7-r,
armv7-m, armv7e-m armv8-a, iwmmxt,
iwmmxt2, ep9312.
-march=native causes the compiler to auto-detect the
architecture of the build computer. At present, this feature is only
supported on GNU/Linux, and not all architectures are recognized. If the
auto-detect is unsuccessful the option has no effect.
- -mtune=name
- This option specifies the name of the target ARM processor for which GCC
should tune the performance of the code. For some ARM implementations
better performance can be obtained by using this option. Permissible names
are: arm2, arm250, arm3, arm6, arm60,
arm600, arm610, arm620, arm7, arm7m,
arm7d, arm7dm, arm7di, arm7dmi, arm70,
arm700, arm700i, arm710, arm710c,
arm7100, arm720, arm7500, arm7500fe,
arm7tdmi, arm7tdmi-s, arm710t, arm720t,
arm740t, strongarm, strongarm110,
strongarm1100, strongarm1110, arm8, arm810,
arm9, arm9e, arm920, arm920t, arm922t,
arm946e-s, arm966e-s, arm968e-s, arm926ej-s,
arm940t, arm9tdmi, arm10tdmi, arm1020t,
arm1026ej-s, arm10e, arm1020e, arm1022e,
arm1136j-s, arm1136jf-s, mpcore, mpcorenovfp,
arm1156t2-s, arm1156t2f-s, arm1176jz-s,
arm1176jzf-s, cortex-a5, cortex-a7, cortex-a8,
cortex-a9, cortex-a15, cortex-r4, cortex-r4f,
cortex-r5, cortex-m4, cortex-m3, cortex-m1,
cortex-m0, cortex-m0plus, marvell-pj4, xscale,
iwmmxt, iwmmxt2, ep9312, fa526, fa626,
fa606te, fa626te, fmp626, fa726te.
-mtune=generic-arch specifies that GCC should
tune the performance for a blend of processors within architecture
arch. The aim is to generate code that run well on the current
most popular processors, balancing between optimizations that benefit
some CPUs in the range, and avoiding performance pitfalls of other CPUs.
The effects of this option may change in future GCC versions as CPU
models come and go.
-mtune=native causes the compiler to auto-detect the
CPU of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect
is unsuccessful the option has no effect.
- -mcpu=name
- This specifies the name of the target ARM processor. GCC uses this name to
derive the name of the target ARM architecture (as if specified by
-march) and the ARM processor type for which to tune for
performance (as if specified by -mtune). Where this option is used
in conjunction with -march or -mtune, those options take
precedence over the appropriate part of this option.
Permissible names for this option are the same as those for
-mtune.
-mcpu=generic-arch is also permissible, and is
equivalent to -march=arch
-mtune=generic-arch. See -mtune for more
information.
-mcpu=native causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect
is unsuccessful the option has no effect.
- -mfpu=name
- This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: vfp, vfpv3,
vfpv3-fp16, vfpv3-d16, vfpv3-d16-fp16,
vfpv3xd, vfpv3xd-fp16, neon, neon-fp16,
vfpv4, vfpv4-d16, fpv4-sp-d16, neon-vfpv4,
fp-armv8, neon-fp-armv8, and crypto-neon-fp-armv8.
If -msoft-float is specified this specifies the format
of floating-point values.
If the selected floating-point hardware includes the NEON
extension (e.g. -mfpu=neon), note that floating-point
operations are not generated by GCC's auto-vectorization pass unless
-funsafe-math-optimizations is also specified. This is because
NEON hardware does not fully implement the IEEE 754 standard for
floating-point arithmetic (in particular denormal values are treated as
zero), so the use of NEON instructions may lead to a loss of
precision.
- -mfp16-format=name
- Specify the format of the "__fp16"
half-precision floating-point type. Permissible names are none,
ieee, and alternative; the default is none, in which
case the "__fp16" type is not
defined.
- -mstructure-size-boundary=n
- The sizes of all structures and unions are rounded up to a multiple of the
number of bits set by this option. Permissible values are 8, 32 and 64.
The default value varies for different toolchains. For the COFF targeted
toolchain the default value is 8. A value of 64 is only allowed if the
underlying ABI supports it.
Specifying a larger number can produce faster, more efficient
code, but can also increase the size of the program. Different values
are potentially incompatible. Code compiled with one value cannot
necessarily expect to work with code or libraries compiled with another
value, if they exchange information using structures or unions.
- -mabort-on-noreturn
- Generate a call to the function "abort"
at the end of a "noreturn" function. It
is executed if the function tries to return.
- -mlong-calls
- -mno-long-calls
- Tells the compiler to perform function calls by first loading the address
of the function into a register and then performing a subroutine call on
this register. This switch is needed if the target function lies outside
of the 64-megabyte addressing range of the offset-based version of
subroutine call instruction.
Even if this switch is enabled, not all function calls are
turned into long calls. The heuristic is that static functions,
functions that have the short-call attribute, functions that are
inside the scope of a #pragma no_long_calls directive, and
functions whose definitions have already been compiled within the
current compilation unit are not turned into long calls. The exceptions
to this rule are that weak function definitions, functions with the
long-call attribute or the section attribute, and
functions that are within the scope of a #pragma long_calls
directive are always turned into long calls.
This feature is not enabled by default. Specifying
-mno-long-calls restores the default behavior, as does placing
the function calls within the scope of a #pragma
long_calls_off directive. Note these switches have no effect on
how the compiler generates code to handle function calls via function
pointers.
- -msingle-pic-base
- Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
- -mpic-register=reg
- Specify the register to be used for PIC addressing. For standard PIC base
case, the default will be any suitable register determined by compiler.
For single PIC base case, the default is R9 if target is EABI based
or stack-checking is enabled, otherwise the default is R10.
- -mpoke-function-name
- Write the name of each function into the text section, directly preceding
the function prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", 0
.align
t1
.word 0xff000000 + (t1 - t0)
arm_poke_function_name
mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4
When performing a stack backtrace, code can inspect the value
of "pc" stored at
"fp + 0". If the trace function then
looks at location "pc - 12" and the
top 8 bits are set, then we know that there is a function name embedded
immediately preceding this location and has length
"((pc[-3]) & 0xff000000)".
- -mthumb
- -marm
- Select between generating code that executes in ARM and Thumb states. The
default for most configurations is to generate code that executes in ARM
state, but the default can be changed by configuring GCC with the
--with-mode=state configure option.
- -mtpcs-frame
- Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions. (A leaf function is one that does not
call any other functions.) The default is -mno-tpcs-frame.
- -mtpcs-leaf-frame
- Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions. (A leaf function is one that does not
call any other functions.) The default is
-mno-apcs-leaf-frame.
- -mcallee-super-interworking
- Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function. This allows these functions to be called from
non-interworking code. This option is not valid in AAPCS configurations
because interworking is enabled by default.
- -mcaller-super-interworking
- Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been compiled
for interworking or not. There is a small overhead in the cost of
executing a function pointer if this option is enabled. This option is not
valid in AAPCS configurations because interworking is enabled by
default.
- -mtp=name
- Specify the access model for the thread local storage pointer. The valid
models are soft, which generates calls to
"__aeabi_read_tp", cp15, which
fetches the thread pointer from "cp15"
directly (supported in the arm6k architecture), and auto, which
uses the best available method for the selected processor. The default
setting is auto.
- -mtls-dialect=dialect
- Specify the dialect to use for accessing thread local storage. Two
dialects are supported---gnu and gnu2. The gnu
dialect selects the original GNU scheme for supporting local and global
dynamic TLS models. The gnu2 dialect selects the GNU descriptor
scheme, which provides better performance for shared libraries. The GNU
descriptor scheme is compatible with the original scheme, but does require
new assembler, linker and library support. Initial and local exec TLS
models are unaffected by this option and always use the original
scheme.
- -mword-relocations
- Only generate absolute relocations on word-sized values (i.e.
R_ARM_ABS32). This is enabled by default on targets (uClinux, SymbianOS)
where the runtime loader imposes this restriction, and when -fpic
or -fPIC is specified.
- -mfix-cortex-m3-ldrd
- Some Cortex-M3 cores can cause data corruption when
"ldrd" instructions with overlapping
destination and base registers are used. This option avoids generating
these instructions. This option is enabled by default when
-mcpu=cortex-m3 is specified.
- -munaligned-access
- -mno-unaligned-access
- Enables (or disables) reading and writing of 16- and 32- bit values from
addresses that are not 16- or 32- bit aligned. By default unaligned access
is disabled for all pre-ARMv6 and all ARMv6-M architectures, and enabled
for all other architectures. If unaligned access is not enabled then words
in packed data structures will be accessed a byte at a time.
The ARM attribute
"Tag_CPU_unaligned_access" will be set
in the generated object file to either true or false, depending upon the
setting of this option. If unaligned access is enabled then the
preprocessor symbol
"__ARM_FEATURE_UNALIGNED" will also be
defined.
These options are defined for AVR implementations:
- -mmcu=mcu
- Specify Atmel AVR instruction set architectures (ISA) or MCU type.
The default for this option
is@tie{}"avr2".
GCC supports the following AVR devices and ISAs:
- "avr2"
- "Classic" devices with up to 8@tie{}KiB of program memory.
mcu@tie{}=
"attiny22",
"attiny26",
"at90c8534",
"at90s2313",
"at90s2323",
"at90s2333",
"at90s2343",
"at90s4414",
"at90s4433",
"at90s4434",
"at90s8515",
"at90s8535".
- "avr25"
- "Classic" devices with up to 8@tie{}KiB of program memory and
with the "MOVW" instruction.
mcu@tie{}=
"ata5272",
"ata6289",
"attiny13",
"attiny13a",
"attiny2313",
"attiny2313a",
"attiny24",
"attiny24a",
"attiny25",
"attiny261",
"attiny261a",
"attiny43u",
"attiny4313",
"attiny44",
"attiny44a",
"attiny45",
"attiny461",
"attiny461a",
"attiny48",
"attiny84",
"attiny84a",
"attiny85",
"attiny861",
"attiny861a",
"attiny87",
"attiny88",
"at86rf401".
- "avr3"
- "Classic" devices with 16@tie{}KiB up to 64@tie{}KiB of program
memory. mcu@tie{}=
"at43usb355",
"at76c711".
- "avr31"
- "Classic" devices with 128@tie{}KiB of program memory.
mcu@tie{}=
"atmega103",
"at43usb320".
- "avr35"
- "Classic" devices with 16@tie{}KiB up to 64@tie{}KiB of program
memory and with the "MOVW" instruction.
mcu@tie{}=
"ata5505",
"atmega16u2",
"atmega32u2",
"atmega8u2",
"attiny1634",
"attiny167",
"at90usb162",
"at90usb82".
- "avr4"
- "Enhanced" devices with up to 8@tie{}KiB of program memory.
mcu@tie{}=
"ata6285",
"ata6286",
"atmega48",
"atmega48a",
"atmega48p",
"atmega48pa",
"atmega8",
"atmega8a",
"atmega8hva",
"atmega8515",
"atmega8535",
"atmega88",
"atmega88a",
"atmega88p",
"atmega88pa",
"at90pwm1",
"at90pwm2",
"at90pwm2b",
"at90pwm3",
"at90pwm3b",
"at90pwm81".
- "avr5"
- "Enhanced" devices with 16@tie{}KiB up to 64@tie{}KiB of program
memory. mcu@tie{}=
"ata5790",
"ata5790n",
"ata5795",
"atmega16",
"atmega16a",
"atmega16hva",
"atmega16hva2",
"atmega16hvb",
"atmega16hvbrevb",
"atmega16m1",
"atmega16u4",
"atmega161",
"atmega162",
"atmega163",
"atmega164a",
"atmega164p",
"atmega164pa",
"atmega165",
"atmega165a",
"atmega165p",
"atmega165pa",
"atmega168",
"atmega168a",
"atmega168p",
"atmega168pa",
"atmega169",
"atmega169a",
"atmega169p",
"atmega169pa",
"atmega26hvg",
"atmega32",
"atmega32a",
"atmega32c1",
"atmega32hvb",
"atmega32hvbrevb",
"atmega32m1",
"atmega32u4",
"atmega32u6",
"atmega323",
"atmega324a",
"atmega324p",
"atmega324pa",
"atmega325",
"atmega325a",
"atmega325p",
"atmega3250",
"atmega3250a",
"atmega3250p",
"atmega3250pa",
"atmega328",
"atmega328p",
"atmega329",
"atmega329a",
"atmega329p",
"atmega329pa",
"atmega3290",
"atmega3290a",
"atmega3290p",
"atmega3290pa",
"atmega406",
"atmega48hvf",
"atmega64",
"atmega64a",
"atmega64c1",
"atmega64hve",
"atmega64m1",
"atmega64rfa2",
"atmega64rfr2",
"atmega640",
"atmega644",
"atmega644a",
"atmega644p",
"atmega644pa",
"atmega645",
"atmega645a",
"atmega645p",
"atmega6450",
"atmega6450a",
"atmega6450p",
"atmega649",
"atmega649a",
"atmega649p",
"atmega6490",
"atmega6490a",
"atmega6490p",
"at90can32",
"at90can64",
"at90pwm161",
"at90pwm216",
"at90pwm316",
"at90scr100",
"at90usb646",
"at90usb647",
"at94k",
"m3000".
- "avr51"
- "Enhanced" devices with 128@tie{}KiB of program memory.
mcu@tie{}=
"atmega128",
"atmega128a",
"atmega128rfa1",
"atmega1280",
"atmega1281",
"atmega1284",
"atmega1284p",
"at90can128",
"at90usb1286",
"at90usb1287".
- "avr6"
- "Enhanced" devices with 3-byte PC, i.e. with more than
128@tie{}KiB of program memory. mcu@tie{}=
"atmega2560",
"atmega2561".
- "avrxmega2"
- "XMEGA" devices with more than 8@tie{}KiB and up to 64@tie{}KiB
of program memory. mcu@tie{}=
"atmxt112sl",
"atmxt224",
"atmxt224e",
"atmxt336s",
"atxmega16a4",
"atxmega16a4u",
"atxmega16c4",
"atxmega16d4",
"atxmega16x1",
"atxmega32a4",
"atxmega32a4u",
"atxmega32c4",
"atxmega32d4",
"atxmega32e5",
"atxmega32x1".
- "avrxmega4"
- "XMEGA" devices with more than 64@tie{}KiB and up to
128@tie{}KiB of program memory. mcu@tie{}=
"atxmega64a3",
"atxmega64a3u",
"atxmega64a4u",
"atxmega64b1",
"atxmega64b3",
"atxmega64c3",
"atxmega64d3",
"atxmega64d4".
- "avrxmega5"
- "XMEGA" devices with more than 64@tie{}KiB and up to
128@tie{}KiB of program memory and more than 64@tie{}KiB of RAM.
mcu@tie{}=
"atxmega64a1",
"atxmega64a1u".
- "avrxmega6"
- "XMEGA" devices with more than 128@tie{}KiB of program memory.
mcu@tie{}=
"atmxt540s",
"atmxt540sreva",
"atxmega128a3",
"atxmega128a3u",
"atxmega128b1",
"atxmega128b3",
"atxmega128c3",
"atxmega128d3",
"atxmega128d4",
"atxmega192a3",
"atxmega192a3u",
"atxmega192c3",
"atxmega192d3",
"atxmega256a3",
"atxmega256a3b",
"atxmega256a3bu",
"atxmega256a3u",
"atxmega256c3",
"atxmega256d3",
"atxmega384c3",
"atxmega384d3".
- "avrxmega7"
- "XMEGA" devices with more than 128@tie{}KiB of program memory
and more than 64@tie{}KiB of RAM.
mcu@tie{}=
"atxmega128a1",
"atxmega128a1u",
"atxmega128a4u".
- "avr1"
- This ISA is implemented by the minimal AVR core and supported for
assembler only. mcu@tie{}=
"attiny11",
"attiny12",
"attiny15",
"attiny28",
"at90s1200".
- -maccumulate-args
- Accumulate outgoing function arguments and acquire/release the needed
stack space for outgoing function arguments once in function
prologue/epilogue. Without this option, outgoing arguments are pushed
before calling a function and popped afterwards.
Popping the arguments after the function call can be expensive
on AVR so that accumulating the stack space might lead to smaller
executables because arguments need not to be removed from the stack
after such a function call.
This option can lead to reduced code size for functions that
perform several calls to functions that get their arguments on the stack
like calls to printf-like functions.
- -mbranch-cost=cost
- Set the branch costs for conditional branch instructions to cost.
Reasonable values for cost are small, non-negative integers. The
default branch cost is 0.
- -mcall-prologues
- Functions prologues/epilogues are expanded as calls to appropriate
subroutines. Code size is smaller.
- -mint8
- Assume "int" to be 8-bit integer. This
affects the sizes of all types: a "char"
is 1 byte, an "int" is 1 byte, a
"long" is 2 bytes, and
"long long" is 4 bytes. Please note that
this option does not conform to the C standards, but it results in smaller
code size.
- -mno-interrupts
- Generated code is not compatible with hardware interrupts. Code size is
smaller.
- -mrelax
- Try to replace "CALL" resp.
"JMP" instruction by the shorter
"RCALL" resp.
"RJMP" instruction if applicable.
Setting "-mrelax" just adds the
"--relax" option to the linker command
line when the linker is called.
Jump relaxing is performed by the linker because jump offsets
are not known before code is located. Therefore, the assembler code
generated by the compiler is the same, but the instructions in the
executable may differ from instructions in the assembler code.
Relaxing must be turned on if linker stubs are needed, see the
section on "EIND" and linker stubs
below.
- -msp8
- Treat the stack pointer register as an 8-bit register, i.e. assume the
high byte of the stack pointer is zero. In general, you don't need to set
this option by hand.
This option is used internally by the compiler to select and
build multilibs for architectures
"avr2" and
"avr25". These architectures mix
devices with and without "SPH". For
any setting other than "-mmcu=avr2" or
"-mmcu=avr25" the compiler driver will
add or remove this option from the compiler proper's command line,
because the compiler then knows if the device or architecture has an
8-bit stack pointer and thus no "SPH"
register or not.
- -mstrict-X
- Use address register "X" in a way
proposed by the hardware. This means that
"X" is only used in indirect,
post-increment or pre-decrement addressing.
Without this option, the "X"
register may be used in the same way as
"Y" or
"Z" which then is emulated by
additional instructions. For example, loading a value with
"X+const" addressing with a small
non-negative "const < 64" to a
register Rn is performed as
adiw r26, const ; X += const
ld <Rn>, X ; <Rn> = *X
sbiw r26, const ; X -= const
- -mtiny-stack
- Only change the lower 8@tie{}bits of the stack pointer.
- -Waddr-space-convert
- Warn about conversions between address spaces in the case where the
resulting address space is not contained in the incoming address
space.
"EIND" and Devices with more
than 128 Ki Bytes of Flash
Pointers in the implementation are 16@tie{}bits wide. The address
of a function or label is represented as word address so that indirect jumps
and calls can target any code address in the range of 64@tie{}Ki words.
In order to facilitate indirect jump on devices with more than
128@tie{}Ki bytes of program memory space, there is a special function
register called "EIND" that serves as most
significant part of the target address when
"EICALL" or
"EIJMP" instructions are used.
Indirect jumps and calls on these devices are handled as follows
by the compiler and are subject to some limitations:
- The compiler never sets "EIND".
- The compiler uses "EIND" implicitely in
"EICALL"/"EIJMP"
instructions or might read "EIND"
directly in order to emulate an indirect call/jump by means of a
"RET" instruction.
- The compiler assumes that "EIND" never
changes during the startup code or during the application. In particular,
"EIND" is not saved/restored in function
or interrupt service routine prologue/epilogue.
- For indirect calls to functions and computed goto, the linker generates
stubs. Stubs are jump pads sometimes also called
trampolines. Thus, the indirect call/jump jumps to such a stub. The
stub contains a direct jump to the desired address.
- Linker relaxation must be turned on so that the linker will generate the
stubs correctly an all situaltion. See the compiler option
"-mrelax" and the linler option
"--relax". There are corner cases where
the linker is supposed to generate stubs but aborts without relaxation and
without a helpful error message.
- The default linker script is arranged for code with
"EIND = 0". If code is supposed to work
for a setup with "EIND != 0", a custom
linker script has to be used in order to place the sections whose name
start with ".trampolines" into the
segment where "EIND" points to.
- The startup code from libgcc never sets
"EIND". Notice that startup code is a
blend of code from libgcc and AVR-LibC. For the impact of AVR-LibC on
"EIND", see the
AVR-LibC user manual
("http://nongnu.org/avr-libc/user-manual/").
- It is legitimate for user-specific startup code to set up
"EIND" early, for example by means of
initialization code located in section
".init3". Such code runs prior to
general startup code that initializes RAM and calls constructors, but
after the bit of startup code from AVR-LibC that sets
"EIND" to the segment where the vector
table is located.
#include <avr/io.h>
static void
__attribute__((section(".init3"),naked,used,no_instrument_function))
init3_set_eind (void)
{
__asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
"out %i0,r24" :: "n" (&EIND) : "r24","memory");
}
The "__trampolines_start"
symbol is defined in the linker script.
- Stubs are generated automatically by the linker if the following two
conditions are met:
- -<The address of a label is taken by means of the "gs"
modifier>
- (short for generate stubs) like so:
LDI r24, lo8(gs(<func>))
LDI r25, hi8(gs(<func>))
- -<The final location of that label is in a code segment>
- outside the segment where the stubs are located.
- •
- The compiler emits such "gs" modifiers
for code labels in the following situations:
- -<Taking address of a function or code label.>
- -<Computed goto.>
- -<If prologue-save function is used, see
-mcall-prologues>
- command-line option.
- -<Switch/case dispatch tables. If you do not want such
dispatch>
- tables you can specify the -fno-jump-tables command-line
option.
- -<C and C++ constructors/destructors called during
startup/shutdown.>
- -<If the tools hit a "gs()" modifier explained
above.>
- •
- Jumping to non-symbolic addresses like so is not supported:
int main (void)
{
/* Call function at word address 0x2 */
return ((int(*)(void)) 0x2)();
}
Instead, a stub has to be set up, i.e. the function has to be
called through a symbol ("func_4" in
the example):
int main (void)
{
extern int func_4 (void);
/* Call function at byte address 0x4 */
return func_4();
}
and the application be linked with
"-Wl,--defsym,func_4=0x4".
Alternatively, "func_4" can be defined
in the linker script.
Handling of the "RAMPD",
"RAMPX",
"RAMPY" and
"RAMPZ" Special Function Registers
Some AVR devices support memories larger than the 64@tie{}KiB
range that can be accessed with 16-bit pointers. To access memory locations
outside this 64@tie{}KiB range, the contentent of a
"RAMP" register is used as high part of
the address: The "X",
"Y", "Z"
address register is concatenated with the
"RAMPX",
"RAMPY",
"RAMPZ" special function register,
respectively, to get a wide address. Similarly,
"RAMPD" is used together with direct
addressing.
- The startup code initializes the "RAMP"
special function registers with zero.
- If a AVR Named Address Spaces,named address space other than
generic or "__flash" is used, then
"RAMPZ" is set as needed before the
operation.
- If the device supports RAM larger than 64@tie{KiB} and the compiler needs
to change "RAMPZ" to accomplish an
operation, "RAMPZ" is reset to zero
after the operation.
- If the device comes with a specific
"RAMP" register, the ISR
prologue/epilogue saves/restores that SFR and initializes it with zero in
case the ISR code might (implicitly) use it.
- RAM larger than 64@tie{KiB} is not supported by GCC for AVR targets. If
you use inline assembler to read from locations outside the 16-bit address
range and change one of the "RAMP"
registers, you must reset it to zero after the access.
AVR Built-in Macros
GCC defines several built-in macros so that the user code can test
for the presence or absence of features. Almost any of the following
built-in macros are deduced from device capabilities and thus triggered by
the "-mmcu=" command-line option.
For even more AVR-specific built-in macros see AVR Named
Address Spaces and AVR Built-in Functions.
- "__AVR_ARCH__"
- Build-in macro that resolves to a decimal number that identifies the
architecture and depends on the
"-mmcu=mcu
" option. Possible values are:
2, 25,
3, 31,
35, 4,
5, 51,
6, 102,
104, 105,
106, 107
for mcu="avr2",
"avr25",
"avr3",
"avr31",
"avr35",
"avr4",
"avr5",
"avr51",
"avr6",
"avrxmega2",
"avrxmega4",
"avrxmega5",
"avrxmega6",
"avrxmega7", respectively. If
mcu specifies a device, this built-in macro is set accordingly.
For example, with "-mmcu=atmega8" the
macro will be defined to 4.
- "__AVR_Device__"
- Setting
"-mmcu=device"
defines this built-in macro which reflects the device's name. For example,
"-mmcu=atmega8" defines the built-in
macro "__AVR_ATmega8__",
"-mmcu=attiny261a" defines
"__AVR_ATtiny261A__", etc.
The built-in macros' names follow the scheme
"__AVR_Device__"
where Device is the device name as from the AVR user manual. The
difference between Device in the built-in macro and device
in
"-mmcu=device"
is that the latter is always lowercase.
If device is not a device but only a core architecture
like "avr51", this macro will not be
defined.
- "__AVR_XMEGA__"
- The device / architecture belongs to the XMEGA family of devices.
- "__AVR_HAVE_ELPM__"
- The device has the the "ELPM"
instruction.
- "__AVR_HAVE_ELPMX__"
- The device has the "ELPM
Rn,Z" and
"ELPM
Rn,Z+"
instructions.
- "__AVR_HAVE_MOVW__"
- The device has the "MOVW" instruction to
perform 16-bit register-register moves.
- "__AVR_HAVE_LPMX__"
- The device has the "LPM
Rn,Z" and
"LPM
Rn,Z+" instructions.
- "__AVR_HAVE_MUL__"
- The device has a hardware multiplier.
- "__AVR_HAVE_JMP_CALL__"
- The device has the "JMP" and
"CALL" instructions. This is the case
for devices with at least 16@tie{}KiB of program memory.
- "__AVR_HAVE_EIJMP_EICALL__"
- "__AVR_3_BYTE_PC__"
- The device has the "EIJMP" and
"EICALL" instructions. This is the case
for devices with more than 128@tie{}KiB of program memory. This also means
that the program counter (PC) is 3@tie{}bytes wide.
- "__AVR_2_BYTE_PC__"
- The program counter (PC) is 2@tie{}bytes wide. This is the case for
devices with up to 128@tie{}KiB of program memory.
- "__AVR_HAVE_8BIT_SP__"
- "__AVR_HAVE_16BIT_SP__"
- The stack pointer (SP) register is treated as 8-bit respectively 16-bit
register by the compiler. The definition of these macros is affected by
"-mtiny-stack".
- "__AVR_HAVE_SPH__"
- "__AVR_SP8__"
- The device has the SPH (high part of stack pointer) special function
register or has an 8-bit stack pointer, respectively. The definition of
these macros is affected by "-mmcu=" and
in the cases of "-mmcu=avr2" and
"-mmcu=avr25" also by
"-msp8".
- "__AVR_HAVE_RAMPD__"
- "__AVR_HAVE_RAMPX__"
- "__AVR_HAVE_RAMPY__"
- "__AVR_HAVE_RAMPZ__"
- The device has the "RAMPD",
"RAMPX",
"RAMPY",
"RAMPZ" special function register,
respectively.
- "__NO_INTERRUPTS__"
- This macro reflects the
"-mno-interrupts" command line
option.
- "__AVR_ERRATA_SKIP__"
- "__AVR_ERRATA_SKIP_JMP_CALL__"
- Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions
because of a hardware erratum. Skip instructions are
"SBRS",
"SBRC",
"SBIS",
"SBIC" and
"CPSE". The second macro is only defined
if "__AVR_HAVE_JMP_CALL__" is also
set.
- "__AVR_SFR_OFFSET__=offset"
- Instructions that can address I/O special function registers directly like
"IN",
"OUT",
"SBI", etc. may use a different address
as if addressed by an instruction to access RAM like
"LD" or
"STS". This offset depends on the device
architecture and has to be subtracted from the RAM address in order to get
the respective I/O@tie{}address.
- "__WITH_AVRLIBC__"
- The compiler is configured to be used together with AVR-Libc. See the
"--with-avrlibc" configure option.
- -mcpu=cpu[-sirevision]
- Specifies the name of the target Blackfin processor. Currently, cpu
can be one of bf512, bf514, bf516, bf518,
bf522, bf523, bf524, bf525, bf526,
bf527, bf531, bf532, bf533, bf534,
bf536, bf537, bf538, bf539, bf542,
bf544, bf547, bf548, bf549, bf542m,
bf544m, bf547m, bf548m, bf549m, bf561,
bf592.
The optional sirevision specifies the silicon revision
of the target Blackfin processor. Any workarounds available for the
targeted silicon revision are enabled. If sirevision is
none, no workarounds are enabled. If sirevision is
any, all workarounds for the targeted processor are enabled. The
"__SILICON_REVISION__" macro is
defined to two hexadecimal digits representing the major and minor
numbers in the silicon revision. If sirevision is none,
the "__SILICON_REVISION__" is not
defined. If sirevision is any, the
"__SILICON_REVISION__" is defined to
be 0xffff. If this optional sirevision is
not used, GCC assumes the latest known silicon revision of the targeted
Blackfin processor.
GCC defines a preprocessor macro for the specified cpu.
For the bfin-elf toolchain, this option causes the hardware BSP
provided by libgloss to be linked in if -msim is not given.
Without this option, bf532 is used as the processor by
default.
Note that support for bf561 is incomplete. For
bf561, only the preprocessor macro is defined.
- -msim
- Specifies that the program will be run on the simulator. This causes the
simulator BSP provided by libgloss to be linked in. This option has effect
only for bfin-elf toolchain. Certain other options, such as
-mid-shared-library and -mfdpic, imply -msim.
- -momit-leaf-frame-pointer
- Don't keep the frame pointer in a register for leaf functions. This avoids
the instructions to save, set up and restore frame pointers and makes an
extra register available in leaf functions. The option
-fomit-frame-pointer removes the frame pointer for all functions,
which might make debugging harder.
- -mspecld-anomaly
- When enabled, the compiler ensures that the generated code does not
contain speculative loads after jump instructions. If this option is used,
"__WORKAROUND_SPECULATIVE_LOADS" is
defined.
- -mno-specld-anomaly
- Don't generate extra code to prevent speculative loads from
occurring.
- -mcsync-anomaly
- When enabled, the compiler ensures that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches.
If this option is used,
"__WORKAROUND_SPECULATIVE_SYNCS" is
defined.
- -mno-csync-anomaly
- Don't generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.
- -mlow-64k
- When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.
- -mno-low-64k
- Assume that the program is arbitrarily large. This is the default.
- -mstack-check-l1
- Do stack checking using information placed into L1 scratchpad memory by
the uClinux kernel.
- -mid-shared-library
- Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management. This option implies -fPIC. With
a bfin-elf target, this option implies -msim.
- -mno-id-shared-library
- Generate code that doesn't assume ID-based shared libraries are being
used. This is the default.
- -mleaf-id-shared-library
- Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won't link against any other
ID shared libraries. That allows the compiler to use faster code for jumps
and calls.
- -mno-leaf-id-shared-library
- Do not assume that the code being compiled won't link against any ID
shared libraries. Slower code is generated for jump and call insns.
- -mshared-library-id=n
- Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current library
but is no more space- or time-efficient than omitting this option.
- -msep-data
- Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute in place in
an environment without virtual memory management by eliminating
relocations against the text section.
- -mno-sep-data
- Generate code that assumes that the data segment follows the text segment.
This is the default.
- -mlong-calls
- -mno-long-calls
- Tells the compiler to perform function calls by first loading the address
of the function into a register and then performing a subroutine call on
this register. This switch is needed if the target function lies outside
of the 24-bit addressing range of the offset-based version of subroutine
call instruction.
This feature is not enabled by default. Specifying
-mno-long-calls restores the default behavior. Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.
- -mfast-fp
- Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard's rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.
- -minline-plt
- Enable inlining of PLT entries in function calls to functions that are not
known to bind locally. It has no effect without -mfdpic.
- -mmulticore
- Build a standalone application for multicore Blackfin processors. This
option causes proper start files and link scripts supporting multicore to
be used, and defines the macro
"__BFIN_MULTICORE". It can only be used
with -mcpu=bf561[-sirevision].
This option can be used with -mcorea or -mcoreb,
which selects the one-application-per-core programming model. Without
-mcorea or -mcoreb, the single-application/dual-core
programming model is used. In this model, the main function of Core B
should be named as "coreb_main".
If this option is not used, the single-core application
programming model is used.
- -mcorea
- Build a standalone application for Core A of BF561 when using the
one-application-per-core programming model. Proper start files and link
scripts are used to support Core A, and the macro
"__BFIN_COREA" is defined. This option
can only be used in conjunction with -mmulticore.
- -mcoreb
- Build a standalone application for Core B of BF561 when using the
one-application-per-core programming model. Proper start files and link
scripts are used to support Core B, and the macro
"__BFIN_COREB" is defined. When this
option is used, "coreb_main" should be
used instead of "main". This option can
only be used in conjunction with -mmulticore.
- -msdram
- Build a standalone application for SDRAM. Proper start files and link
scripts are used to put the application into SDRAM, and the macro
"__BFIN_SDRAM" is defined. The loader
should initialize SDRAM before loading the application.
- -micplb
- Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off.
- -march=name
- This specifies the name of the target architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly
code. Permissible names are: c62x, c64x, c64x+,
c67x, c67x+, c674x.
- -mbig-endian
- Generate code for a big-endian target.
- -mlittle-endian
- Generate code for a little-endian target. This is the default.
- -msim
- Choose startup files and linker script suitable for the simulator.
- -msdata=default
- Put small global and static data in the .neardata section, which is
pointed to by register "B14". Put small
uninitialized global and static data in the .bss section, which is
adjacent to the .neardata section. Put small read-only data into
the .rodata section. The corresponding sections used for large
pieces of data are .fardata, .far and .const.
- -msdata=all
- Put all data, not just small objects, into the sections reserved for small
data, and use addressing relative to the
"B14" register to access them.
- -msdata=none
- Make no use of the sections reserved for small data, and use absolute
addresses to access all data. Put all initialized global and static data
in the .fardata section, and all uninitialized data in the
.far section. Put all constant data into the .const
section.
These options are defined specifically for the CRIS ports.
- -march=architecture-type
- -mcpu=architecture-type
- Generate code for the specified architecture. The choices for
architecture-type are v3, v8 and v10 for
respectively ETRAX 4, ETRAX 100, and
ETRAX 100 LX. Default is v0 except for
cris-axis-linux-gnu, where the default is v10.
- -mtune=architecture-type
- Tune to architecture-type everything applicable about the generated
code, except for the ABI and the set of available instructions. The
choices for architecture-type are the same as for
-march=architecture-type.
- -mmax-stack-frame=n
- Warn when the stack frame of a function exceeds n bytes.
- -metrax4
- -metrax100
- The options -metrax4 and -metrax100 are synonyms for
-march=v3 and -march=v8 respectively.
- -mmul-bug-workaround
- -mno-mul-bug-workaround
- Work around a bug in the "muls" and
"mulu" instructions for CPU models where
it applies. This option is active by default.
- -mpdebug
- Enable CRIS-specific verbose debug-related information in the assembly
code. This option also has the effect of turning off the #NO_APP
formatted-code indicator to the assembler at the beginning of the assembly
file.
- -mcc-init
- Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.
- -mno-side-effects
- Do not emit instructions with side effects in addressing modes other than
post-increment.
- -mstack-align
- -mno-stack-align
- -mdata-align
- -mno-data-align
- -mconst-align
- -mno-const-align
- These options (no- options) arrange (eliminate arrangements) for
the stack frame, individual data and constants to be aligned for the
maximum single data access size for the chosen CPU model. The default is
to arrange for 32-bit alignment. ABI details such as structure layout are
not affected by these options.
- -m32-bit
- -m16-bit
- -m8-bit
- Similar to the stack- data- and const-align options above, these options
arrange for stack frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned. The default is 32-bit alignment.
- -mno-prologue-epilogue
- -mprologue-epilogue
- With -mno-prologue-epilogue, the normal function prologue and
epilogue which set up the stack frame are omitted and no return
instructions or return sequences are generated in the code. Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variables needs to be allocated.
- -mno-gotplt
- -mgotplt
- With -fpic and -fPIC, don't generate (do generate)
instruction sequences that load addresses for functions from the PLT part
of the GOT rather than (traditional on other architectures) calls to the
PLT. The default is -mgotplt.
- -melf
- Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.
- -mlinux
- Legacy no-op option only recognized with the cris-axis-linux-gnu
target.
- -sim
- This option, recognized for the cris-axis-elf, arranges to link with
input-output functions from a simulator library. Code, initialized data
and zero-initialized data are allocated consecutively.
- -sim2
- Like -sim, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
These options are defined specifically for the CR16 ports.
- -mmac
- Enable the use of multiply-accumulate instructions. Disabled by
default.
- -mcr16cplus
- -mcr16c
- Generate code for CR16C or CR16C+ architecture. CR16C+ architecture is
default.
- -msim
- Links the library libsim.a which is in compatible with simulator.
Applicable to ELF compiler only.
- -mint32
- Choose integer type as 32-bit wide.
- -mbit-ops
- Generates
"sbit"/"cbit"
instructions for bit manipulations.
- -mdata-model=model
- Choose a data model. The choices for model are near,
far or medium. medium is default. However, far
is not valid with -mcr16c, as the CR16C architecture does not
support the far data model.
These options are defined for all architectures running the Darwin operating
system.
FSF GCC on Darwin does not create "fat" object files; it
creates an object file for the single architecture that GCC was built to
target. Apple's GCC on Darwin does create "fat" files if multiple
-arch options are used; it does so by running the compiler or linker
multiple times and joining the results together with lipo.
The subtype of the file created (like ppc7400 or
ppc970 or i686) is determined by the flags that specify the
ISA that GCC is targeting, like -mcpu or -march. The
-force_cpusubtype_ALL option can be used to override this.
The Darwin tools vary in their behavior when presented with an ISA
mismatch. The assembler, as, only permits instructions to be used
that are valid for the subtype of the file it is generating, so you cannot
put 64-bit instructions in a ppc750 object file. The linker for
shared libraries, /usr/bin/libtool, fails and prints an error if
asked to create a shared library with a less restrictive subtype than its
input files (for instance, trying to put a ppc970 object file in a
ppc7400 library). The linker for executables, ld, quietly
gives the executable the most restrictive subtype of any of its input
files.
- -Fdir
- Add the framework directory dir to the head of the list of
directories to be searched for header files. These directories are
interleaved with those specified by -I options and are scanned in a
left-to-right order.
A framework directory is a directory with frameworks in it. A
framework is a directory with a Headers and/or
PrivateHeaders directory contained directly in it that ends in
.framework. The name of a framework is the name of this directory
excluding the .framework. Headers associated with the framework
are found in one of those two directories, with Headers being
searched first. A subframework is a framework directory that is in a
framework's Frameworks directory. Includes of subframework
headers can only appear in a header of a framework that contains the
subframework, or in a sibling subframework header. Two subframeworks are
siblings if they occur in the same framework. A subframework should not
have the same name as a framework; a warning is issued if this is
violated. Currently a subframework cannot have subframeworks; in the
future, the mechanism may be extended to support this. The standard
frameworks can be found in /System/Library/Frameworks and
/Library/Frameworks. An example include looks like
"#include <Framework/header.h>",
where Framework denotes the name of the framework and
header.h is found in the PrivateHeaders or Headers
directory.
- -iframeworkdir
- Like -F except the directory is a treated as a system directory.
The main difference between this -iframework and -F is that
with -iframework the compiler does not warn about constructs
contained within header files found via dir. This option is valid
only for the C family of languages.
- -gused
- Emit debugging information for symbols that are used. For stabs debugging
format, this enables -feliminate-unused-debug-symbols. This is by
default ON.
- -gfull
- Emit debugging information for all symbols and types.
- -mmacosx-version-min=version
- The earliest version of MacOS X that this executable will run on is
version. Typical values of version include
10.1, 10.2, and
10.3.9.
If the compiler was built to use the system's headers by
default, then the default for this option is the system version on which
the compiler is running, otherwise the default is to make choices that
are compatible with as many systems and code bases as possible.
- -mkernel
- Enable kernel development mode. The -mkernel option sets
-static, -fno-common, -fno-use-cxa-atexit,
-fno-exceptions, -fno-non-call-exceptions,
-fapple-kext, -fno-weak and -fno-rtti where
applicable. This mode also sets -mno-altivec, -msoft-float,
-fno-builtin and -mlong-branch for PowerPC targets.
- -mone-byte-bool
- Override the defaults for bool so that sizeof(bool)==1. By
default sizeof(bool) is 4 when compiling for Darwin/PowerPC
and 1 when compiling for Darwin/x86, so this option has no effect
on x86.
Warning: The -mone-byte-bool switch causes GCC
to generate code that is not binary compatible with code generated
without that switch. Using this switch may require recompiling all other
modules in a program, including system libraries. Use this switch to
conform to a non-default data model.
- -mfix-and-continue
- -ffix-and-continue
- -findirect-data
- Generate code suitable for fast turnaround development, such as to allow
GDB to dynamically load ".o" files into
already-running programs. -findirect-data and
-ffix-and-continue are provided for backwards compatibility.
- -all_load
- Loads all members of static archive libraries. See man ld(1) for
more information.
- -arch_errors_fatal
- Cause the errors having to do with files that have the wrong architecture
to be fatal.
- -bind_at_load
- Causes the output file to be marked such that the dynamic linker will bind
all undefined references when the file is loaded or launched.
- -bundle
- Produce a Mach-o bundle format file. See man ld(1) for more
information.
- -bundle_loader executable
- This option specifies the executable that will load the build
output file being linked. See man ld(1) for more information.
- -dynamiclib
- When passed this option, GCC produces a dynamic library instead of an
executable when linking, using the Darwin libtool command.
- -force_cpusubtype_ALL
- This causes GCC's output file to have the ALL subtype, instead of
one controlled by the -mcpu or -march option.
- -allowable_client client_name
- -client_name
- -compatibility_version
- -current_version
- -dead_strip
- -dependency-file
- -dylib_file
- -dylinker_install_name
- -dynamic
- -exported_symbols_list
- -filelist
- -flat_namespace
- -force_flat_namespace
- -headerpad_max_install_names
- -image_base
- -init
- -install_name
- -keep_private_externs
- -multi_module
- -multiply_defined
- -multiply_defined_unused
- -noall_load
- -no_dead_strip_inits_and_terms
- -nofixprebinding
- -nomultidefs
- -noprebind
- -noseglinkedit
- -pagezero_size
- -prebind
- -prebind_all_twolevel_modules
- -private_bundle
- -read_only_relocs
- -sectalign
- -sectobjectsymbols
- -whyload
- -seg1addr
- -sectcreate
- -sectobjectsymbols
- -sectorder
- -segaddr
- -segs_read_only_addr
- -segs_read_write_addr
- -seg_addr_table
- -seg_addr_table_filename
- -seglinkedit
- -segprot
- -segs_read_only_addr
- -segs_read_write_addr
- -single_module
- -static
- -sub_library
- -sub_umbrella
- -twolevel_namespace
- -umbrella
- -undefined
- -unexported_symbols_list
- -weak_reference_mismatches
- -whatsloaded
- These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.
These -m options are defined for the DEC Alpha implementations:
- -mno-soft-float
- -msoft-float
- Use (do not use) the hardware floating-point instructions for
floating-point operations. When -msoft-float is specified,
functions in libgcc.a are used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines issue floating-point operations. If
you are compiling for an Alpha without floating-point operations, you must
ensure that the library is built so as not to call them.
Note that Alpha implementations without floating-point
operations are required to have floating-point registers.
- -mfp-reg
- -mno-fp-regs
- Generate code that uses (does not use) the floating-point register set.
-mno-fp-regs implies -msoft-float. If the floating-point
register set is not used, floating-point operands are passed in integer
registers as if they were integers and floating-point results are passed
in $0 instead of $f0. This
is a non-standard calling sequence, so any function with a floating-point
argument or return value called by code compiled with -mno-fp-regs
must also be compiled with that option.
A typical use of this option is building a kernel that does
not use, and hence need not save and restore, any floating-point
registers.
- -mieee
- The Alpha architecture implements floating-point hardware optimized for
maximum performance. It is mostly compliant with the IEEE floating-point
standard. However, for full compliance, software assistance is required.
This option generates code fully IEEE-compliant code except that
the inexact-flag is not maintained (see below). If this option is
turned on, the preprocessor macro
"_IEEE_FP" is defined during
compilation. The resulting code is less efficient but is able to correctly
support denormalized numbers and exceptional IEEE values such as
not-a-number and plus/minus infinity. Other Alpha compilers call this
option -ieee_with_no_inexact.
- -mieee-with-inexact
- This is like -mieee except the generated code also maintains the
IEEE inexact-flag. Turning on this option causes the generated code
to implement fully-compliant IEEE math. In addition to
"_IEEE_FP",
"_IEEE_FP_EXACT" is defined as a
preprocessor macro. On some Alpha implementations the resulting code may
execute significantly slower than the code generated by default. Since
there is very little code that depends on the inexact-flag, you
should normally not specify this option. Other Alpha compilers call this
option -ieee_with_inexact.
- -mfp-trap-mode=trap-mode
- This option controls what floating-point related traps are enabled. Other
Alpha compilers call this option -fptm trap-mode. The trap
mode can be set to one of four values:
- n
- This is the default (normal) setting. The only traps that are enabled are
the ones that cannot be disabled in software (e.g., division by zero
trap).
- u
- In addition to the traps enabled by n, underflow traps are enabled
as well.
- su
- Like u, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).
- sui
- Like su, but inexact traps are enabled as well.
- -mfp-rounding-mode=rounding-mode
- Selects the IEEE rounding mode. Other Alpha compilers call this option
-fprm rounding-mode. The rounding-mode can be one
of:
- n
- Normal IEEE rounding mode. Floating-point numbers are rounded towards the
nearest machine number or towards the even machine number in case of a
tie.
- m
- Round towards minus infinity.
- c
- Chopped rounding mode. Floating-point numbers are rounded towards
zero.
- d
- Dynamic rounding mode. A field in the floating-point control register
(fpcr, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies the
fpcr, d corresponds to round towards plus infinity.
- -mtrap-precision=trap-precision
- In the Alpha architecture, floating-point traps are imprecise. This means
without software assistance it is impossible to recover from a floating
trap and program execution normally needs to be terminated. GCC can
generate code that can assist operating system trap handlers in
determining the exact location that caused a floating-point trap.
Depending on the requirements of an application, different levels of
precisions can be selected:
- p
- Program precision. This option is the default and means a trap handler can
only identify which program caused a floating-point exception.
- f
- Function precision. The trap handler can determine the function that
caused a floating-point exception.
- i
- Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.
Other Alpha compilers provide the equivalent options called
-scope_safe and -resumption_safe.
- -mieee-conformant
- This option marks the generated code as IEEE conformant. You must not use
this option unless you also specify -mtrap-precision=i and either
-mfp-trap-mode=su or -mfp-trap-mode=sui. Its only effect is
to emit the line .eflag 48 in the function prologue of the
generated assembly file.
- -mbuild-constants
- Normally GCC examines a 32- or 64-bit integer constant to see if it can
construct it from smaller constants in two or three instructions. If it
cannot, it outputs the constant as a literal and generates code to load it
from the data segment at run time.
Use this option to require GCC to construct all integer
constants using code, even if it takes more instructions (the maximum is
six).
You typically use this option to build a shared library
dynamic loader. Itself a shared library, it must relocate itself in
memory before it can find the variables and constants in its own data
segment.
- -mbwx
- -mno-bwx
- -mcix
- -mno-cix
- -mfix
- -mno-fix
- -mmax
- -mno-max
- Indicate whether GCC should generate code to use the optional BWX, CIX,
FIX and MAX instruction sets. The default is to use the instruction sets
supported by the CPU type specified via -mcpu= option or that of
the CPU on which GCC was built if none is specified.
- -mfloat-vax
- -mfloat-ieee
- Generate code that uses (does not use) VAX F and G floating-point
arithmetic instead of IEEE single and double precision.
- -mexplicit-relocs
- -mno-explicit-relocs
- Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros. Use of these macros does not allow optimal
instruction scheduling. GNU binutils as of version 2.12 supports a new
syntax that allows the compiler to explicitly mark which relocations
should apply to which instructions. This option is mostly useful for
debugging, as GCC detects the capabilities of the assembler when it is
built and sets the default accordingly.
- -msmall-data
- -mlarge-data
- When -mexplicit-relocs is in effect, static data is accessed via
gp-relative relocations. When -msmall-data is used, objects
8 bytes long or smaller are placed in a small data area (the
".sdata" and
".sbss" sections) and are accessed via
16-bit relocations off of the $gp register. This
limits the size of the small data area to 64KB, but allows the variables
to be directly accessed via a single instruction.
The default is -mlarge-data. With this option the data
area is limited to just below 2GB. Programs that require more than 2GB
of data must use "malloc" or
"mmap" to allocate the data in the
heap instead of in the program's data segment.
When generating code for shared libraries, -fpic
implies -msmall-data and -fPIC implies
-mlarge-data.
- -msmall-text
- -mlarge-text
- When -msmall-text is used, the compiler assumes that the code of
the entire program (or shared library) fits in 4MB, and is thus reachable
with a branch instruction. When -msmall-data is used, the compiler
can assume that all local symbols share the same
$gp value, and thus reduce the number of
instructions required for a function call from 4 to 1.
The default is -mlarge-text.
- -mcpu=cpu_type
- Set the instruction set and instruction scheduling parameters for machine
type cpu_type. You can specify either the EV style name or
the corresponding chip number. GCC supports scheduling parameters for the
EV4, EV5 and EV6 family of processors and chooses the default values for
the instruction set from the processor you specify. If you do not specify
a processor type, GCC defaults to the processor on which the compiler was
built.
Supported values for cpu_type are
- ev4
- ev45
- 21064
- Schedules as an EV4 and has no instruction set extensions.
- ev5
- 21164
- Schedules as an EV5 and has no instruction set extensions.
- ev56
- 21164a
- Schedules as an EV5 and supports the BWX extension.
- pca56
- 21164pc
- 21164PC
- Schedules as an EV5 and supports the BWX and MAX extensions.
- ev6
- 21264
- Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
- ev67
- 21264a
- Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
extensions.
Native toolchains also support the value native, which
selects the best architecture option for the host processor.
-mcpu=native has no effect if GCC does not recognize the
processor.
- -mtune=cpu_type
- Set only the instruction scheduling parameters for machine type
cpu_type. The instruction set is not changed.
Native toolchains also support the value native, which
selects the best architecture option for the host processor.
-mtune=native has no effect if GCC does not recognize the
processor.
- -mmemory-latency=time
- Sets the latency the scheduler should assume for typical memory references
as seen by the application. This number is highly dependent on the memory
access patterns used by the application and the size of the external cache
on the machine.
Valid options for time are
- number
- A decimal number representing clock cycles.
- L1
- L2
- L3
- main
- The compiler contains estimates of the number of clock cycles for
"typical" EV4 & EV5 hardware for the Level 1, 2 & 3
caches (also called Dcache, Scache, and Bcache), as well as to main
memory. Note that L3 is only valid for EV5.
These options are defined specifically for the FR30 port.
- -msmall-model
- Use the small address space model. This can produce smaller code, but it
does assume that all symbolic values and addresses fit into a 20-bit
range.
- -mno-lsim
- Assume that runtime support has been provided and so there is no need to
include the simulator library (libsim.a) on the linker command
line.
- -mgpr-32
- Only use the first 32 general-purpose registers.
- -mgpr-64
- Use all 64 general-purpose registers.
- -mfpr-32
- Use only the first 32 floating-point registers.
- -mfpr-64
- Use all 64 floating-point registers.
- -mhard-float
- Use hardware instructions for floating-point operations.
- -msoft-float
- Use library routines for floating-point operations.
- -malloc-cc
- Dynamically allocate condition code registers.
- -mfixed-cc
- Do not try to dynamically allocate condition code registers, only use
"icc0" and
"fcc0".
- -mdword
- Change ABI to use double word insns.
- -mno-dword
- Do not use double word instructions.
- -mdouble
- Use floating-point double instructions.
- -mno-double
- Do not use floating-point double instructions.
- -mmedia
- Use media instructions.
- -mno-media
- Do not use media instructions.
- -mmuladd
- Use multiply and add/subtract instructions.
- -mno-muladd
- Do not use multiply and add/subtract instructions.
- -mfdpic
- Select the FDPIC ABI, which uses function descriptors to represent
pointers to functions. Without any PIC/PIE-related options, it implies
-fPIE. With -fpic or -fpie, it assumes GOT entries
and small data are within a 12-bit range from the GOT base address; with
-fPIC or -fPIE, GOT offsets are computed with 32 bits. With
a bfin-elf target, this option implies -msim.
- -minline-plt
- Enable inlining of PLT entries in function calls to functions that are not
known to bind locally. It has no effect without -mfdpic. It's
enabled by default if optimizing for speed and compiling for shared
libraries (i.e., -fPIC or -fpic), or when an optimization
option such as -O3 or above is present in the command line.
- -mTLS
- Assume a large TLS segment when generating thread-local code.
- -mtls
- Do not assume a large TLS segment when generating thread-local code.
- -mgprel-ro
- Enable the use of "GPREL" relocations in
the FDPIC ABI for data that is known to be in read-only sections. It's
enabled by default, except for -fpic or -fpie: even though
it may help make the global offset table smaller, it trades 1 instruction
for 4. With -fPIC or -fPIE, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need for
a GOT entry for the referenced symbol, so it's more likely to be a win. If
it is not, -mno-gprel-ro can be used to disable it.
- -multilib-library-pic
- Link with the (library, not FD) pic libraries. It's implied by
-mlibrary-pic, as well as by -fPIC and -fpic without
-mfdpic. You should never have to use it explicitly.
- -mlinked-fp
- Follow the EABI requirement of always creating a frame pointer whenever a
stack frame is allocated. This option is enabled by default and can be
disabled with -mno-linked-fp.
- -mlong-calls
- Use indirect addressing to call functions outside the current compilation
unit. This allows the functions to be placed anywhere within the 32-bit
address space.
- -malign-labels
- Try to align labels to an 8-byte boundary by inserting NOPs into the
previous packet. This option only has an effect when VLIW packing is
enabled. It doesn't create new packets; it merely adds NOPs to existing
ones.
- -mlibrary-pic
- Generate position-independent EABI code.
- -macc-4
- Use only the first four media accumulator registers.
- -macc-8
- Use all eight media accumulator registers.
- -mpack
- Pack VLIW instructions.
- -mno-pack
- Do not pack VLIW instructions.
- -mno-eflags
- Do not mark ABI switches in e_flags.
- -mcond-move
- Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mno-cond-move
- Disable the use of conditional-move instructions.
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mscc
- Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mno-scc
- Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mcond-exec
- Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mno-cond-exec
- Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mvliw-branch
- Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mno-vliw-branch
- Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mmulti-cond-exec
- Enable optimization of "&&" and
"||" in conditional execution (default).
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mno-multi-cond-exec
- Disable optimization of "&&" and
"||" in conditional execution.
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mnested-cond-exec
- Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -mno-nested-cond-exec
- Disable nested conditional execution optimizations.
This switch is mainly for debugging the compiler and will
likely be removed in a future version.
- -moptimize-membar
- This switch removes redundant "membar"
instructions from the compiler-generated code. It is enabled by
default.
- -mno-optimize-membar
- This switch disables the automatic removal of redundant
"membar" instructions from the generated
code.
- -mtomcat-stats
- Cause gas to print out tomcat statistics.
- -mcpu=cpu
- Select the processor type for which to generate code. Possible values are
frv, fr550, tomcat, fr500, fr450,
fr405, fr400, fr300 and simple.
These -m options are defined for GNU/Linux targets:
- -mglibc
- Use the GNU C library. This is the default except on
*-*-linux-*uclibc* and *-*-linux-*android* targets.
- -muclibc
- Use uClibc C library. This is the default on *-*-linux-*uclibc*
targets.
- -mbionic
- Use Bionic C library. This is the default on *-*-linux-*android*
targets.
- -mandroid
- Compile code compatible with Android platform. This is the default on
*-*-linux-*android* targets.
When compiling, this option enables -mbionic,
-fPIC, -fno-exceptions and -fno-rtti by default.
When linking, this option makes the GCC driver pass Android-specific
options to the linker. Finally, this option causes the preprocessor
macro "__ANDROID__" to be defined.
- -tno-android-cc
- Disable compilation effects of -mandroid, i.e., do not enable
-mbionic, -fPIC, -fno-exceptions and -fno-rtti
by default.
- -tno-android-ld
- Disable linking effects of -mandroid, i.e., pass standard Linux
linking options to the linker.
These -m options are defined for the H8/300 implementations:
- -mrelax
- Shorten some address references at link time, when possible; uses the
linker option -relax.
- -mh
- Generate code for the H8/300H.
- -ms
- Generate code for the H8S.
- -mn
- Generate code for the H8S and H8/300H in the normal mode. This switch must
be used either with -mh or -ms.
- -ms2600
- Generate code for the H8S/2600. This switch must be used with
-ms.
- -mexr
- Extended registers are stored on stack before execution of function with
monitor attribute. Default option is -mexr. This option is valid
only for H8S targets.
- -mno-exr
- Extended registers are not stored on stack before execution of function
with monitor attribute. Default option is -mno-exr. This option is
valid only for H8S targets.
- -mint32
- Make "int" data 32 bits by default.
- -malign-300
- On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on 4-byte
boundaries. -malign-300 causes them to be aligned on 2-byte
boundaries. This option has no effect on the H8/300.
These -m options are defined for the HPPA family of computers:
- -march=architecture-type
- Generate code for the specified architecture. The choices for
architecture-type are 1.0 for PA 1.0, 1.1 for PA 1.1,
and 2.0 for PA 2.0 processors. Refer to
/usr/lib/sched.models on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered
architectures runs on higher numbered architectures, but not the other way
around.
- -mpa-risc-1-0
- -mpa-risc-1-1
- -mpa-risc-2-0
- Synonyms for -march=1.0, -march=1.1, and -march=2.0
respectively.
- -mbig-switch
- Generate code suitable for big switch tables. Use this option only if the
assembler/linker complain about out-of-range branches within a switch
table.
- -mjump-in-delay
- Fill delay slots of function calls with unconditional jump instructions by
modifying the return pointer for the function call to be the target of the
conditional jump.
- -mdisable-fpregs
- Prevent floating-point registers from being used in any manner. This is
necessary for compiling kernels that perform lazy context switching of
floating-point registers. If you use this option and attempt to perform
floating-point operations, the compiler aborts.
- -mdisable-indexing
- Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH.
- -mno-space-regs
- Generate code that assumes the target has no space registers. This allows
GCC to generate faster indirect calls and use unscaled index address
modes.
Such code is suitable for level 0 PA systems and kernels.
- -mfast-indirect-calls
- Generate code that assumes calls never cross space boundaries. This allows
GCC to emit code that performs faster indirect calls.
This option does not work in the presence of shared libraries
or nested functions.
- -mfixed-range=register-range
- Generate code treating the given register range as fixed registers. A
fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as two
registers separated by a dash. Multiple register ranges can be specified
separated by a comma.
- -mlong-load-store
- Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker. This is equivalent to the +k option to the HP
compilers.
- -mportable-runtime
- Use the portable calling conventions proposed by HP for ELF systems.
- -mgas
- Enable the use of assembler directives only GAS understands.
- -mschedule=cpu-type
- Schedule code according to the constraints for the machine type
cpu-type. The choices for cpu-type are 700
7100, 7100LC, 7200, 7300 and 8000.
Refer to /usr/lib/sched.models on an HP-UX system to determine the
proper scheduling option for your machine. The default scheduling is
8000.
- -mlinker-opt
- Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some
programs.
- -msoft-float
- Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all HPPA
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.
-msoft-float changes the calling convention in the
output file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to compile
libgcc.a, the library that comes with GCC, with
-msoft-float in order for this to work.
- -msio
- Generate the predefine, "_SIO", for
server IO. The default is -mwsio. This generates the predefines,
"__hp9000s700",
"__hp9000s700__" and
"_WSIO", for workstation IO. These
options are available under HP-UX and HI-UX.
- -mgnu-ld
- Use options specific to GNU ld. This passes -shared to
ld when building a shared library. It is the default when GCC is
configured, explicitly or implicitly, with the GNU linker. This option
does not affect which ld is called; it only changes what parameters
are passed to that ld. The ld that is called is determined
by the --with-ld configure option, GCC's program search path, and
finally by the user's PATH. The linker used by GCC can be printed
using which `gcc -print-prog-name=ld`. This option is only
available on the 64-bit HP-UX GCC, i.e. configured with
hppa*64*-*-hpux*.
- -mhp-ld
- Use options specific to HP ld. This passes -b to ld
when building a shared library and passes +Accept TypeMismatch to
ld on all links. It is the default when GCC is configured,
explicitly or implicitly, with the HP linker. This option does not affect
which ld is called; it only changes what parameters are passed to
that ld. The ld that is called is determined by the
--with-ld configure option, GCC's program search path, and finally
by the user's PATH. The linker used by GCC can be printed using
which `gcc -print-prog-name=ld`. This option is only
available on the 64-bit HP-UX GCC, i.e. configured with
hppa*64*-*-hpux*.
- -mlong-calls
- Generate code that uses long call sequences. This ensures that a call is
always able to reach linker generated stubs. The default is to generate
long calls only when the distance from the call site to the beginning of
the function or translation unit, as the case may be, exceeds a predefined
limit set by the branch type being used. The limits for normal calls are
7,600,000 and 240,000 bytes, respectively for the PA 2.0 and PA 1.X
architectures. Sibcalls are always limited at 240,000 bytes.
Distances are measured from the beginning of functions when
using the -ffunction-sections option, or when using the
-mgas and -mno-portable-runtime options together under
HP-UX with the SOM linker.
It is normally not desirable to use this option as it degrades
performance. However, it may be useful in large applications,
particularly when partial linking is used to build the application.
The types of long calls used depends on the capabilities of
the assembler and linker, and the type of code being generated. The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small.
However, an indirect call is used on 32-bit ELF systems in pic code and
it is quite long.
- -munix=unix-std
- Generate compiler predefines and select a startfile for the specified UNIX
standard. The choices for unix-std are 93, 95 and
98. 93 is supported on all HP-UX versions. 95 is
available on HP-UX 10.10 and later. 98 is available on HP-UX 11.11
and later. The default values are 93 for HP-UX 10.00, 95 for
HP-UX 10.10 though to 11.00, and 98 for HP-UX 11.11 and later.
-munix=93 provides the same predefines as GCC 3.3 and
3.4. -munix=95 provides additional predefines for
"XOPEN_UNIX" and
"_XOPEN_SOURCE_EXTENDED", and the
startfile unix95.o. -munix=98 provides additional
predefines for "_XOPEN_UNIX",
"_XOPEN_SOURCE_EXTENDED",
"_INCLUDE__STDC_A1_SOURCE" and
"_INCLUDE_XOPEN_SOURCE_500", and the
startfile unix98.o.
It is important to note that this option changes the
interfaces for various library routines. It also affects the operational
behavior of the C library. Thus, extreme care is needed in using
this option.
Library code that is intended to operate with more than one
UNIX standard must test, set and restore the variable
__xpg4_extended_mask as appropriate. Most GNU software doesn't
provide this capability.
- -nolibdld
- Suppress the generation of link options to search libdld.sl when the
-static option is specified on HP-UX 10 and later.
- -static
- The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl. There isn't an archive version of libdld.sl. Thus, when the
-static option is specified, special link options are needed to
resolve this dependency.
On HP-UX 10 and later, the GCC driver adds the necessary
options to link with libdld.sl when the -static option is
specified. This causes the resulting binary to be dynamic. On the 64-bit
port, the linkers generate dynamic binaries by default in any case. The
-nolibdld option can be used to prevent the GCC driver from
adding these link options.
- -threads
- Add support for multithreading with the dce thread library under
HP-UX. This option sets flags for both the preprocessor and linker.
These -m options are defined for the i386 and x86-64 family of computers:
- -march=cpu-type
- Generate instructions for the machine type cpu-type. In contrast to
-mtune=cpu-type, which merely tunes the generated code for
the specified cpu-type, -march=cpu-type allows GCC to
generate code that may not run at all on processors other than the one
indicated. Specifying -march=cpu-type implies
-mtune=cpu-type.
The choices for cpu-type are:
- native
- This selects the CPU to generate code for at compilation time by
determining the processor type of the compiling machine. Using
-march=native enables all instruction subsets supported by the
local machine (hence the result might not run on different machines).
Using -mtune=native produces code optimized for the local machine
under the constraints of the selected instruction set.
- i386
- Original Intel i386 CPU.
- i486
- Intel i486 CPU. (No scheduling is implemented for this chip.)
- i586
- pentium
- Intel Pentium CPU with no MMX support.
- pentium-mmx
- Intel Pentium MMX CPU, based on Pentium core with MMX instruction set
support.
- pentiumpro
- Intel Pentium Pro CPU.
- i686
- When used with -march, the Pentium Pro instruction set is used, so
the code runs on all i686 family chips. When used with -mtune, it
has the same meaning as generic.
- pentium2
- Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
support.
- pentium3
- pentium3m
- Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE
instruction set support.
- pentium-m
- Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE
and SSE2 instruction set support. Used by Centrino notebooks.
- pentium4
- pentium4m
- Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
- prescott
- Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3
instruction set support.
- nocona
- Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
SSE2 and SSE3 instruction set support.
- core2
- Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
- corei7
- Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1 and SSE4.2 instruction set support.
- corei7-avx
- Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AES and PCLMUL instruction set support.
- core-avx-i
- Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set
support.
- core-avx2
- Intel Core CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2
and F16C instruction set support.
- atom
- Intel Atom CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and
SSSE3 instruction set support.
- k6
- AMD K6 CPU with MMX instruction set support.
- k6-2
- k6-3
- Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set
support.
- athlon
- athlon-tbird
- AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch
instructions support.
- athlon-4
- athlon-xp
- athlon-mp
- Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE
instruction set support.
- k8
- opteron
- athlon64
- athlon-fx
- Processors based on the AMD K8 core with x86-64 instruction set support,
including the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This
supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction
set extensions.)
- k8-sse3
- opteron-sse3
- athlon64-sse3
- Improved versions of AMD K8 cores with SSE3 instruction set support.
- amdfam10
- barcelona
- CPUs based on AMD Family 10h cores with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM
and 64-bit instruction set extensions.)
- bdver1
- CPUs based on AMD Family 15h cores with x86-64 instruction set support.
(This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2,
SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
extensions.)
- bdver2
- AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction
set extensions.)
- bdver3
- AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction
set extensions.
- btver1
- CPUs based on AMD Family 14h cores with x86-64 instruction set support.
(This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
instruction set extensions.)
- btver2
- CPUs based on AMD Family 16h cores with x86-64 instruction set support.
This includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16,
ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set
extensions.
- winchip-c6
- IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX
instruction set support.
- winchip2
- IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and
3DNow! instruction set support.
- c3
- VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is
implemented for this chip.)
- c3-2
- VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No
scheduling is implemented for this chip.)
- geode
- AMD Geode embedded processor with MMX and 3DNow! instruction set
support.
- -mtune=cpu-type
- Tune to cpu-type everything applicable about the generated code,
except for the ABI and the set of available instructions. While picking a
specific cpu-type schedules things appropriately for that
particular chip, the compiler does not generate any code that cannot run
on the default machine type unless you use a -march=cpu-type
option. For example, if GCC is configured for i686-pc-linux-gnu then
-mtune=pentium4 generates code that is tuned for Pentium 4 but
still runs on i686 machines.
The choices for cpu-type are the same as for
-march. In addition, -mtune supports an extra choice for
cpu-type:
- generic
- Produce code optimized for the most common IA32/AMD64/EM64T processors. If
you know the CPU on which your code will run, then you should use the
corresponding -mtune or -march option instead of
-mtune=generic. But, if you do not know exactly what CPU users of
your application will have, then you should use this option.
As new processors are deployed in the marketplace, the
behavior of this option will change. Therefore, if you upgrade to a
newer version of GCC, code generation controlled by this option will
change to reflect the processors that are most common at the time that
version of GCC is released.
There is no -march=generic option because -march
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors. In contrast,
-mtune indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
- -mcpu=cpu-type
- A deprecated synonym for -mtune.
- -mfpmath=unit
- Generate floating-point arithmetic for selected unit unit. The
choices for unit are:
- 387
- Use the standard 387 floating-point coprocessor present on the majority of
chips and emulated otherwise. Code compiled with this option runs almost
everywhere. The temporary results are computed in 80-bit precision instead
of the precision specified by the type, resulting in slightly different
results compared to most of other chips. See -ffloat-store for more
detailed description.
This is the default choice for i386 compiler.
- sse
- Use scalar floating-point instructions present in the SSE instruction set.
This instruction set is supported by Pentium III and newer chips, and in
the AMD line by Athlon-4, Athlon XP and Athlon MP chips. The earlier
version of the SSE instruction set supports only single-precision
arithmetic, thus the double and extended-precision arithmetic are still
done using 387. A later version, present only in Pentium 4 and AMD x86-64
chips, supports double-precision arithmetic too.
For the i386 compiler, you must use
-march=cpu-type, -msse or -msse2 switches to
enable SSE extensions and make this option effective. For the x86-64
compiler, these extensions are enabled by default.
The resulting code should be considerably faster in the
majority of cases and avoid the numerical instability problems of 387
code, but may break some existing code that expects temporaries to be 80
bits.
This is the default choice for the x86-64 compiler.
- sse,387
- sse+387
- both
- Attempt to utilize both instruction sets at once. This effectively doubles
the amount of available registers, and on chips with separate execution
units for 387 and SSE the execution resources too. Use this option with
care, as it is still experimental, because the GCC register allocator does
not model separate functional units well, resulting in unstable
performance.
- -masm=dialect
- Output assembly instructions using selected dialect. Supported
choices are intel or att (the default). Darwin does not
support intel.
- -mieee-fp
- -mno-ieee-fp
- Control whether or not the compiler uses IEEE floating-point comparisons.
These correctly handle the case where the result of a comparison is
unordered.
- -msoft-float
- Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GCC.
Normally the facilities of the machine's usual C compiler are used, but
this can't be done directly in cross-compilation. You must make your own
arrangements to provide suitable library functions for
cross-compilation.
On machines where a function returns floating-point results in
the 80387 register stack, some floating-point opcodes may be emitted
even if -msoft-float is used.
- -mno-fp-ret-in-387
- Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of
types "float" and
"double" in an FPU register, even if
there is no FPU. The idea is that the operating system should emulate an
FPU.
The option -mno-fp-ret-in-387 causes such values to be
returned in ordinary CPU registers instead.
- -mno-fancy-math-387
- Some 387 emulators do not support the
"sin",
"cos" and
"sqrt" instructions for the 387. Specify
this option to avoid generating those instructions. This option is the
default on FreeBSD, OpenBSD and NetBSD. This option is overridden when
-march indicates that the target CPU always has an FPU and so the
instruction does not need emulation. These instructions are not generated
unless you also use the -funsafe-math-optimizations switch.
- -malign-double
- -mno-align-double
- Control whether GCC aligns "double",
"long double", and
"long long" variables on a two-word
boundary or a one-word boundary. Aligning
"double" variables on a two-word
boundary produces code that runs somewhat faster on a Pentium at the
expense of more memory.
On x86-64, -malign-double is enabled by default.
Warning: if you use the -malign-double switch,
structures containing the above types are aligned differently than the
published application binary interface specifications for the 386 and
are not binary compatible with structures in code compiled without that
switch.
- -m96bit-long-double
- -m128bit-long-double
- These switches control the size of "long
double" type. The i386 application binary interface specifies
the size to be 96 bits, so -m96bit-long-double is the default in
32-bit mode.
Modern architectures (Pentium and newer) prefer
"long double" to be aligned to an 8-
or 16-byte boundary. In arrays or structures conforming to the ABI, this
is not possible. So specifying -m128bit-long-double aligns
"long double" to a 16-byte boundary by
padding the "long double" with an
additional 32-bit zero.
In the x86-64 compiler, -m128bit-long-double is the
default choice as its ABI specifies that "long
double" is aligned on 16-byte boundary.
Notice that neither of these options enable any extra
precision over the x87 standard of 80 bits for a
"long double".
Warning: if you override the default value for your
target ABI, this changes the size of structures and arrays containing
"long double" variables, as well as
modifying the function calling convention for functions taking
"long double". Hence they are not
binary-compatible with code compiled without that switch.
- -mlong-double-64
- -mlong-double-80
- These switches control the size of "long
double" type. A size of 64 bits makes the
"long double" type equivalent to the
"double" type. This is the default for
Bionic C library.
Warning: if you override the default value for your
target ABI, this changes the size of structures and arrays containing
"long double" variables, as well as
modifying the function calling convention for functions taking
"long double". Hence they are not
binary-compatible with code compiled without that switch.
- -mlarge-data-threshold=threshold
- When -mcmodel=medium is specified, data objects larger than
threshold are placed in the large data section. This value must be
the same across all objects linked into the binary, and defaults to
65535.
- -mrtd
- Use a different function-calling convention, in which functions that take
a fixed number of arguments return with the "ret
num" instruction, which pops
their arguments while returning. This saves one instruction in the caller
since there is no need to pop the arguments there.
You can specify that an individual function is called with
this calling sequence with the function attribute stdcall. You
can also override the -mrtd option by using the function
attribute cdecl.
Warning: this calling convention is incompatible with
the one normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including
"printf"); otherwise incorrect code is
generated for calls to those functions.
In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
- -mregparm=num
- Control how many registers are used to pass integer arguments. By default,
no registers are used to pass arguments, and at most 3 registers can be
used. You can control this behavior for a specific function by using the
function attribute regparm.
Warning: if you use this switch, and num is
nonzero, then you must build all modules with the same value, including
any libraries. This includes the system libraries and startup
modules.
- -msseregparm
- Use SSE register passing conventions for float and double arguments and
return values. You can control this behavior for a specific function by
using the function attribute sseregparm.
Warning: if you use this switch then you must build all
modules with the same value, including any libraries. This includes the
system libraries and startup modules.
- -mvect8-ret-in-mem
- Return 8-byte vectors in memory instead of MMX registers. This is the
default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
Studio compilers until version 12. Later compiler versions (starting with
Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
is the default on Solaris@tie{}10 and later. Only use this option
if you need to remain compatible with existing code produced by those
previous compiler versions or older versions of GCC.
- -mpc32
- -mpc64
- -mpc80
- Set 80387 floating-point precision to 32, 64 or 80 bits. When
-mpc32 is specified, the significands of results of floating-point
operations are rounded to 24 bits (single precision); -mpc64 rounds
the significands of results of floating-point operations to 53 bits
(double precision) and -mpc80 rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default. When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.
Setting the rounding of floating-point operations to less than
the default 80 bits can speed some programs by 2% or more. Note that
some mathematical libraries assume that extended-precision (80-bit)
floating-point operations are enabled by default; routines in such
libraries could suffer significant loss of accuracy, typically through
so-called "catastrophic cancellation", when this option is
used to set the precision to less than extended precision.
- -mstackrealign
- Realign the stack at entry. On the Intel x86, the -mstackrealign
option generates an alternate prologue and epilogue that realigns the
run-time stack if necessary. This supports mixing legacy codes that keep
4-byte stack alignment with modern codes that keep 16-byte stack alignment
for SSE compatibility. See also the attribute
"force_align_arg_pointer", applicable to
individual functions.
- -mpreferred-stack-boundary=num
- Attempt to keep the stack boundary aligned to a 2 raised to num
byte boundary. If -mpreferred-stack-boundary is not specified, the
default is 4 (16 bytes or 128 bits).
Warning: When generating code for the x86-64
architecture with SSE extensions disabled,
-mpreferred-stack-boundary=3 can be used to keep the stack
boundary aligned to 8 byte boundary. Since x86-64 ABI require 16 byte
stack alignment, this is ABI incompatible and intended to be used in
controlled environment where stack space is important limitation. This
option will lead to wrong code when functions compiled with 16 byte
stack alignment (such as functions from a standard library) are called
with misaligned stack. In this case, SSE instructions may lead to
misaligned memory access traps. In addition, variable arguments will be
handled incorrectly for 16 byte aligned objects (including x87 long
double and __int128), leading to wrong results. You must build all
modules with -mpreferred-stack-boundary=3, including any
libraries. This includes the system libraries and startup modules.
- -mincoming-stack-boundary=num
- Assume the incoming stack is aligned to a 2 raised to num byte
boundary. If -mincoming-stack-boundary is not specified, the one
specified by -mpreferred-stack-boundary is used.
On Pentium and Pentium Pro,
"double" and
"long double" values should be aligned
to an 8-byte boundary (see -malign-double) or suffer significant
run time performance penalties. On Pentium III, the Streaming SIMD
Extension (SSE) data type "__m128" may
not work properly if it is not 16-byte aligned.
To ensure proper alignment of this values on the stack, the
stack boundary must be as aligned as that required by any value stored
on the stack. Further, every function must be generated such that it
keeps the stack aligned. Thus calling a function compiled with a higher
preferred stack boundary from a function compiled with a lower preferred
stack boundary most likely misaligns the stack. It is recommended that
libraries that use callbacks always use the default setting.
This extra alignment does consume extra stack space, and
generally increases code size. Code that is sensitive to stack space
usage, such as embedded systems and operating system kernels, may want
to reduce the preferred alignment to
-mpreferred-stack-boundary=2.
- -mmmx
- -mno-mmx
- -msse
- -mno-sse
- -msse2
- -mno-sse2
- -msse3
- -mno-sse3
- -mssse3
- -mno-ssse3
- -msse4.1
- -mno-sse4.1
- -msse4.2
- -mno-sse4.2
- -msse4
- -mno-sse4
- -mavx
- -mno-avx
- -mavx2
- -mno-avx2
- -maes
- -mno-aes
- -mpclmul
- -mno-pclmul
- -mfsgsbase
- -mno-fsgsbase
- -mrdrnd
- -mno-rdrnd
- -mf16c
- -mno-f16c
- -mfma
- -mno-fma
- -msse4a
- -mno-sse4a
- -mfma4
- -mno-fma4
- -mxop
- -mno-xop
- -mlwp
- -mno-lwp
- -m3dnow
- -mno-3dnow
- -mpopcnt
- -mno-popcnt
- -mabm
- -mno-abm
- -mbmi
- -mbmi2
- -mno-bmi
- -mno-bmi2
- -mlzcnt
- -mno-lzcnt
- -mrtm
- -mpku
- -mno-pku
- -mtbm
- -mno-tbm
- These switches enable or disable the use of instructions in the MMX, SSE,
SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, F16C,
FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, LZCNT, RTM, PKU or 3DNow!
extended instruction sets. These extensions are also available as built-in
functions: see X86 Built-in Functions, for details of the functions
enabled and disabled by these switches.
To generate SSE/SSE2 instructions automatically from
floating-point code (as opposed to 387 instructions), see
-mfpmath=sse.
GCC depresses SSEx instructions when -mavx is used.
Instead, it generates new AVX instructions or AVX equivalence for all
SSEx instructions when needed.
These options enable GCC to use these extended instructions in
generated code, even without -mfpmath=sse. Applications that
perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular, the
file containing the CPU detection code should be compiled without these
options.
- -mcld
- This option instructs GCC to emit a
"cld" instruction in the prologue of
functions that use string instructions. String instructions depend on the
DF flag to select between autoincrement or autodecrement mode. While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers. The exception handler can be invoked with the DF
flag set, which leads to wrong direction mode when string instructions are
used. This option can be enabled by default on 32-bit x86 targets by
configuring GCC with the --enable-cld configure option. Generation
of "cld" instructions can be suppressed
with the -mno-cld compiler option in this case.
- -mvzeroupper
- This option instructs GCC to emit a
"vzeroupper" instruction before a
transfer of control flow out of the function to minimize the AVX to SSE
transition penalty as well as remove unnecessary
"zeroupper" intrinsics.
- -mprefer-avx128
- This option instructs GCC to use 128-bit AVX instructions instead of
256-bit AVX instructions in the auto-vectorizer.
- -mcx16
- This option enables GCC to generate
"CMPXCHG16B" instructions.
"CMPXCHG16B" allows for atomic
operations on 128-bit double quadword (or oword) data types. This is
useful for high-resolution counters that can be updated by multiple
processors (or cores). This instruction is generated as part of atomic
built-in functions: see __sync Builtins or __atomic Builtins
for details.
- -msahf
- This option enables generation of "SAHF"
instructions in 64-bit code. Early Intel Pentium 4 CPUs with Intel 64
support, prior to the introduction of Pentium 4 G1 step in December 2005,
lacked the "LAHF" and
"SAHF" instructions which were supported
by AMD64. These are load and store instructions, respectively, for certain
status flags. In 64-bit mode, the "SAHF"
instruction is used to optimize "fmod",
"drem", and
"remainder" built-in functions; see
Other Builtins for details.
- -mmovbe
- This option enables use of the "movbe"
instruction to implement
"__builtin_bswap32" and
"__builtin_bswap64".
- -mcrc32
- This option enables built-in functions
"__builtin_ia32_crc32qi",
"__builtin_ia32_crc32hi",
"__builtin_ia32_crc32si" and
"__builtin_ia32_crc32di" to generate the
"crc32" machine instruction.
- -mrecip
- This option enables use of "RCPSS" and
"RSQRTSS" instructions (and their
vectorized variants "RCPPS" and
"RSQRTPS") with an additional
Newton-Raphson step to increase precision instead of
"DIVSS" and
"SQRTSS" (and their vectorized variants)
for single-precision floating-point arguments. These instructions are
generated only when -funsafe-math-optimizations is enabled together
with -finite-math-only and -fno-trapping-math. Note that
while the throughput of the sequence is higher than the throughput of the
non-reciprocal instruction, the precision of the sequence can be decreased
by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
Note that GCC implements
"1.0f/sqrtf(
x)" in terms of
"RSQRTSS" (or
"RSQRTPS") already with
-ffast-math (or the above option combination), and doesn't need
-mrecip.
Also note that GCC emits the above sequence with additional
Newton-Raphson step for vectorized single-float division and vectorized
"sqrtf(x)"
already with -ffast-math (or the above option combination), and
doesn't need -mrecip.
- -mrecip=opt
- This option controls which reciprocal estimate instructions may be used.
opt is a comma-separated list of options, which may be preceded by
a ! to invert the option:
- all
- Enable all estimate instructions.
- default
- Enable the default instructions, equivalent to -mrecip.
- none
- Disable all estimate instructions, equivalent to -mno-recip.
- div
- Enable the approximation for scalar division.
- vec-div
- Enable the approximation for vectorized division.
- sqrt
- Enable the approximation for scalar square root.
- vec-sqrt
- Enable the approximation for vectorized square root.
So, for example, -mrecip=all,!sqrt enables all of the
reciprocal approximations, except for square root.
- -mveclibabi=type
- Specifies the ABI type to use for vectorizing intrinsics using an external
library. Supported values for type are svml for the Intel
short vector math library and acml for the AMD math core library.
To use this option, both -ftree-vectorize and
-funsafe-math-optimizations have to be enabled, and an SVML or ACML
ABI-compatible library must be specified at link time.
GCC currently emits calls to
"vmldExp2",
"vmldLn2",
"vmldLog102",
"vmldLog102",
"vmldPow2",
"vmldTanh2",
"vmldTan2",
"vmldAtan2",
"vmldAtanh2",
"vmldCbrt2",
"vmldSinh2",
"vmldSin2",
"vmldAsinh2",
"vmldAsin2",
"vmldCosh2",
"vmldCos2",
"vmldAcosh2",
"vmldAcos2",
"vmlsExp4",
"vmlsLn4",
"vmlsLog104",
"vmlsLog104",
"vmlsPow4",
"vmlsTanh4",
"vmlsTan4",
"vmlsAtan4",
"vmlsAtanh4",
"vmlsCbrt4",
"vmlsSinh4",
"vmlsSin4",
"vmlsAsinh4",
"vmlsAsin4",
"vmlsCosh4",
"vmlsCos4",
"vmlsAcosh4" and
"vmlsAcos4" for corresponding function
type when -mveclibabi=svml is used, and
"__vrd2_sin",
"__vrd2_cos",
"__vrd2_exp",
"__vrd2_log",
"__vrd2_log2",
"__vrd2_log10",
"__vrs4_sinf",
"__vrs4_cosf",
"__vrs4_expf",
"__vrs4_logf",
"__vrs4_log2f",
"__vrs4_log10f" and
"__vrs4_powf" for the corresponding
function type when -mveclibabi=acml is used.
- -mabi=name
- Generate code for the specified calling convention. Permissible values are
sysv for the ABI used on GNU/Linux and other systems, and ms
for the Microsoft ABI. The default is to use the Microsoft ABI when
targeting Microsoft Windows and the SysV ABI on all other systems. You can
control this behavior for a specific function by using the function
attribute ms_abi/sysv_abi.
- -mtls-dialect=type
- Generate code to access thread-local storage using the gnu or
gnu2 conventions. gnu is the conservative default;
gnu2 is more efficient, but it may add compile- and run-time
requirements that cannot be satisfied on all systems.
- -mpush-args
- -mno-push-args
- Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.
- -maccumulate-outgoing-args
- If enabled, the maximum amount of space required for outgoing arguments is
computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack
usage when the preferred stack boundary is not equal to 2. The drawback is
a notable increase in code size. This switch implies
-mno-push-args.
- -mthreads
- Support thread-safe exception handling on MinGW. Programs that rely on
thread-safe exception handling must compile and link all code with the
-mthreads option. When compiling, -mthreads defines
"-D_MT"; when linking, it links in a
special thread helper library -lmingwthrd which cleans up
per-thread exception-handling data.
- -mno-align-stringops
- Do not align the destination of inlined string operations. This switch
reduces code size and improves performance in case the destination is
already aligned, but GCC doesn't know about it.
- -minline-all-stringops
- By default GCC inlines string operations only when the destination is
known to be aligned to least a 4-byte boundary. This enables more inlining
and increases code size, but may improve performance of code that depends
on fast "memcpy",
"strlen", and
"memset" for short lengths.
- -minline-stringops-dynamically
- For string operations of unknown size, use run-time checks with inline
code for small blocks and a library call for large blocks.
- -mstringop-strategy=alg
- Override the internal decision heuristic for the particular algorithm to
use for inlining string operations. The allowed values for alg
are:
- rep_byte
- rep_4byte
- rep_8byte
- Expand using i386 "rep" prefix of the
specified size.
- byte_loop
- loop
- unrolled_loop
- Expand into an inline loop.
- libcall
- Always use a library call.
- -momit-leaf-frame-pointer
- Don't keep the frame pointer in a register for leaf functions. This avoids
the instructions to save, set up, and restore frame pointers and makes an
extra register available in leaf functions. The option
-fomit-leaf-frame-pointer removes the frame pointer for leaf
functions, which might make debugging harder.
- -mtls-direct-seg-refs
- -mno-tls-direct-seg-refs
- Controls whether TLS variables may be accessed with offsets from the TLS
segment register (%gs for 32-bit,
%fs for 64-bit), or whether the thread base
pointer must be added. Whether or not this is valid depends on the
operating system, and whether it maps the segment to cover the entire TLS
area.
For systems that use the GNU C Library, the default is on.
- -msse2avx
- -mno-sse2avx
- Specify that the assembler should encode SSE instructions with VEX prefix.
The option -mavx turns this on by default.
- -mfentry
- -mno-fentry
- If profiling is active (-pg), put the profiling counter call before
the prologue. Note: On x86 architectures the attribute
"ms_hook_prologue" isn't possible at the
moment for -mfentry and -pg.
- -m8bit-idiv
- -mno-8bit-idiv
- On some processors, like Intel Atom, 8-bit unsigned integer divide is much
faster than 32-bit/64-bit integer divide. This option generates a run-time
check. If both dividend and divisor are within range of 0 to 255, 8-bit
unsigned integer divide is used instead of 32-bit/64-bit integer
divide.
- -mavx256-split-unaligned-load
- -mavx256-split-unaligned-store
- Split 32-byte AVX unaligned load and store.
- -mindirect-branch=choice
- Convert indirect call and jump with choice. The default is
keep, which keeps indirect call and jump unmodified. thunk
converts indirect call and jump to call and return thunk.
thunk-inline converts indirect call and jump to inlined call and
return thunk. thunk-extern converts indirect call and jump to
external call and return thunk provided in a separate object file. You can
control this behavior for a specific function by using the function
attribute "indirect_branch".
Note that -mcmodel=large is incompatible with
-mindirect-branch=thunk nor -mindirect-branch=thunk-extern
since the thunk function may not be reachable in large code model.
- -mfunction-return=choice
- Convert function return with choice. The default is keep,
which keeps function return unmodified. thunk converts function
return to call and return thunk. thunk-inline converts function
return to inlined call and return thunk. thunk-extern converts
function return to external call and return thunk provided in a separate
object file. You can control this behavior for a specific function by
using the function attribute
"function_return".
Note that -mcmodel=large is incompatible with
-mfunction-return=thunk nor -mfunction-return=thunk-extern
since the thunk function may not be reachable in large code model.
- -mindirect-branch-register
- Force indirect call and jump via register.
These -m switches are supported in addition to the above on
x86-64 processors in 64-bit environments.
- -m32
- -m64
- -mx32
- Generate code for a 32-bit or 64-bit environment. The -m32 option
sets "int",
"long", and pointer types to 32 bits,
and generates code that runs on any i386 system.
The -m64 option sets
"int" to 32 bits and
"long" and pointer types to 64 bits,
and generates code for the x86-64 architecture. For Darwin only the
-m64 option also turns off the -fno-pic and
-mdynamic-no-pic options.
The -mx32 option sets
"int",
"long", and pointer types to 32 bits,
and generates code for the x86-64 architecture.
- -mno-red-zone
- Do not use a so-called "red zone" for x86-64 code. The red zone
is mandated by the x86-64 ABI; it is a 128-byte area beyond the location
of the stack pointer that is not modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer. The flag -mno-red-zone disables this red zone.
- -mcmodel=small
- Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space. Pointers are 64 bits.
Programs can be statically or dynamically linked. This is the default code
model.
- -mcmodel=kernel
- Generate code for the kernel code model. The kernel runs in the negative 2
GB of the address space. This model has to be used for Linux kernel
code.
- -mcmodel=medium
- Generate code for the medium model: the program is linked in the lower 2
GB of the address space. Small symbols are also placed there. Symbols with
sizes larger than -mlarge-data-threshold are put into large data or
BSS sections and can be located above 2GB. Programs can be statically or
dynamically linked.
- -mcmodel=large
- Generate code for the large model. This model makes no assumptions about
addresses and sizes of sections.
- -maddress-mode=long
- Generate code for long address mode. This is only supported for 64-bit and
x32 environments. It is the default address mode for 64-bit
environments.
- -maddress-mode=short
- Generate code for short address mode. This is only supported for 32-bit
and x32 environments. It is the default address mode for 32-bit and x32
environments.
These additional options are available for Microsoft Windows targets:
- -mconsole
- This option specifies that a console application is to be generated, by
instructing the linker to set the PE header subsystem type required for
console applications. This option is available for Cygwin and MinGW
targets and is enabled by default on those targets.
- -mdll
- This option is available for Cygwin and MinGW targets. It specifies that a
DLL---a dynamic link library---is to be generated, enabling the selection
of the required runtime startup object and entry point.
- -mnop-fun-dllimport
- This option is available for Cygwin and MinGW targets. It specifies that
the "dllimport" attribute should be
ignored.
- -mthread
- This option is available for MinGW targets. It specifies that
MinGW-specific thread support is to be used.
- -municode
- This option is available for MinGW-w64 targets. It causes the
"UNICODE" preprocessor macro to be
predefined, and chooses Unicode-capable runtime startup code.
- -mwin32
- This option is available for Cygwin and MinGW targets. It specifies that
the typical Microsoft Windows predefined macros are to be set in the
pre-processor, but does not influence the choice of runtime
library/startup code.
- -mwindows
- This option is available for Cygwin and MinGW targets. It specifies that a
GUI application is to be generated by instructing the linker to set the PE
header subsystem type appropriately.
- -fno-set-stack-executable
- This option is available for MinGW targets. It specifies that the
executable flag for the stack used by nested functions isn't set. This is
necessary for binaries running in kernel mode of Microsoft Windows, as
there the User32 API, which is used to set executable privileges, isn't
available.
- -fwritable-relocated-rdata
- This option is available for MinGW and Cygwin targets. It specifies that
relocated-data in read-only section is put into .data section. This is a
necessary for older runtimes not supporting modification of .rdata
sections for pseudo-relocation.
- -mpe-aligned-commons
- This option is available for Cygwin and MinGW targets. It specifies that
the GNU extension to the PE file format that permits the correct alignment
of COMMON variables should be used when generating code. It is enabled by
default if GCC detects that the target assembler found during
configuration supports the feature.
See also under i386 and x86-64 Options for standard
options.
These are the -m options defined for the Intel IA-64 architecture.
- -mbig-endian
- Generate code for a big-endian target. This is the default for HP-UX.
- -mlittle-endian
- Generate code for a little-endian target. This is the default for AIX5 and
GNU/Linux.
- -mgnu-as
- -mno-gnu-as
- Generate (or don't) code for the GNU assembler. This is the default.
- -mgnu-ld
- -mno-gnu-ld
- Generate (or don't) code for the GNU linker. This is the default.
- -mno-pic
- Generate code that does not use a global pointer register. The result is
not position independent code, and violates the IA-64 ABI.
- -mvolatile-asm-stop
- -mno-volatile-asm-stop
- Generate (or don't) a stop bit immediately before and after volatile asm
statements.
- -mregister-names
- -mno-register-names
- Generate (or don't) in, loc, and out register names
for the stacked registers. This may make assembler output more
readable.
- -mno-sdata
- -msdata
- Disable (or enable) optimizations that use the small data section. This
may be useful for working around optimizer bugs.
- -mconstant-gp
- Generate code that uses a single constant global pointer value. This is
useful when compiling kernel code.
- -mauto-pic
- Generate code that is self-relocatable. This implies -mconstant-gp.
This is useful when compiling firmware code.
- -minline-float-divide-min-latency
- Generate code for inline divides of floating-point values using the
minimum latency algorithm.
- -minline-float-divide-max-throughput
- Generate code for inline divides of floating-point values using the
maximum throughput algorithm.
- -mno-inline-float-divide
- Do not generate inline code for divides of floating-point values.
- -minline-int-divide-min-latency
- Generate code for inline divides of integer values using the minimum
latency algorithm.
- -minline-int-divide-max-throughput
- Generate code for inline divides of integer values using the maximum
throughput algorithm.
- -mno-inline-int-divide
- Do not generate inline code for divides of integer values.
- -minline-sqrt-min-latency
- Generate code for inline square roots using the minimum latency
algorithm.
- -minline-sqrt-max-throughput
- Generate code for inline square roots using the maximum throughput
algorithm.
- -mno-inline-sqrt
- Do not generate inline code for
"sqrt".
- -mfused-madd
- -mno-fused-madd
- Do (don't) generate code that uses the fused multiply/add or
multiply/subtract instructions. The default is to use these
instructions.
- -mno-dwarf2-asm
- -mdwarf2-asm
- Don't (or do) generate assembler code for the DWARF 2 line number
debugging info. This may be useful when not using the GNU assembler.
- -mearly-stop-bits
- -mno-early-stop-bits
- Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit. This can improve instruction
scheduling, but does not always do so.
- -mfixed-range=register-range
- Generate code treating the given register range as fixed registers. A
fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as two
registers separated by a dash. Multiple register ranges can be specified
separated by a comma.
- -mtls-size=tls-size
- Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
64.
- -mtune=cpu-type
- Tune the instruction scheduling for a particular CPU, Valid values are
itanium, itanium1, merced, itanium2, and
mckinley.
- -milp32
- -mlp64
- Generate code for a 32-bit or 64-bit environment. The 32-bit environment
sets int, long and pointer to 32 bits. The 64-bit environment sets int to
32 bits and long and pointer to 64 bits. These are HP-UX specific
flags.
- -mno-sched-br-data-spec
- -msched-br-data-spec
- (Dis/En)able data speculative scheduling before reload. This results in
generation of "ld.a" instructions and
the corresponding check instructions
("ld.c" /
"chk.a"). The default is 'disable'.
- -msched-ar-data-spec
- -mno-sched-ar-data-spec
- (En/Dis)able data speculative scheduling after reload. This results in
generation of "ld.a" instructions and
the corresponding check instructions
("ld.c" /
"chk.a"). The default is 'enable'.
- -mno-sched-control-spec
- -msched-control-spec
- (Dis/En)able control speculative scheduling. This feature is available
only during region scheduling (i.e. before reload). This results in
generation of the "ld.s" instructions
and the corresponding check instructions
"chk.s". The default is 'disable'.
- -msched-br-in-data-spec
- -mno-sched-br-in-data-spec
- (En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads before reload. This is effective only with
-msched-br-data-spec enabled. The default is 'enable'.
- -msched-ar-in-data-spec
- -mno-sched-ar-in-data-spec
- (En/Dis)able speculative scheduling of the instructions that are dependent
on the data speculative loads after reload. This is effective only with
-msched-ar-data-spec enabled. The default is 'enable'.
- -msched-in-control-spec
- -mno-sched-in-control-spec
- (En/Dis)able speculative scheduling of the instructions that are dependent
on the control speculative loads. This is effective only with
-msched-control-spec enabled. The default is 'enable'.
- -mno-sched-prefer-non-data-spec-insns
- -msched-prefer-non-data-spec-insns
- If enabled, data-speculative instructions are chosen for schedule only if
there are no other choices at the moment. This makes the use of the data
speculation much more conservative. The default is 'disable'.
- -mno-sched-prefer-non-control-spec-insns
- -msched-prefer-non-control-spec-insns
- If enabled, control-speculative instructions are chosen for schedule only
if there are no other choices at the moment. This makes the use of the
control speculation much more conservative. The default is 'disable'.
- -mno-sched-count-spec-in-critical-path
- -msched-count-spec-in-critical-path
- If enabled, speculative dependencies are considered during computation of
the instructions priorities. This makes the use of the speculation a bit
more conservative. The default is 'disable'.
- -msched-spec-ldc
- Use a simple data speculation check. This option is on by default.
- -msched-control-spec-ldc
- Use a simple check for control speculation. This option is on by
default.
- -msched-stop-bits-after-every-cycle
- Place a stop bit after every cycle when scheduling. This option is on by
default.
- -msched-fp-mem-deps-zero-cost
- Assume that floating-point stores and loads are not likely to cause a
conflict when placed into the same instruction group. This option is
disabled by default.
- -msel-sched-dont-check-control-spec
- Generate checks for control speculation in selective scheduling. This flag
is disabled by default.
- -msched-max-memory-insns=max-insns
- Limit on the number of memory insns per instruction group, giving lower
priority to subsequent memory insns attempting to schedule in the same
instruction group. Frequently useful to prevent cache bank conflicts. The
default value is 1.
- -msched-max-memory-insns-hard-limit
- Makes the limit specified by msched-max-memory-insns a hard limit,
disallowing more than that number in an instruction group. Otherwise, the
limit is "soft", meaning that non-memory operations are
preferred when the limit is reached, but memory operations may still be
scheduled.
These -m options are defined for the LatticeMico32 architecture:
- -mbarrel-shift-enabled
- Enable barrel-shift instructions.
- -mdivide-enabled
- Enable divide and modulus instructions.
- -mmultiply-enabled
- Enable multiply instructions.
- -msign-extend-enabled
- Enable sign extend instructions.
- -muser-enabled
- Enable user-defined instructions.
- -mcpu=name
- Select the CPU for which code is generated. name may be one of
r8c for the R8C/Tiny series, m16c for the M16C (up to /60)
series, m32cm for the M16C/80 series, or m32c for the
M32C/80 series.
- -msim
- Specifies that the program will be run on the simulator. This causes an
alternate runtime library to be linked in which supports, for example,
file I/O. You must not use this option when generating programs that will
run on real hardware; you must provide your own runtime library for
whatever I/O functions are needed.
- -memregs=number
- Specifies the number of memory-based pseudo-registers GCC uses during code
generation. These pseudo-registers are used like real registers, so there
is a tradeoff between GCC's ability to fit the code into available
registers, and the performance penalty of using memory instead of
registers. Note that all modules in a program must be compiled with the
same value for this option. Because of that, you must not use this option
with GCC's default runtime libraries.
These -m options are defined for Renesas M32R/D architectures:
- -m32r2
- Generate code for the M32R/2.
- -m32rx
- Generate code for the M32R/X.
- -m32r
- Generate code for the M32R. This is the default.
- -mmodel=small
- Assume all objects live in the lower 16MB of memory (so that their
addresses can be loaded with the "ld24"
instruction), and assume all subroutines are reachable with the
"bl" instruction. This is the default.
The addressability of a particular object can be set with the
"model" attribute.
- -mmodel=medium
- Assume objects may be anywhere in the 32-bit address space (the compiler
generates "seth/add3" instructions to
load their addresses), and assume all subroutines are reachable with the
"bl" instruction.
- -mmodel=large
- Assume objects may be anywhere in the 32-bit address space (the compiler
generates "seth/add3" instructions to
load their addresses), and assume subroutines may not be reachable with
the "bl" instruction (the compiler
generates the much slower "seth/add3/jl"
instruction sequence).
- -msdata=none
- Disable use of the small data area. Variables are put into one of
.data, .bss, or .rodata (unless the
"section" attribute has been specified).
This is the default.
The small data area consists of sections .sdata and
.sbss. Objects may be explicitly put in the small data area with
the "section" attribute using one of
these sections.
- -msdata=sdata
- Put small global and static data in the small data area, but do not
generate special code to reference them.
- -msdata=use
- Put small global and static data in the small data area, and generate
special instructions to reference them.
- -G num
- Put global and static objects less than or equal to num bytes into
the small data or BSS sections instead of the normal data or BSS sections.
The default value of num is 8. The -msdata option must be
set to one of sdata or use for this option to have any
effect.
All modules should be compiled with the same -G
num value. Compiling with different values of num may or
may not work; if it doesn't the linker gives an error
message---incorrect code is not generated.
- -mdebug
- Makes the M32R-specific code in the compiler display some statistics that
might help in debugging programs.
- -malign-loops
- Align all loops to a 32-byte boundary.
- -mno-align-loops
- Do not enforce a 32-byte alignment for loops. This is the default.
- -missue-rate=number
- Issue number instructions per cycle. number can only be 1 or
2.
- -mbranch-cost=number
- number can only be 1 or 2. If it is 1 then branches are preferred
over conditional code, if it is 2, then the opposite applies.
- -mflush-trap=number
- Specifies the trap number to use to flush the cache. The default is 12.
Valid numbers are between 0 and 15 inclusive.
- -mno-flush-trap
- Specifies that the cache cannot be flushed by using a trap.
- -mflush-func=name
- Specifies the name of the operating system function to call to flush the
cache. The default is _flush_cache, but a function call is only
used if a trap is not available.
- -mno-flush-func
- Indicates that there is no OS function for flushing the cache.
These are the -m options defined for M680x0 and ColdFire processors. The
default settings depend on which architecture was selected when the compiler
was configured; the defaults for the most common choices are given below.
- -march=arch
- Generate code for a specific M680x0 or ColdFire instruction set
architecture. Permissible values of arch for M680x0 architectures
are: 68000, 68010, 68020, 68030, 68040,
68060 and cpu32. ColdFire architectures are selected
according to Freescale's ISA classification and the permissible values
are: isaa, isaaplus, isab and isac.
GCC defines a macro __mcfarch__ whenever
it is generating code for a ColdFire target. The arch in this
macro is one of the -march arguments given above.
When used together, -march and -mtune select
code that runs on a family of similar processors but that is optimized
for a particular microarchitecture.
- -mcpu=cpu
- Generate code for a specific M680x0 or ColdFire processor. The M680x0
cpus are: 68000, 68010, 68020, 68030,
68040, 68060, 68302, 68332 and cpu32.
The ColdFire cpus are given by the table below, which also
classifies the CPUs into families:
- Family : -mcpu arguments
- 51 : 51 51ac 51ag 51cn 51em
51je 51jf 51jg 51jm 51mm 51qe
51qm
- 5206 : 5202 5204 5206
- 5206e : 5206e
- 5208 : 5207 5208
- 5211a : 5210a 5211a
- 5213 : 5211 5212 5213
- 5216 : 5214 5216
- 52235 : 52230 52231 52232 52233
52234 52235
- 5225 : 5224 5225
- 52259 : 52252 52254 52255 52256
52258 52259
- 5235 : 5232 5233 5234 5235
523x
- 5249 : 5249
- 5250 : 5250
- 5271 : 5270 5271
- 5272 : 5272
- 5275 : 5274 5275
- 5282 : 5280 5281 5282 528x
- 53017 : 53011 53012 53013 53014
53015 53016 53017
- 5307 : 5307
- 5329 : 5327 5328 5329 532x
- 5373 : 5372 5373 537x
- 5407 : 5407
- 5475 : 5470 5471 5472 5473 5474
5475 547x 5480 5481 5482 5483
5484 5485
-mcpu=cpu overrides -march=arch if
arch is compatible with cpu. Other combinations of
-mcpu and -march are rejected.
GCC defines the macro __mcf_cpu_cpu when ColdFire
target cpu is selected. It also defines
__mcf_family_family, where the value of family is given
by the table above.
- -mtune=tune
- Tune the code for a particular microarchitecture within the constraints
set by -march and -mcpu. The M680x0 microarchitectures are:
68000, 68010, 68020, 68030, 68040,
68060 and cpu32. The ColdFire microarchitectures are:
cfv1, cfv2, cfv3, cfv4 and cfv4e.
You can also use -mtune=68020-40 for code that needs to
run relatively well on 68020, 68030 and 68040 targets.
-mtune=68020-60 is similar but includes 68060 targets as well.
These two options select the same tuning decisions as -m68020-40
and -m68020-60 respectively.
GCC defines the macros __mcarch and
__mcarch__ when tuning for 680x0 architecture
arch. It also defines mcarch unless either
-ansi or a non-GNU -std option is used. If GCC is tuning
for a range of architectures, as selected by -mtune=68020-40 or
-mtune=68020-60, it defines the macros for every architecture in
the range.
GCC also defines the macro __muarch__
when tuning for ColdFire microarchitecture uarch, where
uarch is one of the arguments given above.
- -m68000
- -mc68000
- Generate output for a 68000. This is the default when the compiler is
configured for 68000-based systems. It is equivalent to
-march=68000.
Use this option for microcontrollers with a 68000 or EC000
core, including the 68008, 68302, 68306, 68307, 68322, 68328 and
68356.
- -m68010
- Generate output for a 68010. This is the default when the compiler is
configured for 68010-based systems. It is equivalent to
-march=68010.
- -m68020
- -mc68020
- Generate output for a 68020. This is the default when the compiler is
configured for 68020-based systems. It is equivalent to
-march=68020.
- -m68030
- Generate output for a 68030. This is the default when the compiler is
configured for 68030-based systems. It is equivalent to
-march=68030.
- -m68040
- Generate output for a 68040. This is the default when the compiler is
configured for 68040-based systems. It is equivalent to
-march=68040.
This option inhibits the use of 68881/68882 instructions that
have to be emulated by software on the 68040. Use this option if your
68040 does not have code to emulate those instructions.
- -m68060
- Generate output for a 68060. This is the default when the compiler is
configured for 68060-based systems. It is equivalent to
-march=68060.
This option inhibits the use of 68020 and 68881/68882
instructions that have to be emulated by software on the 68060. Use this
option if your 68060 does not have code to emulate those
instructions.
- -mcpu32
- Generate output for a CPU32. This is the default when the compiler is
configured for CPU32-based systems. It is equivalent to
-march=cpu32.
Use this option for microcontrollers with a CPU32 or CPU32+
core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340,
68341, 68349 and 68360.
- -m5200
- Generate output for a 520X ColdFire CPU. This is the default when the
compiler is configured for 520X-based systems. It is equivalent to
-mcpu=5206, and is now deprecated in favor of that option.
Use this option for microcontroller with a 5200 core,
including the MCF5202, MCF5203, MCF5204 and MCF5206.
- -m5206e
- Generate output for a 5206e ColdFire CPU. The option is now deprecated in
favor of the equivalent -mcpu=5206e.
- -m528x
- Generate output for a member of the ColdFire 528X family. The option is
now deprecated in favor of the equivalent -mcpu=528x.
- -m5307
- Generate output for a ColdFire 5307 CPU. The option is now deprecated in
favor of the equivalent -mcpu=5307.
- -m5407
- Generate output for a ColdFire 5407 CPU. The option is now deprecated in
favor of the equivalent -mcpu=5407.
- -mcfv4e
- Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This
includes use of hardware floating-point instructions. The option is
equivalent to -mcpu=547x, and is now deprecated in favor of that
option.
- -m68020-40
- Generate output for a 68040, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the 68881
instructions that are emulated on the 68040.
The option is equivalent to -march=68020
-mtune=68020-40.
- -m68020-60
- Generate output for a 68060, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the 68881
instructions that are emulated on the 68060.
The option is equivalent to -march=68020
-mtune=68020-60.
- -mhard-float
- -m68881
- Generate floating-point instructions. This is the default for 68020 and
above, and for ColdFire devices that have an FPU. It defines the macro
__HAVE_68881__ on M680x0 targets and __mcffpu__ on ColdFire
targets.
- -msoft-float
- Do not generate floating-point instructions; use library calls instead.
This is the default for 68000, 68010, and 68832 targets. It is also the
default for ColdFire devices that have no FPU.
- -mdiv
- -mno-div
- Generate (do not generate) ColdFire hardware divide and remainder
instructions. If -march is used without -mcpu, the default
is "on" for ColdFire architectures and "off" for
M680x0 architectures. Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by -mcpu). For
example, the default is "off" for -mcpu=5206 and
"on" for -mcpu=5206e.
GCC defines the macro __mcfhwdiv__ when this option is
enabled.
- -mshort
- Consider type "int" to be 16 bits wide,
like "short int". Additionally,
parameters passed on the stack are also aligned to a 16-bit boundary even
on targets whose API mandates promotion to 32-bit.
- -mno-short
- Do not consider type "int" to be 16 bits
wide. This is the default.
- -mnobitfield
- -mno-bitfield
- Do not use the bit-field instructions. The -m68000, -mcpu32
and -m5200 options imply -mnobitfield.
- -mbitfield
- Do use the bit-field instructions. The -m68020 option implies
-mbitfield. This is the default if you use a configuration designed
for a 68020.
- -mrtd
- Use a different function-calling convention, in which functions that take
a fixed number of arguments return with the
"rtd" instruction, which pops their
arguments while returning. This saves one instruction in the caller since
there is no need to pop the arguments there.
This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including
"printf"); otherwise incorrect code is
generated for calls to those functions.
In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
The "rtd" instruction is
supported by the 68010, 68020, 68030, 68040, 68060 and CPU32 processors,
but not by the 68000 or 5200.
- -mno-rtd
- Do not use the calling conventions selected by -mrtd. This is the
default.
- -malign-int
- -mno-align-int
- Control whether GCC aligns "int",
"long", "long
long", "float",
"double", and
"long double" variables on a 32-bit
boundary (-malign-int) or a 16-bit boundary
(-mno-align-int). Aligning variables on 32-bit boundaries produces
code that runs somewhat faster on processors with 32-bit busses at the
expense of more memory.
Warning: if you use the -malign-int switch, GCC
aligns structures containing the above types differently than most
published application binary interface specifications for the m68k.
- -mpcrel
- Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table. At present, this option implies -fpic,
allowing at most a 16-bit offset for pc-relative addressing. -fPIC
is not presently supported with -mpcrel, though this could be
supported for 68020 and higher processors.
- -mno-strict-align
- -mstrict-align
- Do not (do) assume that unaligned memory references are handled by the
system.
- -msep-data
- Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute-in-place in
an environment without virtual memory management. This option implies
-fPIC.
- -mno-sep-data
- Generate code that assumes that the data segment follows the text segment.
This is the default.
- -mid-shared-library
- Generate code that supports shared libraries via the library ID method.
This allows for execute-in-place and shared libraries in an environment
without virtual memory management. This option implies -fPIC.
- -mno-id-shared-library
- Generate code that doesn't assume ID-based shared libraries are being
used. This is the default.
- -mshared-library-id=n
- Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current library,
but is no more space- or time-efficient than omitting this option.
- -mxgot
- -mno-xgot
- When generating position-independent code for ColdFire, generate code that
works if the GOT has more than 8192 entries. This code is larger and
slower than code generated without this option. On M680x0 processors, this
option is not needed; -fPIC suffices.
GCC normally uses a single instruction to load values from the
GOT. While this is relatively efficient, it only works if the GOT is
smaller than about 64k. Anything larger causes the linker to report an
error such as:
relocation truncated to fit: R_68K_GOT16O foobar
If this happens, you should recompile your code with
-mxgot. It should then work with very large GOTs. However, code
generated with -mxgot is less efficient, since it takes 4
instructions to fetch the value of a global symbol.
Note that some linkers, including newer versions of the GNU
linker, can create multiple GOTs and sort GOT entries. If you have such
a linker, you should only need to use -mxgot when compiling a
single object file that accesses more than 8192 GOT entries. Very few
do.
These options have no effect unless GCC is generating
position-independent code.
These are the -m options defined for the Motorola M*Core processors.
- -mhardlit
- -mno-hardlit
- Inline constants into the code stream if it can be done in two
instructions or less.
- -mdiv
- -mno-div
- Use the divide instruction. (Enabled by default).
- -mrelax-immediate
- -mno-relax-immediate
- Allow arbitrary-sized immediates in bit operations.
- -mwide-bitfields
- -mno-wide-bitfields
- Always treat bit-fields as
"int"-sized.
- -m4byte-functions
- -mno-4byte-functions
- Force all functions to be aligned to a 4-byte boundary.
- -mcallgraph-data
- -mno-callgraph-data
- Emit callgraph information.
- -mslow-bytes
- -mno-slow-bytes
- Prefer word access when reading byte quantities.
- -mlittle-endian
- -mbig-endian
- Generate code for a little-endian target.
- -m210
- -m340
- Generate code for the 210 processor.
- -mno-lsim
- Assume that runtime support has been provided and so omit the simulator
library (libsim.a) from the linker command line.
- -mstack-increment=size
- Set the maximum amount for a single stack increment operation. Large
values can increase the speed of programs that contain functions that need
a large amount of stack space, but they can also trigger a segmentation
fault if the stack is extended too much. The default value is 0x1000.
- -mabsdiff
- Enables the "abs" instruction, which is
the absolute difference between two registers.
- -mall-opts
- Enables all the optional instructions---average, multiply, divide, bit
operations, leading zero, absolute difference, min/max, clip, and
saturation.
- -maverage
- Enables the "ave" instruction, which
computes the average of two registers.
- -mbased=n
- Variables of size n bytes or smaller are placed in the
".based" section by default. Based
variables use the $tp register as a base register,
and there is a 128-byte limit to the
".based" section.
- -mbitops
- Enables the bit operation instructions---bit test
("btstm"), set
("bsetm"), clear
("bclrm"), invert
("bnotm"), and test-and-set
("tas").
- -mc=name
- Selects which section constant data is placed in. name may be
"tiny",
"near", or
"far".
- -mclip
- Enables the "clip" instruction. Note
that "-mclip" is not useful unless you
also provide "-mminmax".
- -mconfig=name
- Selects one of the built-in core configurations. Each MeP chip has one or
more modules in it; each module has a core CPU and a variety of
coprocessors, optional instructions, and peripherals. The
"MeP-Integrator" tool, not part of GCC,
provides these configurations through this option; using this option is
the same as using all the corresponding command-line options. The default
configuration is "default".
- -mcop
- Enables the coprocessor instructions. By default, this is a 32-bit
coprocessor. Note that the coprocessor is normally enabled via the
"-mconfig=" option.
- -mcop32
- Enables the 32-bit coprocessor's instructions.
- -mcop64
- Enables the 64-bit coprocessor's instructions.
- -mivc2
- Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
- -mdc
- Causes constant variables to be placed in the
".near" section.
- -mdiv
- Enables the "div" and
"divu" instructions.
- -meb
- Generate big-endian code.
- -mel
- Generate little-endian code.
- -mio-volatile
- Tells the compiler that any variable marked with the
"io" attribute is to be considered
volatile.
- -ml
- Causes variables to be assigned to the
".far" section by default.
- -mleadz
- Enables the "leadz" (leading zero)
instruction.
- -mm
- Causes variables to be assigned to the
".near" section by default.
- -mminmax
- Enables the "min" and
"max" instructions.
- -mmult
- Enables the multiplication and multiply-accumulate instructions.
- -mno-opts
- Disables all the optional instructions enabled by
"-mall-opts".
- -mrepeat
- Enables the "repeat" and
"erepeat" instructions, used for
low-overhead looping.
- -ms
- Causes all variables to default to the
".tiny" section. Note that there is a
65536-byte limit to this section. Accesses to these variables use the
%gp base register.
- -msatur
- Enables the saturation instructions. Note that the compiler does not
currently generate these itself, but this option is included for
compatibility with other tools, like
"as".
- -msdram
- Link the SDRAM-based runtime instead of the default ROM-based
runtime.
- -msim
- Link the simulator runtime libraries.
- -msimnovec
- Link the simulator runtime libraries, excluding built-in support for reset
and exception vectors and tables.
- -mtf
- Causes all functions to default to the
".far" section. Without this option,
functions default to the ".near"
section.
- -mtiny=n
- Variables that are n bytes or smaller are allocated to the
".tiny" section. These variables use the
$gp base register. The default for this option is
4, but note that there's a 65536-byte limit to the
".tiny" section.
- -msoft-float
- Use software emulation for floating point (default).
- -mhard-float
- Use hardware floating-point instructions.
- -mmemcpy
- Do not optimize block moves, use
"memcpy".
- -mno-clearbss
- This option is deprecated. Use -fno-zero-initialized-in-bss
instead.
- -mcpu=cpu-type
- Use features of, and schedule code for, the given CPU. Supported values
are in the format vX.YY.Z, where
X is a major version, YY is the minor version, and Z
is compatibility code. Example values are v3.00.a, v4.00.b,
v5.00.a, v5.00.b, v5.00.b, v6.00.a.
- -mxl-soft-mul
- Use software multiply emulation (default).
- -mxl-soft-div
- Use software emulation for divides (default).
- -mxl-barrel-shift
- Use the hardware barrel shifter.
- -mxl-pattern-compare
- Use pattern compare instructions.
- -msmall-divides
- Use table lookup optimization for small signed integer divisions.
- -mxl-stack-check
- This option is deprecated. Use -fstack-check instead.
- -mxl-gp-opt
- Use GP-relative
".sdata"/".sbss"
sections.
- -mxl-multiply-high
- Use multiply high instructions for high part of 32x32 multiply.
- -mxl-float-convert
- Use hardware floating-point conversion instructions.
- -mxl-float-sqrt
- Use hardware floating-point square root instruction.
- -mbig-endian
- Generate code for a big-endian target.
- -mlittle-endian
- Generate code for a little-endian target.
- -mxl-reorder
- Use reorder instructions (swap and byte reversed load/store).
- -mxl-mode-app-model
- Select application model app-model. Valid models are
- executable
- normal executable (default), uses startup code crt0.o.
- xmdstub
- for use with Xilinx Microprocessor Debugger (XMD) based software intrusive
debug agent called xmdstub. This uses startup file crt1.o and sets
the start address of the program to 0x800.
- bootstrap
- for applications that are loaded using a bootloader. This model uses
startup file crt2.o which does not contain a processor reset vector
handler. This is suitable for transferring control on a processor reset to
the bootloader rather than the application.
- novectors
- for applications that do not require any of the MicroBlaze vectors. This
option may be useful for applications running within a monitoring
application. This model uses crt3.o as a startup file.
Option -xl-mode-app-model is a deprecated alias for
-mxl-mode-app-model.
- -EB
- Generate big-endian code.
- -EL
- Generate little-endian code. This is the default for mips*el-*-*
configurations.
- -march=arch
- Generate code that runs on arch, which can be the name of a generic
MIPS ISA, or the name of a particular processor. The ISA names are:
mips1, mips2, mips3, mips4, mips32,
mips32r2, mips64 and mips64r2. The processor names
are: 4kc, 4km, 4kp, 4ksc, 4kec,
4kem, 4kep, 4ksd, 5kc, 5kf,
20kc, 24kc, 24kf2_1, 24kf1_1, 24kec,
24kef2_1, 24kef1_1, 34kc, 34kf2_1,
34kf1_1, 34kn, 74kc, 74kf2_1, 74kf1_1,
74kf3_2, 1004kc, 1004kf2_1, 1004kf1_1,
loongson2e, loongson2f, loongson3a, m4k,
octeon, octeon+, octeon2, orion, r2000,
r3000, r3900, r4000, r4400, r4600,
r4650, r4700, r6000, r8000, rm7000,
rm9000, r10000, r12000, r14000, r16000,
sb1, sr71000, vr4100, vr4111, vr4120,
vr4130, vr4300, vr5000, vr5400, vr5500,
xlr and xlp. The special value from-abi selects the
most compatible architecture for the selected ABI (that is, mips1
for 32-bit ABIs and mips3 for 64-bit ABIs).
The native Linux/GNU toolchain also supports the value
native, which selects the best architecture option for the host
processor. -march=native has no effect if GCC does not recognize
the processor.
In processor names, a final 000 can be abbreviated as
k (for example, -march=r2k). Prefixes are optional, and
vr may be written r.
Names of the form nf2_1 refer to processors with
FPUs clocked at half the rate of the core, names of the form
nf1_1 refer to processors with FPUs clocked at the same
rate as the core, and names of the form nf3_2 refer to
processors with FPUs clocked a ratio of 3:2 with respect to the core.
For compatibility reasons, nf is accepted as a synonym for
nf2_1 while nx and bfx are
accepted as synonyms for nf1_1.
GCC defines two macros based on the value of this option. The
first is _MIPS_ARCH, which gives the name of target architecture,
as a string. The second has the form _MIPS_ARCH_foo, where
foo is the capitalized value of _MIPS_ARCH. For example,
-march=r2000 sets _MIPS_ARCH to "r2000"
and defines the macro _MIPS_ARCH_R2000.
Note that the _MIPS_ARCH macro uses the processor names
given above. In other words, it has the full prefix and does not
abbreviate 000 as k. In the case of from-abi, the
macro names the resolved architecture (either "mips1"
or "mips3"). It names the default architecture when no
-march option is given.
- -mtune=arch
- Optimize for arch. Among other things, this option controls the way
instructions are scheduled, and the perceived cost of arithmetic
operations. The list of arch values is the same as for
-march.
When this option is not used, GCC optimizes for the processor
specified by -march. By using -march and -mtune
together, it is possible to generate code that runs on a family of
processors, but optimize the code for one particular member of that
family.
-mtune defines the macros _MIPS_TUNE and
_MIPS_TUNE_foo, which work in the same way as the
-march ones described above.
- -mips1
- Equivalent to -march=mips1.
- -mips2
- Equivalent to -march=mips2.
- -mips3
- Equivalent to -march=mips3.
- -mips4
- Equivalent to -march=mips4.
- -mips32
- Equivalent to -march=mips32.
- -mips32r2
- Equivalent to -march=mips32r2.
- -mips64
- Equivalent to -march=mips64.
- -mips64r2
- Equivalent to -march=mips64r2.
- -mips16
- -mno-mips16
- Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or
MIPS64 architecture, it makes use of the MIPS16e ASE.
MIPS16 code generation can also be controlled on a
per-function basis by means of
"mips16" and
"nomips16" attributes.
- -mflip-mips16
- Generate MIPS16 code on alternating functions. This option is provided for
regression testing of mixed MIPS16/non-MIPS16 code generation, and is not
intended for ordinary use in compiling user code.
- -minterlink-mips16
- -mno-interlink-mips16
- Require (do not require) that non-MIPS16 code be link-compatible with
MIPS16 code.
For example, non-MIPS16 code cannot jump directly to MIPS16
code; it must either use a call or an indirect jump.
-minterlink-mips16 therefore disables direct jumps unless GCC
knows that the target of the jump is not MIPS16.
- -mabi=32
- -mabi=o64
- -mabi=n32
- -mabi=64
- -mabi=eabi
- Generate code for the given ABI.
Note that the EABI has a 32-bit and a 64-bit variant. GCC
normally generates 64-bit code when you select a 64-bit architecture,
but you can use -mgp32 to get 32-bit code instead.
For information about the O64 ABI, see
<http://gcc.gnu.org/projects/mipso64-abi.html>.
GCC supports a variant of the o32 ABI in which floating-point
registers are 64 rather than 32 bits wide. You can select this
combination with -mabi=32 -mfp64. This ABI relies on the
"mthc1" and
"mfhc1" instructions and is therefore
only supported for MIPS32R2 processors.
The register assignments for arguments and return values
remain the same, but each scalar value is passed in a single 64-bit
register rather than a pair of 32-bit registers. For example, scalar
floating-point values are returned in $f0 only, not
a $f0/$f1 pair. The set of
call-saved registers also remains the same, but all 64 bits are
saved.
- -mabicalls
- -mno-abicalls
- Generate (do not generate) code that is suitable for SVR4-style dynamic
objects. -mabicalls is the default for SVR4-based systems.
- -mshared
- -mno-shared
- Generate (do not generate) code that is fully position-independent, and
that can therefore be linked into shared libraries. This option only
affects -mabicalls.
All -mabicalls code has traditionally been
position-independent, regardless of options like -fPIC and
-fpic. However, as an extension, the GNU toolchain allows
executables to use absolute accesses for locally-binding symbols. It can
also use shorter GP initialization sequences and generate direct calls
to locally-defined functions. This mode is selected by
-mno-shared.
-mno-shared depends on binutils 2.16 or higher and
generates objects that can only be linked by the GNU linker. However,
the option does not affect the ABI of the final executable; it only
affects the ABI of relocatable objects. Using -mno-shared
generally makes executables both smaller and quicker.
-mshared is the default.
- -mplt
- -mno-plt
- Assume (do not assume) that the static and dynamic linkers support PLTs
and copy relocations. This option only affects -mno-shared
-mabicalls. For the n64 ABI, this option has no effect without
-msym32.
You can make -mplt the default by configuring GCC with
--with-mips-plt. The default is -mno-plt otherwise.
- -mxgot
- -mno-xgot
- Lift (do not lift) the usual restrictions on the size of the global offset
table.
GCC normally uses a single instruction to load values from the
GOT. While this is relatively efficient, it only works if the GOT is
smaller than about 64k. Anything larger causes the linker to report an
error such as:
relocation truncated to fit: R_MIPS_GOT16 foobar
If this happens, you should recompile your code with
-mxgot. This works with very large GOTs, although the code is
also less efficient, since it takes three instructions to fetch the
value of a global symbol.
Note that some linkers can create multiple GOTs. If you have
such a linker, you should only need to use -mxgot when a single
object file accesses more than 64k's worth of GOT entries. Very few
do.
These options have no effect unless GCC is generating position
independent code.
- -mgp32
- Assume that general-purpose registers are 32 bits wide.
- -mgp64
- Assume that general-purpose registers are 64 bits wide.
- -mfp32
- Assume that floating-point registers are 32 bits wide.
- -mfp64
- Assume that floating-point registers are 64 bits wide.
- -mhard-float
- Use floating-point coprocessor instructions.
- -msoft-float
- Do not use floating-point coprocessor instructions. Implement
floating-point calculations using library calls instead.
- -mno-float
- Equivalent to -msoft-float, but additionally asserts that the
program being compiled does not perform any floating-point operations.
This option is presently supported only by some bare-metal MIPS
configurations, where it may select a special set of libraries that lack
all floating-point support (including, for example, the floating-point
"printf" formats). If code compiled with
"-mno-float" accidentally contains
floating-point operations, it is likely to suffer a link-time or run-time
failure.
- -msingle-float
- Assume that the floating-point coprocessor only supports single-precision
operations.
- -mdouble-float
- Assume that the floating-point coprocessor supports double-precision
operations. This is the default.
- -mllsc
- -mno-llsc
- Use (do not use) ll, sc, and sync instructions to
implement atomic memory built-in functions. When neither option is
specified, GCC uses the instructions if the target architecture supports
them.
-mllsc is useful if the runtime environment can emulate
the instructions and -mno-llsc can be useful when compiling for
nonstandard ISAs. You can make either option the default by configuring
GCC with --with-llsc and --without-llsc respectively.
--with-llsc is the default for some configurations; see the
installation documentation for details.
- -mdsp
- -mno-dsp
- Use (do not use) revision 1 of the MIPS DSP ASE.
This option defines the preprocessor macro __mips_dsp. It also
defines __mips_dsp_rev to 1.
- -mdspr2
- -mno-dspr2
- Use (do not use) revision 2 of the MIPS DSP ASE.
This option defines the preprocessor macros __mips_dsp and
__mips_dspr2. It also defines __mips_dsp_rev to 2.
- -msmartmips
- -mno-smartmips
- Use (do not use) the MIPS SmartMIPS ASE.
- -mpaired-single
- -mno-paired-single
- Use (do not use) paired-single floating-point instructions.
This option requires hardware floating-point support to be enabled.
- -mdmx
- -mno-mdmx
- Use (do not use) MIPS Digital Media Extension instructions. This option
can only be used when generating 64-bit code and requires hardware
floating-point support to be enabled.
- -mips3d
- -mno-mips3d
- Use (do not use) the MIPS-3D ASE. The option -mips3d implies
-mpaired-single.
- -mmt
- -mno-mt
- Use (do not use) MT Multithreading instructions.
- -mmcu
- -mno-mcu
- Use (do not use) the MIPS MCU ASE instructions.
- -mlong64
- Force "long" types to be 64 bits wide.
See -mlong32 for an explanation of the default and the way that the
pointer size is determined.
- -mlong32
- Force "long",
"int", and pointer types to be 32 bits
wide.
The default size of "int"s,
"long"s and pointers depends on the
ABI. All the supported ABIs use 32-bit
"int"s. The n64 ABI uses 64-bit
"long"s, as does the 64-bit EABI; the
others use 32-bit "long"s. Pointers
are the same size as "long"s, or the
same size as integer registers, whichever is smaller.
- -msym32
- -mno-sym32
- Assume (do not assume) that all symbols have 32-bit values, regardless of
the selected ABI. This option is useful in combination with
-mabi=64 and -mno-abicalls because it allows GCC to generate
shorter and faster references to symbolic addresses.
- -G num
- Put definitions of externally-visible data in a small data section if that
data is no bigger than num bytes. GCC can then generate more
efficient accesses to the data; see -mgpopt for details.
The default -G option depends on the configuration.
- -mlocal-sdata
- -mno-local-sdata
- Extend (do not extend) the -G behavior to local data too, such as
to static variables in C. -mlocal-sdata is the default for all
configurations.
If the linker complains that an application is using too much
small data, you might want to try rebuilding the less
performance-critical parts with -mno-local-sdata. You might also
want to build large libraries with -mno-local-sdata, so that the
libraries leave more room for the main program.
- -mextern-sdata
- -mno-extern-sdata
- Assume (do not assume) that externally-defined data is in a small data
section if the size of that data is within the -G limit.
-mextern-sdata is the default for all configurations.
If you compile a module Mod with -mextern-sdata
-G num -mgpopt, and Mod references a
variable Var that is no bigger than num bytes, you must
make sure that Var is placed in a small data section. If
Var is defined by another module, you must either compile that
module with a high-enough -G setting or attach a
"section" attribute to Var's
definition. If Var is common, you must link the application with
a high-enough -G setting.
The easiest way of satisfying these restrictions is to compile
and link every module with the same -G option. However, you may
wish to build a library that supports several different small data
limits. You can do this by compiling the library with the highest
supported -G setting and additionally using
-mno-extern-sdata to stop the library from making assumptions
about externally-defined data.
- -mgpopt
- -mno-gpopt
- Use (do not use) GP-relative accesses for symbols that are known to be in
a small data section; see -G, -mlocal-sdata and
-mextern-sdata. -mgpopt is the default for all
configurations.
-mno-gpopt is useful for cases where the
$gp register might not hold the value of
"_gp". For example, if the code is
part of a library that might be used in a boot monitor, programs that
call boot monitor routines pass an unknown value in
$gp. (In such situations, the boot monitor
itself is usually compiled with -G0.)
-mno-gpopt implies -mno-local-sdata and
-mno-extern-sdata.
- -membedded-data
- -mno-embedded-data
- Allocate variables to the read-only data section first if possible, then
next in the small data section if possible, otherwise in data. This gives
slightly slower code than the default, but reduces the amount of RAM
required when executing, and thus may be preferred for some embedded
systems.
- -muninit-const-in-rodata
- -mno-uninit-const-in-rodata
- Put uninitialized "const" variables in
the read-only data section. This option is only meaningful in conjunction
with -membedded-data.
- -mcode-readable=setting
- Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:
- -mcode-readable=yes
- Instructions may freely access executable sections. This is the default
setting.
- -mcode-readable=pcrel
- MIPS16 PC-relative load instructions can access executable sections, but
other instructions must not do so. This option is useful on 4KSc and 4KSd
processors when the code TLBs have the Read Inhibit bit set. It is also
useful on processors that can be configured to have a dual
instruction/data SRAM interface and that, like the M4K, automatically
redirect PC-relative loads to the instruction RAM.
- -mcode-readable=no
- Instructions must not access executable sections. This option can be
useful on targets that are configured to have a dual instruction/data SRAM
interface but that (unlike the M4K) do not automatically redirect
PC-relative loads to the instruction RAM.
- -msplit-addresses
- -mno-split-addresses
- Enable (disable) use of the "%hi()" and
"%lo()" assembler relocation operators.
This option has been superseded by -mexplicit-relocs but is
retained for backwards compatibility.
- -mexplicit-relocs
- -mno-explicit-relocs
- Use (do not use) assembler relocation operators when dealing with symbolic
addresses. The alternative, selected by -mno-explicit-relocs, is to
use assembler macros instead.
-mexplicit-relocs is the default if GCC was configured
to use an assembler that supports relocation operators.
- -mcheck-zero-division
- -mno-check-zero-division
- Trap (do not trap) on integer division by zero.
The default is -mcheck-zero-division.
- -mdivide-traps
- -mdivide-breaks
- MIPS systems check for division by zero by generating either a conditional
trap or a break instruction. Using traps results in smaller code, but is
only supported on MIPS II and later. Also, some versions of the Linux
kernel have a bug that prevents trap from generating the proper signal
("SIGFPE"). Use -mdivide-traps to
allow conditional traps on architectures that support them and
-mdivide-breaks to force the use of breaks.
The default is usually -mdivide-traps, but this can be
overridden at configure time using --with-divide=breaks.
Divide-by-zero checks can be completely disabled using
-mno-check-zero-division.
- -mmemcpy
- -mno-memcpy
- Force (do not force) the use of
"memcpy()" for non-trivial block moves.
The default is -mno-memcpy, which allows GCC to inline most
constant-sized copies.
- -mlong-calls
- -mno-long-calls
- Disable (do not disable) use of the
"jal" instruction. Calling functions
using "jal" is more efficient but
requires the caller and callee to be in the same 256 megabyte segment.
This option has no effect on abicalls code. The default is
-mno-long-calls.
- -mmad
- -mno-mad
- Enable (disable) use of the "mad",
"madu" and
"mul" instructions, as provided by the
R4650 ISA.
- -mfused-madd
- -mno-fused-madd
- Enable (disable) use of the floating-point multiply-accumulate
instructions, when they are available. The default is -mfused-madd.
On the R8000 CPU when multiply-accumulate instructions are
used, the intermediate product is calculated to infinite precision and
is not subject to the FCSR Flush to Zero bit. This may be undesirable in
some circumstances. On other processors the result is numerically
identical to the equivalent computation using separate multiply, add,
subtract and negate instructions.
- -nocpp
- Tell the MIPS assembler to not run its preprocessor over user assembler
files (with a .s suffix) when assembling them.
- -mfix-24k
- -mno-fix-24k
- Work around the 24K E48 (lost data on stores during refill) errata. The
workarounds are implemented by the assembler rather than by GCC.
- -mfix-r4000
- -mno-fix-r4000
- Work around certain R4000 CPU errata:
- A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
- A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.
- An integer division may give an incorrect result if started in a delay
slot of a taken branch or a jump.
- -mfix-r4400
- -mno-fix-r4400
- Work around certain R4400 CPU errata:
- -
- A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
- -mfix-r10000
- -mno-fix-r10000
- Work around certain R10000 errata:
- -
- "ll"/"sc"
sequences may not behave atomically on revisions prior to 3.0. They may
deadlock on revisions 2.6 and earlier.
This option can only be used if the target architecture supports
branch-likely instructions. -mfix-r10000 is the default when
-march=r10000 is used; -mno-fix-r10000 is the default
otherwise.
- -mfix-vr4120
- -mno-fix-vr4120
- Work around certain VR4120 errata:
- "dmultu" does not always produce the
correct result.
- "div" and
"ddiv" do not always produce the correct
result if one of the operands is negative.
The workarounds for the division errata rely on special functions
in libgcc.a. At present, these functions are only provided by the
"mips64vr*-elf" configurations.
Other VR4120 errata require a NOP to be inserted between certain
pairs of instructions. These errata are handled by the assembler, not by GCC
itself.
- -mfix-vr4130
- Work around the VR4130
"mflo"/"mfhi"
errata. The workarounds are implemented by the assembler rather than by
GCC, although GCC avoids using "mflo"
and "mfhi" if the VR4130
"macc",
"macchi",
"dmacc" and
"dmacchi" instructions are available
instead.
- -mfix-sb1
- -mno-fix-sb1
- Work around certain SB-1 CPU core errata. (This flag currently works
around the SB-1 revision 2 "F1" and "F2"
floating-point errata.)
- -mr10k-cache-barrier=setting
- Specify whether GCC should insert cache barriers to avoid the side-effects
of speculation on R10K processors.
In common with many processors, the R10K tries to predict the
outcome of a conditional branch and speculatively executes instructions
from the "taken" branch. It later aborts these instructions if
the predicted outcome is wrong. However, on the R10K, even aborted
instructions can have side effects.
This problem only affects kernel stores and, depending on the
system, kernel loads. As an example, a speculatively-executed store may
load the target memory into cache and mark the cache line as dirty, even
if the store itself is later aborted. If a DMA operation writes to the
same area of memory before the "dirty" line is flushed, the
cached data overwrites the DMA-ed data. See the R10K processor manual
for a full description, including other potential problems.
One workaround is to insert cache barrier instructions before
every memory access that might be speculatively executed and that might
have side effects even if aborted.
-mr10k-cache-barrier=setting controls GCC's implementation
of this workaround. It assumes that aborted accesses to any byte in the
following regions does not have side effects:
- 1.
- the memory occupied by the current function's stack frame;
- 2.
- the memory occupied by an incoming stack argument;
- 3.
- the memory occupied by an object with a link-time-constant address.
It is the kernel's responsibility to ensure that speculative
accesses to these regions are indeed safe.
If the input program contains a function declaration such as:
void foo (void);
then the implementation of "foo"
must allow "j foo" and
"jal foo" to be executed speculatively.
GCC honors this restriction for functions it compiles itself. It expects
non-GCC functions (such as hand-written assembly code) to do the same.
The option has three forms:
- -mr10k-cache-barrier=load-store
- Insert a cache barrier before a load or store that might be speculatively
executed and that might have side effects even if aborted.
- -mr10k-cache-barrier=store
- Insert a cache barrier before a store that might be speculatively executed
and that might have side effects even if aborted.
- -mr10k-cache-barrier=none
- Disable the insertion of cache barriers. This is the default setting.
- -mflush-func=func
- -mno-flush-func
- Specifies the function to call to flush the I and D caches, or to not call
any such function. If called, the function must take the same arguments as
the common "_flush_func()", that is, the
address of the memory range for which the cache is being flushed, the size
of the memory range, and the number 3 (to flush both caches). The default
depends on the target GCC was configured for, but commonly is either
_flush_func or __cpu_flush.
- mbranch-cost=num
- Set the cost of branches to roughly num "simple"
instructions. This cost is only a heuristic and is not guaranteed to
produce consistent results across releases. A zero cost redundantly
selects the default, which is based on the -mtune setting.
- -mbranch-likely
- -mno-branch-likely
- Enable or disable use of Branch Likely instructions, regardless of the
default for the selected architecture. By default, Branch Likely
instructions may be generated if they are supported by the selected
architecture. An exception is for the MIPS32 and MIPS64 architectures and
processors that implement those architectures; for those, Branch Likely
instructions are not be generated by default because the MIPS32 and MIPS64
architectures specifically deprecate their use.
- -mfp-exceptions
- -mno-fp-exceptions
- Specifies whether FP exceptions are enabled. This affects how FP
instructions are scheduled for some processors. The default is that FP
exceptions are enabled.
For instance, on the SB-1, if FP exceptions are disabled, and
we are emitting 64-bit code, then we can use both FP pipes. Otherwise,
we can only use one FP pipe.
- -mvr4130-align
- -mno-vr4130-align
- The VR4130 pipeline is two-way superscalar, but can only issue two
instructions together if the first one is 8-byte aligned. When this option
is enabled, GCC aligns pairs of instructions that it thinks should execute
in parallel.
This option only has an effect when optimizing for the VR4130.
It normally makes code faster, but at the expense of making it bigger.
It is enabled by default at optimization level -O3.
- -msynci
- -mno-synci
- Enable (disable) generation of "synci"
instructions on architectures that support it. The
"synci" instructions (if enabled) are
generated when
"__builtin___clear_cache()" is compiled.
This option defaults to
"-mno-synci", but the default can be
overridden by configuring with
"--with-synci".
When compiling code for single processor systems, it is
generally safe to use "synci".
However, on many multi-core (SMP) systems, it does not invalidate the
instruction caches on all cores and may lead to undefined behavior.
- -mrelax-pic-calls
- -mno-relax-pic-calls
- Try to turn PIC calls that are normally dispatched via register
$25 into direct calls. This is only possible if
the linker can resolve the destination at link-time and if the destination
is within range for a direct call.
-mrelax-pic-calls is the default if GCC was configured
to use an assembler and a linker that support the
".reloc" assembly directive and
"-mexplicit-relocs" is in effect. With
"-mno-explicit-relocs", this
optimization can be performed by the assembler and the linker alone
without help from the compiler.
- -mmcount-ra-address
- -mno-mcount-ra-address
- Emit (do not emit) code that allows
"_mcount" to modify the calling
function's return address. When enabled, this option extends the usual
"_mcount" interface with a new
ra-address parameter, which has type
"intptr_t *" and is passed in register
$12. "_mcount"
can then modify the return address by doing both of the following:
- Returning the new address in register $31.
- Storing the new address in
"*ra-address
", if ra-address is nonnull.
The default is -mno-mcount-ra-address.
These options are defined for the MMIX:
- -mlibfuncs
- -mno-libfuncs
- Specify that intrinsic library functions are being compiled, passing all
values in registers, no matter the size.
- -mepsilon
- -mno-epsilon
- Generate floating-point comparison instructions that compare with respect
to the "rE" epsilon register.
- -mabi=mmixware
- -mabi=gnu
- Generate code that passes function parameters and return values that (in
the called function) are seen as registers $0 and
up, as opposed to the GNU ABI which uses global registers
$231 and up.
- -mzero-extend
- -mno-zero-extend
- When reading data from memory in sizes shorter than 64 bits, use (do not
use) zero-extending load instructions by default, rather than
sign-extending ones.
- -mknuthdiv
- -mno-knuthdiv
- Make the result of a division yielding a remainder have the same sign as
the divisor. With the default, -mno-knuthdiv, the sign of the
remainder follows the sign of the dividend. Both methods are
arithmetically valid, the latter being almost exclusively used.
- -mtoplevel-symbols
- -mno-toplevel-symbols
- Prepend (do not prepend) a : to all global symbols, so the assembly
code can be used with the "PREFIX"
assembly directive.
- -melf
- Generate an executable in the ELF format, rather than the default
mmo format used by the mmix simulator.
- -mbranch-predict
- -mno-branch-predict
- Use (do not use) the probable-branch instructions, when static branch
prediction indicates a probable branch.
- -mbase-addresses
- -mno-base-addresses
- Generate (do not generate) code that uses base addresses. Using a
base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register. The
register is used for one or more base address requests within the range 0
to 255 from the value held in the register. The generally leads to short
and fast code, but the number of different data items that can be
addressed is limited. This means that a program that uses lots of static
data may require -mno-base-addresses.
- -msingle-exit
- -mno-single-exit
- Force (do not force) generated code to have a single exit point in each
function.
These -m options are defined for Matsushita MN10300 architectures:
- -mmult-bug
- Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.
- -mno-mult-bug
- Do not generate code to avoid bugs in the multiply instructions for the
MN10300 processors.
- -mam33
- Generate code using features specific to the AM33 processor.
- -mno-am33
- Do not generate code using features specific to the AM33 processor. This
is the default.
- -mam33-2
- Generate code using features specific to the AM33/2.0 processor.
- -mam34
- Generate code using features specific to the AM34 processor.
- -mtune=cpu-type
- Use the timing characteristics of the indicated CPU type when scheduling
instructions. This does not change the targeted processor type. The CPU
type must be one of mn10300, am33, am33-2 or
am34.
- -mreturn-pointer-on-d0
- When generating a function that returns a pointer, return the pointer in
both "a0" and
"d0". Otherwise, the pointer is returned
only in "a0", and attempts to call such
functions without a prototype result in errors. Note that this option is
on by default; use -mno-return-pointer-on-d0 to disable it.
- -mno-crt0
- Do not link in the C run-time initialization object file.
- -mrelax
- Indicate to the linker that it should perform a relaxation optimization
pass to shorten branches, calls and absolute memory addresses. This option
only has an effect when used on the command line for the final link step.
This option makes symbolic debugging impossible.
- -mliw
- Allow the compiler to generate Long Instruction Word instructions
if the target is the AM33 or later. This is the default. This
option defines the preprocessor macro __LIW__.
- -mnoliw
- Do not allow the compiler to generate Long Instruction Word
instructions. This option defines the preprocessor macro
__NO_LIW__.
- -msetlb
- Allow the compiler to generate the SETLB and Lcc
instructions if the target is the AM33 or later. This is the
default. This option defines the preprocessor macro __SETLB__.
- -mnosetlb
- Do not allow the compiler to generate SETLB or Lcc
instructions. This option defines the preprocessor macro
__NO_SETLB__.
- -meb
- Generate big-endian code. This is the default for moxie-*-*
configurations.
- -mel
- Generate little-endian code.
- -mno-crt0
- Do not link in the C run-time initialization object file.
These options are defined for the PDP-11:
- -mfpu
- Use hardware FPP floating point. This is the default. (FIS floating point
on the PDP-11/40 is not supported.)
- -msoft-float
- Do not use hardware floating point.
- -mac0
- Return floating-point results in ac0 (fr0 in Unix assembler syntax).
- -mno-ac0
- Return floating-point results in memory. This is the default.
- -m40
- Generate code for a PDP-11/40.
- -m45
- Generate code for a PDP-11/45. This is the default.
- -m10
- Generate code for a PDP-11/10.
- -mbcopy-builtin
- Use inline "movmemhi" patterns for
copying memory. This is the default.
- -mbcopy
- Do not use inline "movmemhi" patterns
for copying memory.
- -mint16
- -mno-int32
- Use 16-bit "int". This is the
default.
- -mint32
- -mno-int16
- Use 32-bit "int".
- -mfloat64
- -mno-float32
- Use 64-bit "float". This is the
default.
- -mfloat32
- -mno-float64
- Use 32-bit "float".
- -mabshi
- Use "abshi2" pattern. This is the
default.
- -mno-abshi
- Do not use "abshi2" pattern.
- -mbranch-expensive
- Pretend that branches are expensive. This is for experimenting with code
generation only.
- -mbranch-cheap
- Do not pretend that branches are expensive. This is the default.
- -munix-asm
- Use Unix assembler syntax. This is the default when configured for
pdp11-*-bsd.
- -mdec-asm
- Use DEC assembler syntax. This is the default when configured for any
PDP-11 target other than pdp11-*-bsd.
These -m options are defined for picoChip implementations:
- -mae=ae_type
- Set the instruction set, register set, and instruction scheduling
parameters for array element type ae_type. Supported values for
ae_type are ANY, MUL, and MAC.
-mae=ANY selects a completely generic AE type. Code
generated with this option runs on any of the other AE types. The code
is not as efficient as it would be if compiled for a specific AE type,
and some types of operation (e.g., multiplication) do not work properly
on all types of AE.
-mae=MUL selects a MUL AE type. This is the most useful
AE type for compiled code, and is the default.
-mae=MAC selects a DSP-style MAC AE. Code compiled with
this option may suffer from poor performance of byte (char)
manipulation, since the DSP AE does not provide hardware support for
byte load/stores.
- -msymbol-as-address
- Enable the compiler to directly use a symbol name as an address in a
load/store instruction, without first loading it into a register.
Typically, the use of this option generates larger programs, which run
faster than when the option isn't used. However, the results vary from
program to program, so it is left as a user option, rather than being
permanently enabled.
- -mno-inefficient-warnings
- Disables warnings about the generation of inefficient code. These warnings
can be generated, for example, when compiling code that performs
byte-level memory operations on the MAC AE type. The MAC AE has no
hardware support for byte-level memory operations, so all byte load/stores
must be synthesized from word load/store operations. This is inefficient
and a warning is generated to indicate that you should rewrite the code to
avoid byte operations, or to target an AE type that has the necessary
hardware support. This option disables these warnings.
- -msim
- Links in additional target libraries to support operation within a
simulator.
- -mmul=none
- -mmul=g13
- -mmul=rl78
- Specifies the type of hardware multiplication support to be used. The
default is "none", which uses software
multiplication functions. The "g13"
option is for the hardware multiply/divide peripheral only on the RL78/G13
targets. The "rl78" option is for the
standard hardware multiplication defined in the RL78 software manual.
These -m options are defined for the IBM RS/6000 and PowerPC:
- -mpowerpc-gpopt
- -mno-powerpc-gpopt
- -mpowerpc-gfxopt
- -mno-powerpc-gfxopt
- -mpowerpc64
- -mno-powerpc64
- -mmfcrf
- -mno-mfcrf
- -mpopcntb
- -mno-popcntb
- -mpopcntd
- -mno-popcntd
- -mfprnd
- -mno-fprnd
- -mcmpb
- -mno-cmpb
- -mmfpgpr
- -mno-mfpgpr
- -mhard-dfp
- -mno-hard-dfp
- You use these options to specify which instructions are available on the
processor you are using. The default value of these options is determined
when configuring GCC. Specifying the -mcpu=cpu_type
overrides the specification of these options. We recommend you use the
-mcpu=cpu_type option rather than the options listed above.
Specifying -mpowerpc-gpopt allows GCC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying -mpowerpc-gfxopt
allows GCC to use the optional PowerPC architecture instructions in the
Graphics group, including floating-point select.
The -mmfcrf option allows GCC to generate the move from
condition register field instruction implemented on the POWER4 processor
and other processors that support the PowerPC V2.01 architecture. The
-mpopcntb option allows GCC to generate the popcount and
double-precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture. The -mpopcntd option allows GCC to generate the
popcount instruction implemented on the POWER7 processor and other
processors that support the PowerPC V2.06 architecture. The
-mfprnd option allows GCC to generate the FP round to integer
instructions implemented on the POWER5+ processor and other processors
that support the PowerPC V2.03 architecture. The -mcmpb option
allows GCC to generate the compare bytes instruction implemented on the
POWER6 processor and other processors that support the PowerPC V2.05
architecture. The -mmfpgpr option allows GCC to generate the FP
move to/from general-purpose register instructions implemented on the
POWER6X processor and other processors that support the extended PowerPC
V2.05 architecture. The -mhard-dfp option allows GCC to generate
the decimal floating-point instructions implemented on some POWER
processors.
The -mpowerpc64 option allows GCC to generate the
additional 64-bit instructions that are found in the full PowerPC64
architecture and to treat GPRs as 64-bit, doubleword quantities. GCC
defaults to -mno-powerpc64.
- -mcpu=cpu_type
- Set architecture type, register usage, and instruction scheduling
parameters for machine type cpu_type. Supported values for
cpu_type are 401, 403, 405, 405fp,
440, 440fp, 464, 464fp, 476,
476fp, 505, 601, 602, 603, 603e,
604, 604e, 620, 630, 740, 7400,
7450, 750, 801, 821, 823, 860,
970, 8540, a2, e300c2, e300c3,
e500mc, e500mc64, e5500, e6500, ec603e,
G3, G4, G5, titan, power3,
power4, power5, power5+, power6,
power6x, power7, power8, powerpc,
powerpc64, powerpc64le, and rs64.
-mcpu=powerpc, -mcpu=powerpc64, and
-mcpu=powerpc64le specify pure 32-bit PowerPC (either endian),
64-bit big endian PowerPC and 64-bit little endian PowerPC architecture
machine types, with an appropriate, generic processor model assumed for
scheduling purposes.
The other options specify a specific processor. Code generated
under those options runs best on that processor, and may not run at all
on others.
The -mcpu options automatically enable or disable the
following options:
-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
-mpopcntb -mpopcntd -mpowerpc64 -mpowerpc-gpopt
-mpowerpc-gfxopt -msingle-float -mdouble-float -msimple-fpu
-mstring -mmulhw -mdlmzb -mmfpgpr -mvsx -mcrypto -mdirect-move
-mpower8-fusion -mpower8-vector -mquad-memory
-mquad-memory-atomic
The particular options set for any particular CPU varies
between compiler versions, depending on what setting seems to produce
optimal code for that CPU; it doesn't necessarily reflect the actual
hardware's capabilities. If you wish to set an individual option to a
particular value, you may specify it after the -mcpu option, like
-mcpu=970 -mno-altivec.
On AIX, the -maltivec and -mpowerpc64 options
are not enabled or disabled by the -mcpu option at present
because AIX does not have full support for these options. You may still
enable or disable them individually if you're sure it'll work in your
environment.
- -mtune=cpu_type
- Set the instruction scheduling parameters for machine type
cpu_type, but do not set the architecture type or register usage,
as -mcpu=cpu_type does. The same values for cpu_type
are used for -mtune as for -mcpu. If both are specified, the
code generated uses the architecture and registers set by -mcpu,
but the scheduling parameters set by -mtune.
- -mcmodel=small
- Generate PowerPC64 code for the small model: The TOC is limited to
64k.
- -mcmodel=medium
- Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size.
- -mcmodel=large
- Generate PowerPC64 code for the large model: The TOC may be up to 4G in
size. Other data and code is only limited by the 64-bit address
space.
- -maltivec
- -mno-altivec
- Generate code that uses (does not use) AltiVec instructions, and also
enable the use of built-in functions that allow more direct access to the
AltiVec instruction set. You may also need to set -mabi=altivec to
adjust the current ABI with AltiVec ABI enhancements.
When -maltivec is used, rather than -maltivec=le
or -maltivec=be, the element order for Altivec intrinsics such as
"vec_splat",
"vec_extract", and
"vec_insert" will match array element
order corresponding to the endianness of the target. That is, element
zero identifies the leftmost element in a vector register when targeting
a big-endian platform, and identifies the rightmost element in a vector
register when targeting a little-endian platform.
- -maltivec=be
- Generate Altivec instructions using big-endian element order, regardless
of whether the target is big- or little-endian. This is the default when
targeting a big-endian platform.
The element order is used to interpret element numbers in
Altivec intrinsics such as
"vec_splat",
"vec_extract", and
"vec_insert". By default, these will
match array element order corresponding to the endianness for the
target.
- -maltivec=le
- Generate Altivec instructions using little-endian element order,
regardless of whether the target is big- or little-endian. This is the
default when targeting a little-endian platform. This option is currently
ignored when targeting a big-endian platform.
The element order is used to interpret element numbers in
Altivec intrinsics such as
"vec_splat",
"vec_extract", and
"vec_insert". By default, these will
match array element order corresponding to the endianness for the
target.
- -mvrsave
- -mno-vrsave
- Generate VRSAVE instructions when generating AltiVec code.
- -mgen-cell-microcode
- Generate Cell microcode instructions.
- -mwarn-cell-microcode
- Warn when a Cell microcode instruction is emitted. An example of a Cell
microcode instruction is a variable shift.
- -msecure-plt
- Generate code that allows ld and ld.so to build executables
and shared libraries with non-executable
".plt" and
".got" sections. This is a PowerPC
32-bit SYSV ABI option.
- -mbss-plt
- Generate code that uses a BSS ".plt"
section that ld.so fills in, and requires
".plt" and
".got" sections that are both writable
and executable. This is a PowerPC 32-bit SYSV ABI option.
- -misel
- -mno-isel
- This switch enables or disables the generation of ISEL instructions.
- -misel=yes/no
- This switch has been deprecated. Use -misel and -mno-isel
instead.
- -mspe
- -mno-spe
- This switch enables or disables the generation of SPE simd
instructions.
- -mpaired
- -mno-paired
- This switch enables or disables the generation of PAIRED simd
instructions.
- -mspe=yes/no
- This option has been deprecated. Use -mspe and -mno-spe
instead.
- -mvsx
- -mno-vsx
- Generate code that uses (does not use) vector/scalar (VSX) instructions,
and also enable the use of built-in functions that allow more direct
access to the VSX instruction set.
- -mcrypto
- -mno-crypto
- Enable the use (disable) of the built-in functions that allow direct
access to the cryptographic instructions that were added in version 2.07
of the PowerPC ISA.
- -mdirect-move
- -mno-direct-move
- Generate code that uses (does not use) the instructions to move data
between the general purpose registers and the vector/scalar (VSX)
registers that were added in version 2.07 of the PowerPC ISA.
- -mpower8-fusion
- -mno-power8-fusion
- Generate code that keeps (does not keeps) some integer operations adjacent
so that the instructions can be fused together on power8 and later
processors.
- -mpower8-vector
- -mno-power8-vector
- Generate code that uses (does not use) the vector and scalar instructions
that were added in version 2.07 of the PowerPC ISA. Also enable the use of
built-in functions that allow more direct access to the vector
instructions.
- -mquad-memory
- -mno-quad-memory
- Generate code that uses (does not use) the non-atomic quad word memory
instructions. The -mquad-memory option requires use of 64-bit
mode.
- -mquad-memory-atomic
- -mno-quad-memory-atomic
- Generate code that uses (does not use) the atomic quad word memory
instructions. The -mquad-memory-atomic option requires use of
64-bit mode.
- -mfloat-gprs=yes/single/double/no
- -mfloat-gprs
- This switch enables or disables the generation of floating-point
operations on the general-purpose registers for architectures that support
it.
The argument yes or single enables the use of
single-precision floating-point operations.
The argument double enables the use of single and
double-precision floating-point operations.
The argument no disables floating-point operations on
the general-purpose registers.
This option is currently only available on the MPC854x.
- -m32
- -m64
- Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets
(including GNU/Linux). The 32-bit environment sets int, long and pointer
to 32 bits and generates code that runs on any PowerPC variant. The 64-bit
environment sets int to 32 bits and long and pointer to 64 bits, and
generates code for PowerPC64, as for -mpowerpc64.
- -mfull-toc
- -mno-fp-in-toc
- -mno-sum-in-toc
- -mminimal-toc
- Modify generation of the TOC (Table Of Contents), which is created for
every executable file. The -mfull-toc option is selected by
default. In that case, GCC allocates at least one TOC entry for each
unique non-automatic variable reference in your program. GCC also places
floating-point constants in the TOC. However, only 16,384 entries are
available in the TOC.
If you receive a linker error message that saying you have
overflowed the available TOC space, you can reduce the amount of TOC
space used with the -mno-fp-in-toc and -mno-sum-in-toc
options. -mno-fp-in-toc prevents GCC from putting floating-point
constants in the TOC and -mno-sum-in-toc forces GCC to generate
code to calculate the sum of an address and a constant at run time
instead of putting that sum into the TOC. You may specify one or both of
these options. Each causes GCC to produce very slightly slower and
larger code at the expense of conserving TOC space.
If you still run out of space in the TOC even when you specify
both of these options, specify -mminimal-toc instead. This option
causes GCC to make only one TOC entry for every file. When you specify
this option, GCC produces code that is slower and larger but which uses
extremely little TOC space. You may wish to use this option only on
files that contain less frequently-executed code.
- -maix64
- -maix32
- Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
"long" type, and the infrastructure
needed to support them. Specifying -maix64 implies
-mpowerpc64, while -maix32 disables the 64-bit ABI and
implies -mno-powerpc64. GCC defaults to -maix32.
- -mxl-compat
- -mno-xl-compat
- Produce code that conforms more closely to IBM XL compiler semantics when
using AIX-compatible ABI. Pass floating-point arguments to prototyped
functions beyond the register save area (RSA) on the stack in addition to
argument FPRs. Do not assume that most significant double in 128-bit long
double value is properly rounded when comparing values and converting to
double. Use XL symbol names for long double support routines.
The AIX calling convention was extended but not initially
documented to handle an obscure K&R C case of calling a function
that takes the address of its arguments with fewer arguments than
declared. IBM XL compilers access floating-point arguments that do not
fit in the RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.
- -mpe
- Support IBM RS/6000 SP Parallel Environment (PE). Link an
application written to use message passing with special startup code to
enable the application to run. The system must have PE installed in the
standard location (/usr/lpp/ppe.poe/), or the specs file
must be overridden with the -specs= option to specify the
appropriate directory location. The Parallel Environment does not support
threads, so the -mpe option and the -pthread option are
incompatible.
- -malign-natural
- -malign-power
- On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
-malign-natural overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based
boundary. The option -malign-power instructs GCC to follow the
ABI-specified alignment rules. GCC defaults to the standard alignment
defined in the ABI.
On 64-bit Darwin, natural alignment is the default, and
-malign-power is not supported.
- -msoft-float
- -mhard-float
- Generate code that does not use (uses) the floating-point register set.
Software floating-point emulation is provided if you use the
-msoft-float option, and pass the option to GCC when linking.
- -msingle-float
- -mdouble-float
- Generate code for single- or double-precision floating-point operations.
-mdouble-float implies -msingle-float.
- -msimple-fpu
- Do not generate "sqrt" and
"div" instructions for hardware
floating-point unit.
- -mfpu=name
- Specify type of floating-point unit. Valid values for name are
sp_lite (equivalent to -msingle-float -msimple-fpu),
dp_lite (equivalent to -mdouble-float -msimple-fpu),
sp_full (equivalent to -msingle-float), and dp_full
(equivalent to -mdouble-float).
- -mxilinx-fpu
- Perform optimizations for the floating-point unit on Xilinx PPC
405/440.
- -mmultiple
- -mno-multiple
- Generate code that uses (does not use) the load multiple word instructions
and the store multiple word instructions. These instructions are generated
by default on POWER systems, and not generated on PowerPC systems. Do not
use -mmultiple on little-endian PowerPC systems, since those
instructions do not work when the processor is in little-endian mode. The
exceptions are PPC740 and PPC750 which permit these instructions in
little-endian mode.
- -mstring
- -mno-string
- Generate code that uses (does not use) the load string instructions and
the store string word instructions to save multiple registers and do small
block moves. These instructions are generated by default on POWER systems,
and not generated on PowerPC systems. Do not use -mstring on
little-endian PowerPC systems, since those instructions do not work when
the processor is in little-endian mode. The exceptions are PPC740 and
PPC750 which permit these instructions in little-endian mode.
- -mupdate
- -mno-update
- Generate code that uses (does not use) the load or store instructions that
update the base register to the address of the calculated memory location.
These instructions are generated by default. If you use
-mno-update, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is stored,
which means code that walks the stack frame across interrupts or signals
may get corrupted data.
- -mavoid-indexed-addresses
- -mno-avoid-indexed-addresses
- Generate code that tries to avoid (not avoid) the use of indexed load or
store instructions. These instructions can incur a performance penalty on
Power6 processors in certain situations, such as when stepping through
large arrays that cross a 16M boundary. This option is enabled by default
when targeting Power6 and disabled otherwise.
- -mfused-madd
- -mno-fused-madd
- Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used. The machine-dependent -mfused-madd
option is now mapped to the machine-independent -ffp-contract=fast
option, and -mno-fused-madd is mapped to
-ffp-contract=off.
- -mmulhw
- -mno-mulhw
- Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476
processors. These instructions are generated by default when targeting
those processors.
- -mdlmzb
- -mno-dlmzb
- Generate code that uses (does not use) the string-search dlmzb
instruction on the IBM 405, 440, 464 and 476 processors. This instruction
is generated by default when targeting those processors.
- -mno-bit-align
- -mbit-align
- On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the
bit-field.
For example, by default a structure containing nothing but 8
"unsigned" bit-fields of length 1 is
aligned to a 4-byte boundary and has a size of 4 bytes. By using
-mno-bit-align, the structure is aligned to a 1-byte boundary and
is 1 byte in size.
- -mno-strict-align
- -mstrict-align
- On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references are handled by the system.
- -mrelocatable
- -mno-relocatable
- Generate code that allows (does not allow) a static executable to be
relocated to a different address at run time. A simple embedded PowerPC
system loader should relocate the entire contents of
".got2" and 4-byte locations listed in
the ".fixup" section, a table of 32-bit
addresses generated by this option. For this to work, all objects linked
together must be compiled with -mrelocatable or
-mrelocatable-lib. -mrelocatable code aligns the stack to an
8-byte boundary.
- -mrelocatable-lib
- -mno-relocatable-lib
- Like -mrelocatable, -mrelocatable-lib generates a
".fixup" section to allow static
executables to be relocated at run time, but -mrelocatable-lib does
not use the smaller stack alignment of -mrelocatable. Objects
compiled with -mrelocatable-lib may be linked with objects compiled
with any combination of the -mrelocatable options.
- -mno-toc
- -mtoc
- On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.
- -mlittle
- -mlittle-endian
- On System V.4 and embedded PowerPC systems compile code for the processor
in little-endian mode. The -mlittle-endian option is the same as
-mlittle.
- -mbig
- -mbig-endian
- On System V.4 and embedded PowerPC systems compile code for the processor
in big-endian mode. The -mbig-endian option is the same as
-mbig.
- -mdynamic-no-pic
- On Darwin and Mac OS X systems, compile code so that it is not
relocatable, but that its external references are relocatable. The
resulting code is suitable for applications, but not shared
libraries.
- -msingle-pic-base
- Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
- -mprioritize-restricted-insns=priority
- This option controls the priority that is assigned to dispatch-slot
restricted instructions during the second scheduling pass. The argument
priority takes the value 0, 1, or 2 to assign
no, highest, or second-highest (respectively) priority to dispatch-slot
restricted instructions.
- -msched-costly-dep=dependence_type
- This option controls which dependences are considered costly by the target
during instruction scheduling. The argument dependence_type takes
one of the following values:
- no
- No dependence is costly.
- all
- All dependences are costly.
- true_store_to_load
- A true dependence from store to load is costly.
- store_to_load
- Any dependence from store to load is costly.
- number
- Any dependence for which the latency is greater than or equal to
number is costly.
- -minsert-sched-nops=scheme
- This option controls which NOP insertion scheme is used during the second
scheduling pass. The argument scheme takes one of the following
values:
- no
- Don't insert NOPs.
- pad
- Pad with NOPs any dispatch group that has vacant issue slots, according to
the scheduler's grouping.
- regroup_exact
- Insert NOPs to force costly dependent insns into separate groups. Insert
exactly as many NOPs as needed to force an insn to a new group, according
to the estimated processor grouping.
- number
- Insert NOPs to force costly dependent insns into separate groups. Insert
number NOPs to force an insn to a new group.
- -mcall-sysv
- On System V.4 and embedded PowerPC systems compile code using calling
conventions that adhere to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement. This is the
default unless you configured GCC using powerpc-*-eabiaix.
- -mcall-sysv-eabi
- -mcall-eabi
- Specify both -mcall-sysv and -meabi options.
- -mcall-sysv-noeabi
- Specify both -mcall-sysv and -mno-eabi options.
- -mcall-aixdesc
- On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.
- -mcall-linux
- On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
- -mcall-freebsd
- On System V.4 and embedded PowerPC systems compile code for the FreeBSD
operating system.
- -mcall-netbsd
- On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.
- -mcall-openbsd
- On System V.4 and embedded PowerPC systems compile code for the OpenBSD
operating system.
- -maix-struct-return
- Return all structures in memory (as specified by the AIX ABI).
- -msvr4-struct-return
- Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI).
- -mabi=abi-type
- Extend the current ABI with a particular extension, or remove such
extension. Valid values are altivec, no-altivec, spe,
no-spe, ibmlongdouble, ieeelongdouble, elfv1,
elfv2.
- -mabi=spe
- Extend the current ABI with SPE ABI extensions. This does not change the
default ABI, instead it adds the SPE ABI extensions to the current
ABI.
- -mabi=no-spe
- Disable Book-E SPE ABI extensions for the current ABI.
- -mabi=ibmlongdouble
- Change the current ABI to use IBM extended-precision long double. This is
a PowerPC 32-bit SYSV ABI option.
- -mabi=ieeelongdouble
- Change the current ABI to use IEEE extended-precision long double. This is
a PowerPC 32-bit Linux ABI option.
- -mabi=elfv1
- Change the current ABI to use the ELFv1 ABI. This is the default ABI for
big-endian PowerPC 64-bit Linux. Overriding the default ABI requires
special system support and is likely to fail in spectacular ways.
- -mabi=elfv2
- Change the current ABI to use the ELFv2 ABI. This is the default ABI for
little-endian PowerPC 64-bit Linux. Overriding the default ABI requires
special system support and is likely to fail in spectacular ways.
- -mprototype
- -mno-prototype
- On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non-prototyped call to
set or clear bit 6 of the condition code register (CR) to indicate
whether floating-point values are passed in the floating-point registers
in case the function takes variable arguments. With -mprototype,
only calls to prototyped variable argument functions set or clear the
bit.
- -msim
- On embedded PowerPC systems, assume that the startup module is called
sim-crt0.o and that the standard C libraries are libsim.a
and libc.a. This is the default for powerpc-*-eabisim
configurations.
- -mmvme
- On embedded PowerPC systems, assume that the startup module is called
crt0.o and the standard C libraries are libmvme.a and
libc.a.
- -mads
- On embedded PowerPC systems, assume that the startup module is called
crt0.o and the standard C libraries are libads.a and
libc.a.
- -myellowknife
- On embedded PowerPC systems, assume that the startup module is called
crt0.o and the standard C libraries are libyk.a and
libc.a.
- -mvxworks
- On System V.4 and embedded PowerPC systems, specify that you are compiling
for a VxWorks system.
- -memb
- On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags
header to indicate that eabi extended relocations are used.
- -meabi
- -mno-eabi
- On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI), which is a set of
modifications to the System V.4 specifications. Selecting -meabi
means that the stack is aligned to an 8-byte boundary, a function
"__eabi" is called from
"main" to set up the EABI environment,
and the -msdata option can use both
"r2" and
"r13" to point to two separate small
data areas. Selecting -mno-eabi means that the stack is aligned to
a 16-byte boundary, no EABI initialization function is called from
"main", and the -msdata option
only uses "r13" to point to a single
small data area. The -meabi option is on by default if you
configured GCC using one of the powerpc*-*-eabi* options.
- -msdata=eabi
- On System V.4 and embedded PowerPC systems, put small initialized
"const" global and static data in the
.sdata2 section, which is pointed to by register
"r2". Put small initialized
non-"const" global and static data in
the .sdata section, which is pointed to by register
"r13". Put small uninitialized global
and static data in the .sbss section, which is adjacent to the
.sdata section. The -msdata=eabi option is incompatible with
the -mrelocatable option. The -msdata=eabi option also sets
the -memb option.
- -msdata=sysv
- On System V.4 and embedded PowerPC systems, put small global and static
data in the .sdata section, which is pointed to by register
"r13". Put small uninitialized global
and static data in the .sbss section, which is adjacent to the
.sdata section. The -msdata=sysv option is incompatible with
the -mrelocatable option.
- -msdata=default
- -msdata
- On System V.4 and embedded PowerPC systems, if -meabi is used,
compile code the same as -msdata=eabi, otherwise compile code the
same as -msdata=sysv.
- -msdata=data
- On System V.4 and embedded PowerPC systems, put small global data in the
.sdata section. Put small uninitialized global data in the
.sbss section. Do not use register
"r13" to address small data however.
This is the default behavior unless other -msdata options are
used.
- -msdata=none
- -mno-sdata
- On embedded PowerPC systems, put all initialized global and static data in
the .data section, and all uninitialized data in the .bss
section.
- -mblock-move-inline-limit=num
- Inline all block moves (such as calls to
"memcpy" or structure copies) less than
or equal to num bytes. The minimum value for num is 32 bytes
on 32-bit targets and 64 bytes on 64-bit targets. The default value is
target-specific.
- -G num
- On embedded PowerPC systems, put global and static items less than or
equal to num bytes into the small data or BSS sections instead of
the normal data or BSS section. By default, num is 8. The -G
num switch is also passed to the linker. All modules should be
compiled with the same -G num value.
- -mregnames
- -mno-regnames
- On System V.4 and embedded PowerPC systems do (do not) emit register names
in the assembly language output using symbolic forms.
- -mlongcall
- -mno-longcall
- By default assume that all calls are far away so that a longer and more
expensive calling sequence is required. This is required for calls farther
than 32 megabytes (33,554,432 bytes) from the current location. A short
call is generated if the compiler knows the call cannot be that far away.
This setting can be overridden by the
"shortcall" function attribute, or by
"#pragma
longcall(0)".
Some linkers are capable of detecting out-of-range calls and
generating glue code on the fly. On these systems, long calls are
unnecessary and generate slower code. As of this writing, the AIX linker
can do this, as can the GNU linker for PowerPC/64. It is planned to add
this feature to the GNU linker for 32-bit PowerPC systems as well.
On Darwin/PPC systems, "#pragma
longcall" generates "jbsr
callee, L42", plus a branch island
(glue code). The two target addresses represent the callee and the
branch island. The Darwin/PPC linker prefers the first address and
generates a "bl
callee" if the PPC
"bl" instruction reaches the callee
directly; otherwise, the linker generates "bl
L42" to call the branch island. The branch island is
appended to the body of the calling function; it computes the full
32-bit address of the callee and jumps to it.
On Mach-O (Darwin) systems, this option directs the compiler
emit to the glue for every direct call, and the Darwin linker decides
whether to use or discard it.
In the future, GCC may ignore all longcall specifications when
the linker is known to generate glue.
- -mtls-markers
- -mno-tls-markers
- Mark (do not mark) calls to
"__tls_get_addr" with a relocation
specifying the function argument. The relocation allows the linker to
reliably associate function call with argument setup instructions for TLS
optimization, which in turn allows GCC to better schedule the
sequence.
- -pthread
- Adds support for multithreading with the pthreads library. This
option sets flags for both the preprocessor and linker.
- -mrecip
- -mno-recip
- This option enables use of the reciprocal estimate and reciprocal square
root estimate instructions with additional Newton-Raphson steps to
increase precision instead of doing a divide or square root and divide for
floating-point arguments. You should use the -ffast-math option
when using -mrecip (or at least -funsafe-math-optimizations,
-finite-math-only, -freciprocal-math and
-fno-trapping-math). Note that while the throughput of the sequence
is generally higher than the throughput of the non-reciprocal instruction,
the precision of the sequence can be decreased by up to 2 ulp (i.e. the
inverse of 1.0 equals 0.99999994) for reciprocal square roots.
- -mrecip=opt
- This option controls which reciprocal estimate instructions may be used.
opt is a comma-separated list of options, which may be preceded by
a "!" to invert the option:
"all": enable all estimate instructions,
"default": enable the default
instructions, equivalent to -mrecip,
"none": disable all estimate
instructions, equivalent to -mno-recip;
"div": enable the reciprocal
approximation instructions for both single and double precision;
"divf": enable the single-precision
reciprocal approximation instructions;
"divd": enable the double-precision
reciprocal approximation instructions;
"rsqrt": enable the reciprocal square
root approximation instructions for both single and double precision;
"rsqrtf": enable the single-precision
reciprocal square root approximation instructions;
"rsqrtd": enable the double-precision
reciprocal square root approximation instructions;
So, for example, -mrecip=all,!rsqrtd enables all of the
reciprocal estimate instructions, except for the
"FRSQRTE",
"XSRSQRTEDP", and
"XVRSQRTEDP" instructions which handle
the double-precision reciprocal square root calculations.
- -mrecip-precision
- -mno-recip-precision
- Assume (do not assume) that the reciprocal estimate instructions provide
higher-precision estimates than is mandated by the PowerPC ABI. Selecting
-mcpu=power6, -mcpu=power7 or -mcpu=power8
automatically selects -mrecip-precision. The double-precision
square root estimate instructions are not generated by default on
low-precision machines, since they do not provide an estimate that
converges after three steps.
- -mveclibabi=type
- Specifies the ABI type to use for vectorizing intrinsics using an external
library. The only type supported at present is
"mass", which specifies to use IBM's
Mathematical Acceleration Subsystem (MASS) libraries for vectorizing
intrinsics using external libraries. GCC currently emits calls to
"acosd2",
"acosf4",
"acoshd2",
"acoshf4",
"asind2",
"asinf4",
"asinhd2",
"asinhf4",
"atan2d2",
"atan2f4",
"atand2",
"atanf4",
"atanhd2",
"atanhf4",
"cbrtd2",
"cbrtf4",
"cosd2",
"cosf4",
"coshd2",
"coshf4",
"erfcd2",
"erfcf4",
"erfd2",
"erff4",
"exp2d2",
"exp2f4",
"expd2",
"expf4",
"expm1d2",
"expm1f4",
"hypotd2",
"hypotf4",
"lgammad2",
"lgammaf4",
"log10d2",
"log10f4",
"log1pd2",
"log1pf4",
"log2d2",
"log2f4",
"logd2",
"logf4",
"powd2",
"powf4",
"sind2",
"sinf4",
"sinhd2",
"sinhf4",
"sqrtd2",
"sqrtf4",
"tand2",
"tanf4",
"tanhd2", and
"tanhf4" when generating code for
power7. Both -ftree-vectorize and
-funsafe-math-optimizations must also be enabled. The MASS
libraries must be specified at link time.
- -mfriz
- -mno-friz
- Generate (do not generate) the "friz"
instruction when the -funsafe-math-optimizations option is used to
optimize rounding of floating-point values to 64-bit integer and back to
floating point. The "friz" instruction
does not return the same value if the floating-point number is too large
to fit in an integer.
- -mpointers-to-nested-functions
- -mno-pointers-to-nested-functions
- Generate (do not generate) code to load up the static chain register
(r11) when calling through a pointer on AIX and 64-bit Linux
systems where a function pointer points to a 3-word descriptor giving the
function address, TOC value to be loaded in register r2, and static
chain value to be loaded in register r11. The
-mpointers-to-nested-functions is on by default. You cannot call
through pointers to nested functions or pointers to functions compiled in
other languages that use the static chain if you use the
-mno-pointers-to-nested-functions.
- -msave-toc-indirect
- -mno-save-toc-indirect
- Generate (do not generate) code to save the TOC value in the reserved
stack location in the function prologue if the function calls through a
pointer on AIX and 64-bit Linux systems. If the TOC value is not saved in
the prologue, it is saved just before the call through the pointer. The
-mno-save-toc-indirect option is the default.
- -mcompat-align-parm
- -mno-compat-align-parm
- Generate (do not generate) code to pass structure parameters with a
maximum alignment of 64 bits, for compatibility with older versions of
GCC.
Older versions of GCC (prior to 4.9.0) incorrectly did not
align a structure parameter on a 128-bit boundary when that structure
contained a member requiring 128-bit alignment. This is corrected in
more recent versions of GCC. This option may be used to generate code
that is compatible with functions compiled with older versions of
GCC.
In this version of the compiler, the
-mcompat-align-parm is the default, except when using the Linux
ELFv2 ABI.
- -mstack-protector-guard=guard
- -mstack-protector-guard-reg=reg
- -mstack-protector-guard-offset=offset
- Generate stack protection code using canary at guard. Supported
locations are global for global canary or tls for per-thread
canary in the TLS block (the default with GNU libc version 2.4 or later).
With the latter choice the options
-mstack-protector-guard-reg=reg and
-mstack-protector-guard-offset=offset furthermore specify
which register to use as base register for reading the canary, and from
what offset from that base register. The default for those is as
specified in the relevant ABI.
These command-line options are defined for RX targets:
- -m64bit-doubles
- -m32bit-doubles
- Make the "double" data type be 64 bits
(-m64bit-doubles) or 32 bits (-m32bit-doubles) in size. The
default is -m32bit-doubles. Note RX floating-point hardware
only works on 32-bit values, which is why the default is
-m32bit-doubles.
- -fpu
- -nofpu
- Enables (-fpu) or disables (-nofpu) the use of RX
floating-point hardware. The default is enabled for the RX600
series and disabled for the RX200 series.
Floating-point instructions are only generated for 32-bit
floating-point values, however, so the FPU hardware is not used for
doubles if the -m64bit-doubles option is used.
Note If the -fpu option is enabled then
-funsafe-math-optimizations is also enabled automatically. This
is because the RX FPU instructions are themselves unsafe.
- -mcpu=name
- Selects the type of RX CPU to be targeted. Currently three types are
supported, the generic RX600 and RX200 series hardware and
the specific RX610 CPU. The default is RX600.
The only difference between RX600 and RX610 is
that the RX610 does not support the
"MVTIPL" instruction.
The RX200 series does not have a hardware
floating-point unit and so -nofpu is enabled by default when this
type is selected.
- -mbig-endian-data
- -mlittle-endian-data
- Store data (but not code) in the big-endian format. The default is
-mlittle-endian-data, i.e. to store data in the little-endian
format.
- -msmall-data-limit=N
- Specifies the maximum size in bytes of global and static variables which
can be placed into the small data area. Using the small data area can lead
to smaller and faster code, but the size of area is limited and it is up
to the programmer to ensure that the area does not overflow. Also when the
small data area is used one of the RX's registers (usually
"r13") is reserved for use pointing to
this area, so it is no longer available for use by the compiler. This
could result in slower and/or larger code if variables are pushed onto the
stack instead of being held in this register.
Note, common variables (variables that have not been
initialized) and constants are not placed into the small data area as
they are assigned to other sections in the output executable.
The default value is zero, which disables this feature. Note,
this feature is not enabled by default with higher optimization levels
(-O2 etc) because of the potentially detrimental effects of
reserving a register. It is up to the programmer to experiment and
discover whether this feature is of benefit to their program. See the
description of the -mpid option for a description of how the
actual register to hold the small data area pointer is chosen.
- -msim
- -mno-sim
- Use the simulator runtime. The default is to use the libgloss
board-specific runtime.
- -mas100-syntax
- -mno-as100-syntax
- When generating assembler output use a syntax that is compatible with
Renesas's AS100 assembler. This syntax can also be handled by the GAS
assembler, but it has some restrictions so it is not generated by
default.
- -mmax-constant-size=N
- Specifies the maximum size, in bytes, of a constant that can be used as an
operand in a RX instruction. Although the RX instruction set does allow
constants of up to 4 bytes in length to be used in instructions, a longer
value equates to a longer instruction. Thus in some circumstances it can
be beneficial to restrict the size of constants that are used in
instructions. Constants that are too big are instead placed into a
constant pool and referenced via register indirection.
The value N can be between 0 and 4. A value of 0 (the
default) or 4 means that constants of any size are allowed.
- -mrelax
- Enable linker relaxation. Linker relaxation is a process whereby the
linker attempts to reduce the size of a program by finding shorter
versions of various instructions. Disabled by default.
- -mint-register=N
- Specify the number of registers to reserve for fast interrupt handler
functions. The value N can be between 0 and 4. A value of 1 means
that register "r13" is reserved for the
exclusive use of fast interrupt handlers. A value of 2 reserves
"r13" and
"r12". A value of 3 reserves
"r13",
"r12" and
"r11", and a value of 4 reserves
"r13" through
"r10". A value of 0, the default, does
not reserve any registers.
- -msave-acc-in-interrupts
- Specifies that interrupt handler functions should preserve the accumulator
register. This is only necessary if normal code might use the accumulator
register, for example because it performs 64-bit multiplications. The
default is to ignore the accumulator as this makes the interrupt handlers
faster.
- -mpid
- -mno-pid
- Enables the generation of position independent data. When enabled any
access to constant data is done via an offset from a base address held in
a register. This allows the location of constant data to be determined at
run time without requiring the executable to be relocated, which is a
benefit to embedded applications with tight memory constraints. Data that
can be modified is not affected by this option.
Note, using this feature reserves a register, usually
"r13", for the constant data base
address. This can result in slower and/or larger code, especially in
complicated functions.
The actual register chosen to hold the constant data base
address depends upon whether the -msmall-data-limit and/or the
-mint-register command-line options are enabled. Starting with
register "r13" and proceeding
downwards, registers are allocated first to satisfy the requirements of
-mint-register, then -mpid and finally
-msmall-data-limit. Thus it is possible for the small data area
register to be "r8" if both
-mint-register=4 and -mpid are specified on the command
line.
By default this feature is not enabled. The default can be
restored via the -mno-pid command-line option.
- -mno-warn-multiple-fast-interrupts
- -mwarn-multiple-fast-interrupts
- Prevents GCC from issuing a warning message if it finds more than one fast
interrupt handler when it is compiling a file. The default is to issue a
warning for each extra fast interrupt handler found, as the RX only
supports one such interrupt.
Note: The generic GCC command-line option
-ffixed-reg has special significance to the RX port when used
with the "interrupt" function attribute.
This attribute indicates a function intended to process fast interrupts. GCC
ensures that it only uses the registers
"r10",
"r11",
"r12" and/or
"r13" and only provided that the normal
use of the corresponding registers have been restricted via the
-ffixed-reg or -mint-register command-line options.
These are the -m options defined for the S/390 and zSeries architecture.
- -mhard-float
- -msoft-float
- Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When -msoft-float is specified,
functions in libgcc.a are used to perform floating-point
operations. When -mhard-float is specified, the compiler generates
IEEE floating-point instructions. This is the default.
- -mhard-dfp
- -mno-hard-dfp
- Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations. When -mno-hard-dfp is specified,
functions in libgcc.a are used to perform decimal-floating-point
operations. When -mhard-dfp is specified, the compiler generates
decimal-floating-point hardware instructions. This is the default for
-march=z9-ec or higher.
- -mlong-double-64
- -mlong-double-128
- These switches control the size of "long
double" type. A size of 64 bits makes the
"long double" type equivalent to the
"double" type. This is the default.
- -mbackchain
- -mno-backchain
- Store (do not store) the address of the caller's frame as backchain
pointer into the callee's stack frame. A backchain may be needed to allow
debugging using tools that do not understand DWARF 2 call frame
information. When -mno-packed-stack is in effect, the backchain
pointer is stored at the bottom of the stack frame; when
-mpacked-stack is in effect, the backchain is placed into the
topmost word of the 96/160 byte register save area.
In general, code compiled with -mbackchain is
call-compatible with code compiled with -mmo-backchain; however,
use of the backchain for debugging purposes usually requires that the
whole binary is built with -mbackchain. Note that the combination
of -mbackchain, -mpacked-stack and -mhard-float is
not supported. In order to build a linux kernel use
-msoft-float.
The default is to not maintain the backchain.
- -mpacked-stack
- -mno-packed-stack
- Use (do not use) the packed stack layout. When -mno-packed-stack is
specified, the compiler uses the all fields of the 96/160 byte register
save area only for their default purpose; unused fields still take up
stack space. When -mpacked-stack is specified, register save slots
are densely packed at the top of the register save area; unused space is
reused for other purposes, allowing for more efficient use of the
available stack space. However, when -mbackchain is also in effect,
the topmost word of the save area is always used to store the backchain,
and the return address register is always saved two words below the
backchain.
As long as the stack frame backchain is not used, code
generated with -mpacked-stack is call-compatible with code
generated with -mno-packed-stack. Note that some non-FSF releases
of GCC 2.95 for S/390 or zSeries generated code that uses the stack
frame backchain at run time, not just for debugging purposes. Such code
is not call-compatible with code compiled with -mpacked-stack.
Also, note that the combination of -mbackchain,
-mpacked-stack and -mhard-float is not supported. In order
to build a linux kernel use -msoft-float.
The default is to not use the packed stack layout.
- -msmall-exec
- -mno-small-exec
- Generate (or do not generate) code using the
"bras" instruction to do subroutine
calls. This only works reliably if the total executable size does not
exceed 64k. The default is to use the
"basr" instruction instead, which does
not have this limitation.
- -m64
- -m31
- When -m31 is specified, generate code compliant to the GNU/Linux
for S/390 ABI. When -m64 is specified, generate code compliant to
the GNU/Linux for zSeries ABI. This allows GCC in particular to generate
64-bit instructions. For the s390 targets, the default is
-m31, while the s390x targets default to -m64.
- -mzarch
- -mesa
- When -mzarch is specified, generate code using the instructions
available on z/Architecture. When -mesa is specified, generate code
using the instructions available on ESA/390. Note that -mesa is not
possible with -m64. When generating code compliant to the GNU/Linux
for S/390 ABI, the default is -mesa. When generating code compliant
to the GNU/Linux for zSeries ABI, the default is -mzarch.
- -mhtm
- -mno-htm
- The -mhtm option enables a set of builtins making use of
instructions available with the transactional execution facility
introduced with the IBM zEnterprise EC12 machine generation S/390
System z Built-in Functions. -mhtm is enabled by default when
using -march=zEC12.
- -mvx
- -mno-vx
- When -mvx is specified, generate code using the instructions
available with the vector extension facility introduced with the IBM z13
machine generation. This option changes the ABI for some vector type
values with regard to alignment and calling conventions. In case vector
type values are being used in an ABI-relevant context a GAS
.gnu_attribute command will be added to mark the resulting binary
with the ABI used. -mvx is enabled by default when using
-march=z13.
- -mzvector
- -mno-zvector
- The -mzvector option enables vector language extensions and
builtins using instructions available with the vector extension facility
introduced with the IBM z13 machine generation. This option adds support
for vector to be used as a keyword to define vector type variables
and arguments. vector is only available when GNU extensions are
enabled. It will not be expanded when requesting strict standard
compliance e.g. with -std=c99. In addition to the GCC low-level
builtins -mzvector enables a set of builtins added for
compatibility with Altivec-style implementations like Power and Cell. In
order to make use of these builtins the header file vecintrin.h
needs to be included. -mzvector is disabled by default.
- -mmvcle
- -mno-mvcle
- Generate (or do not generate) code using the
"mvcle" instruction to perform block
moves. When -mno-mvcle is specified, use a
"mvc" loop instead. This is the default
unless optimizing for size.
- -mdebug
- -mno-debug
- Print (or do not print) additional debug information when compiling. The
default is to not print debug information.
- -march=cpu-type
- Generate code that runs on cpu-type, which is the name of a system
representing a certain processor type. Possible values for cpu-type
are g5, g6, z900, z990, z9-109,
z9-ec, z10, z196, zEC12, and z13. When
generating code using the instructions available on z/Architecture, the
default is -march=z900. Otherwise, the default is
-march=g5.
- -mtune=cpu-type
- Tune to cpu-type everything applicable about the generated code,
except for the ABI and the set of available instructions. The list of
cpu-type values is the same as for -march. The default is
the value used for -march.
- -mtpf-trace
- -mno-tpf-trace
- Generate code that adds (does not add) in TPF OS specific branches to
trace routines in the operating system. This option is off by default,
even when compiling for the TPF OS.
- -mfused-madd
- -mno-fused-madd
- Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used.
- -mwarn-framesize=framesize
- Emit a warning if the current function exceeds the given frame size.
Because this is a compile-time check it doesn't need to be a real problem
when the program runs. It is intended to identify functions that most
probably cause a stack overflow. It is useful to be used in an environment
with limited stack size e.g. the linux kernel.
- -mwarn-dynamicstack
- Emit a warning if the function calls
"alloca" or uses dynamically-sized
arrays. This is generally a bad idea with a limited stack size.
- -mstack-guard=stack-guard
- -mstack-size=stack-size
- If these options are provided the S/390 back end emits additional
instructions in the function prologue that trigger a trap if the stack
size is stack-guard bytes above the stack-size (remember
that the stack on S/390 grows downward). If the stack-guard option
is omitted the smallest power of 2 larger than the frame size of the
compiled function is chosen. These options are intended to be used to help
debugging stack overflow problems. The additionally emitted code causes
only little overhead and hence can also be used in production-like systems
without greater performance degradation. The given values have to be exact
powers of 2 and stack-size has to be greater than
stack-guard without exceeding 64k. In order to be efficient the
extra code makes the assumption that the stack starts at an address
aligned to the value given by stack-size. The stack-guard
option can only be used in conjunction with stack-size.
- -mhotpatch=pre-halfwords,post-halfwords
- If the hotpatch option is enabled, a "hot-patching" function
prologue is generated for all functions in the compilation unit. The
funtion label is prepended with the given number of two-byte NOP
instructions (pre-halfwords, maximum 1000000). After the label, 2 *
post-halfwords bytes are appended, using the largest NOP like
instructions the architecture allows (maximum 1000000).
If both arguments are zero, hotpatching is disabled.
This option can be overridden for individual functions with
the "hotpatch" attribute.
These options are defined for Score implementations:
- -meb
- Compile code for big-endian mode. This is the default.
- -mel
- Compile code for little-endian mode.
- -mnhwloop
- Disable generation of "bcnz"
instructions.
- -muls
- Enable generation of unaligned load and store instructions.
- -mmac
- Enable the use of multiply-accumulate instructions. Disabled by
default.
- -mscore5
- Specify the SCORE5 as the target architecture.
- -mscore5u
- Specify the SCORE5U of the target architecture.
- -mscore7
- Specify the SCORE7 as the target architecture. This is the default.
- -mscore7d
- Specify the SCORE7D as the target architecture.
These -m options are defined for the SH implementations:
- -m1
- Generate code for the SH1.
- -m2
- Generate code for the SH2.
- -m2e
- Generate code for the SH2e.
- -m2a-nofpu
- Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.
- -m2a-single-only
- Generate code for the SH2a-FPU, in such a way that no double-precision
floating-point operations are used.
- -m2a-single
- Generate code for the SH2a-FPU assuming the floating-point unit is in
single-precision mode by default.
- -m2a
- Generate code for the SH2a-FPU assuming the floating-point unit is in
double-precision mode by default.
- -m3
- Generate code for the SH3.
- -m3e
- Generate code for the SH3e.
- -m4-nofpu
- Generate code for the SH4 without a floating-point unit.
- -m4-single-only
- Generate code for the SH4 with a floating-point unit that only supports
single-precision arithmetic.
- -m4-single
- Generate code for the SH4 assuming the floating-point unit is in
single-precision mode by default.
- -m4
- Generate code for the SH4.
- -m4-100
- Generate code for SH4-100.
- -m4-100-nofpu
- Generate code for SH4-100 in such a way that the floating-point unit is
not used.
- -m4-100-single
- Generate code for SH4-100 assuming the floating-point unit is in
single-precision mode by default.
- -m4-100-single-only
- Generate code for SH4-100 in such a way that no double-precision
floating-point operations are used.
- -m4-200
- Generate code for SH4-200.
- -m4-200-nofpu
- Generate code for SH4-200 without in such a way that the floating-point
unit is not used.
- -m4-200-single
- Generate code for SH4-200 assuming the floating-point unit is in
single-precision mode by default.
- -m4-200-single-only
- Generate code for SH4-200 in such a way that no double-precision
floating-point operations are used.
- -m4-300
- Generate code for SH4-300.
- -m4-300-nofpu
- Generate code for SH4-300 without in such a way that the floating-point
unit is not used.
- -m4-300-single
- Generate code for SH4-300 in such a way that no double-precision
floating-point operations are used.
- -m4-300-single-only
- Generate code for SH4-300 in such a way that no double-precision
floating-point operations are used.
- -m4-340
- Generate code for SH4-340 (no MMU, no FPU).
- -m4-500
- Generate code for SH4-500 (no FPU). Passes -isa=sh4-nofpu to the
assembler.
- -m4a-nofpu
- Generate code for the SH4al-dsp, or for a SH4a in such a way that the
floating-point unit is not used.
- -m4a-single-only
- Generate code for the SH4a, in such a way that no double-precision
floating-point operations are used.
- -m4a-single
- Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.
- -m4a
- Generate code for the SH4a.
- -m4al
- Same as -m4a-nofpu, except that it implicitly passes -dsp to
the assembler. GCC doesn't generate any DSP instructions at the
moment.
- -m5-32media
- Generate 32-bit code for SHmedia.
- -m5-32media-nofpu
- Generate 32-bit code for SHmedia in such a way that the floating-point
unit is not used.
- -m5-64media
- Generate 64-bit code for SHmedia.
- -m5-64media-nofpu
- Generate 64-bit code for SHmedia in such a way that the floating-point
unit is not used.
- -m5-compact
- Generate code for SHcompact.
- -m5-compact-nofpu
- Generate code for SHcompact in such a way that the floating-point unit is
not used.
- -mb
- Compile code for the processor in big-endian mode.
- -ml
- Compile code for the processor in little-endian mode.
- -mdalign
- Align doubles at 64-bit boundaries. Note that this changes the calling
conventions, and thus some functions from the standard C library do not
work unless you recompile it first with -mdalign.
- -mrelax
- Shorten some address references at link time, when possible; uses the
linker option -relax.
- -mbigtable
- Use 32-bit offsets in "switch" tables.
The default is to use 16-bit offsets.
- -mbitops
- Enable the use of bit manipulation instructions on SH2A.
- -mfmovd
- Enable the use of the instruction
"fmovd". Check -mdalign for
alignment constraints.
- -mrenesas
- Comply with the calling conventions defined by Renesas.
- -mno-renesas
- Comply with the calling conventions defined for GCC before the Renesas
conventions were available. This option is the default for all targets of
the SH toolchain.
- -mnomacsave
- Mark the "MAC" register as
call-clobbered, even if -mrenesas is given.
- -mieee
- -mno-ieee
- Control the IEEE compliance of floating-point comparisons, which affects
the handling of cases where the result of a comparison is unordered. By
default -mieee is implicitly enabled. If -ffinite-math-only
is enabled -mno-ieee is implicitly set, which results in faster
floating-point greater-equal and less-equal comparisons. The implcit
settings can be overridden by specifying either -mieee or
-mno-ieee.
- -minline-ic_invalidate
- Inline code to invalidate instruction cache entries after setting up
nested function trampolines. This option has no effect if
-musermode is in effect and the selected code generation option
(e.g. -m4) does not allow the use of the
"icbi" instruction. If the selected code
generation option does not allow the use of the
"icbi" instruction, and
-musermode is not in effect, the inlined code manipulates the
instruction cache address array directly with an associative write. This
not only requires privileged mode at run time, but it also fails if the
cache line had been mapped via the TLB and has become unmapped.
- -misize
- Dump instruction size and location in the assembly code.
- -mpadstruct
- This option is deprecated. It pads structures to multiple of 4 bytes,
which is incompatible with the SH ABI.
- -matomic-model=model
- Sets the model of atomic operations and additional parameters as a comma
separated list. For details on the atomic built-in functions see
__atomic Builtins. The following models and parameters are
supported:
- none
- Disable compiler generated atomic sequences and emit library calls for
atomic operations. This is the default if the target is not
"sh*-*-linux*".
- soft-gusa
- Generate GNU/Linux compatible gUSA software atomic sequences for the
atomic built-in functions. The generated atomic sequences require
additional support from the interrupt/exception handling code of the
system and are only suitable for SH3* and SH4* single-core systems. This
option is enabled by default when the target is
"sh*-*-linux*" and SH3* or SH4*. When
the target is SH4A, this option will also partially utilize the hardware
atomic instructions "movli.l" and
"movco.l" to create more efficient code,
unless strict is specified.
- soft-tcb
- Generate software atomic sequences that use a variable in the thread
control block. This is a variation of the gUSA sequences which can also be
used on SH1* and SH2* targets. The generated atomic sequences require
additional support from the interrupt/exception handling code of the
system and are only suitable for single-core systems. When using this
model, the gbr-offset= parameter has to be specified as well.
- soft-imask
- Generate software atomic sequences that temporarily disable interrupts by
setting "SR.IMASK = 1111". This model
works only when the program runs in privileged mode and is only suitable
for single-core systems. Additional support from the interrupt/exception
handling code of the system is not required. This model is enabled by
default when the target is
"sh*-*-linux*" and SH1* or SH2*.
- hard-llcs
- Generate hardware atomic sequences using the
"movli.l" and
"movco.l" instructions only. This is
only available on SH4A and is suitable for multi-core systems. Since the
hardware instructions support only 32 bit atomic variables access to 8 or
16 bit variables is emulated with 32 bit accesses. Code compiled with this
option will also be compatible with other software atomic model
interrupt/exception handling systems if executed on an SH4A system.
Additional support from the interrupt/exception handling code of the
system is not required for this model.
- gbr-offset=
- This parameter specifies the offset in bytes of the variable in the thread
control block structure that should be used by the generated atomic
sequences when the soft-tcb model has been selected. For other
models this parameter is ignored. The specified value must be an integer
multiple of four and in the range 0-1020.
- strict
- This parameter prevents mixed usage of multiple atomic models, even though
they would be compatible, and will make the compiler generate atomic
sequences of the specified model only.
- -mtas
- Generate the "tas.b" opcode for
"__atomic_test_and_set". Notice that
depending on the particular hardware and software configuration this can
degrade overall performance due to the operand cache line flushes that are
implied by the "tas.b" instruction. On
multi-core SH4A processors the "tas.b"
instruction must be used with caution since it can result in data
corruption for certain cache configurations.
- -mprefergot
- When generating position-independent code, emit function calls using the
Global Offset Table instead of the Procedure Linkage Table.
- -musermode
- -mno-usermode
- Don't allow (allow) the compiler generating privileged mode code.
Specifying -musermode also implies -mno-inline-ic_invalidate
if the inlined code would not work in user mode. -musermode is the
default when the target is
"sh*-*-linux*". If the target is SH1* or
SH2* -musermode has no effect, since there is no user mode.
- -multcost=number
- Set the cost to assume for a multiply insn.
- -mdiv=strategy
- Set the division strategy to be used for integer division operations. For
SHmedia strategy can be one of:
- fp
- Performs the operation in floating point. This has a very high latency,
but needs only a few instructions, so it might be a good choice if your
code has enough easily-exploitable ILP to allow the compiler to schedule
the floating-point instructions together with other instructions. Division
by zero causes a floating-point exception.
- inv
- Uses integer operations to calculate the inverse of the divisor, and then
multiplies the dividend with the inverse. This strategy allows CSE and
hoisting of the inverse calculation. Division by zero calculates an
unspecified result, but does not trap.
- inv:minlat
- A variant of inv where, if no CSE or hoisting opportunities have
been found, or if the entire operation has been hoisted to the same place,
the last stages of the inverse calculation are intertwined with the final
multiply to reduce the overall latency, at the expense of using a few more
instructions, and thus offering fewer scheduling opportunities with other
code.
- call
- Calls a library function that usually implements the inv:minlat
strategy. This gives high code density for
"m5-*media-nofpu" compilations.
- call2
- Uses a different entry point of the same library function, where it
assumes that a pointer to a lookup table has already been set up, which
exposes the pointer load to CSE and code hoisting optimizations.
- inv:call
- inv:call2
- inv:fp
- Use the inv algorithm for initial code generation, but if the code
stays unoptimized, revert to the call, call2, or fp
strategies, respectively. Note that the potentially-trapping side effect
of division by zero is carried by a separate instruction, so it is
possible that all the integer instructions are hoisted out, but the marker
for the side effect stays where it is. A recombination to floating-point
operations or a call is not possible in that case.
- inv20u
- inv20l
- Variants of the inv:minlat strategy. In the case that the inverse
calculation is not separated from the multiply, they speed up division
where the dividend fits into 20 bits (plus sign where applicable) by
inserting a test to skip a number of operations in this case; this test
slows down the case of larger dividends. inv20u assumes the case of
a such a small dividend to be unlikely, and inv20l assumes it to be
likely.
For targets other than SHmedia strategy can be one of:
- call-div1
- Calls a library function that uses the single-step division instruction
"div1" to perform the operation.
Division by zero calculates an unspecified result and does not trap. This
is the default except for SH4, SH2A and SHcompact.
- call-fp
- Calls a library function that performs the operation in double precision
floating point. Division by zero causes a floating-point exception. This
is the default for SHcompact with FPU. Specifying this for targets that do
not have a double precision FPU will default to
"call-div1".
- call-table
- Calls a library function that uses a lookup table for small divisors and
the "div1" instruction with case
distinction for larger divisors. Division by zero calculates an
unspecified result and does not trap. This is the default for SH4.
Specifying this for targets that do not have dynamic shift instructions
will default to "call-div1".
When a division strategy has not been specified the default
strategy will be selected based on the current target. For SH2A the default
strategy is to use the "divs" and
"divu" instructions instead of library
function calls.
- -maccumulate-outgoing-args
- Reserve space once for outgoing arguments in the function prologue rather
than around each call. Generally beneficial for performance and size. Also
needed for unwinding to avoid changing the stack frame around conditional
code.
- -mdivsi3_libfunc=name
- Set the name of the library function used for 32-bit signed division to
name. This only affects the name used in the call and
inv:call division strategies, and the compiler still expects the
same sets of input/output/clobbered registers as if this option were not
present.
- -mfixed-range=register-range
- Generate code treating the given register range as fixed registers. A
fixed register is one that the register allocator can not use. This is
useful when compiling kernel code. A register range is specified as two
registers separated by a dash. Multiple register ranges can be specified
separated by a comma.
- -mindexed-addressing
- Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
This is only safe if the hardware and/or OS implement 32-bit wrap-around
semantics for the indexed addressing mode. The architecture allows the
implementation of processors with 64-bit MMU, which the OS could use to
get 32-bit addressing, but since no current hardware implementation
supports this or any other way to make the indexed addressing mode safe to
use in the 32-bit ABI, the default is -mno-indexed-addressing.
- -mgettrcost=number
- Set the cost assumed for the "gettr"
instruction to number. The default is 2 if -mpt-fixed is in
effect, 100 otherwise.
- -mpt-fixed
- Assume "pt*" instructions won't trap.
This generally generates better-scheduled code, but is unsafe on current
hardware. The current architecture definition says that
"ptabs" and
"ptrel" trap when the target anded with
3 is 3. This has the unintentional effect of making it unsafe to schedule
these instructions before a branch, or hoist them out of a loop. For
example, "__do_global_ctors", a part of
libgcc that runs constructors at program startup, calls functions
in a list which is delimited by -1. With the -mpt-fixed option, the
"ptabs" is done before testing against
-1. That means that all the constructors run a bit more quickly, but when
the loop comes to the end of the list, the program crashes because
"ptabs" loads -1 into a target register.
Since this option is unsafe for any hardware implementing the
current architecture specification, the default is -mno-pt-fixed.
Unless specified explicitly with -mgettrcost,
-mno-pt-fixed also implies -mgettrcost=100; this deters
register allocation from using target registers for storing ordinary
integers.
- -minvalid-symbols
- Assume symbols might be invalid. Ordinary function symbols generated by
the compiler are always valid to load with
"movi"/"shori"/"ptabs"
or
"movi"/"shori"/"ptrel",
but with assembler and/or linker tricks it is possible to generate symbols
that cause "ptabs" or
"ptrel" to trap. This option is only
meaningful when -mno-pt-fixed is in effect. It prevents
cross-basic-block CSE, hoisting and most scheduling of symbol loads. The
default is -mno-invalid-symbols.
- -mbranch-cost=num
- Assume num to be the cost for a branch instruction. Higher numbers
make the compiler try to generate more branch-free code if possible. If
not specified the value is selected depending on the processor type that
is being compiled for.
- -mzdcbranch
- -mno-zdcbranch
- Assume (do not assume) that zero displacement conditional branch
instructions "bt" and
"bf" are fast. If -mzdcbranch is
specified, the compiler will try to prefer zero displacement branch code
sequences. This is enabled by default when generating code for SH4 and
SH4A. It can be explicitly disabled by specifying
-mno-zdcbranch.
- -mcbranchdi
- Enable the "cbranchdi4" instruction
pattern.
- -mcmpeqdi
- Emit the "cmpeqdi_t" instruction pattern
even when -mcbranchdi is in effect.
- -mfused-madd
- -mno-fused-madd
- Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used. The machine-dependent -mfused-madd
option is now mapped to the machine-independent -ffp-contract=fast
option, and -mno-fused-madd is mapped to
-ffp-contract=off.
- -mfsca
- -mno-fsca
- Allow or disallow the compiler to emit the
"fsca" instruction for sine and cosine
approximations. The option "-mfsca" must
be used in combination with
"-funsafe-math-optimizations". It is
enabled by default when generating code for SH4A. Using
"-mno-fsca" disables sine and cosine
approximations even if
"-funsafe-math-optimizations" is in
effect.
- -mfsrra
- -mno-fsrra
- Allow or disallow the compiler to emit the
"fsrra" instruction for reciprocal
square root approximations. The option
"-mfsrra" must be used in combination
with "-funsafe-math-optimizations" and
"-ffinite-math-only". It is enabled by
default when generating code for SH4A. Using
"-mno-fsrra" disables reciprocal square
root approximations even if
"-funsafe-math-optimizations" and
"-ffinite-math-only" are in effect.
- -mpretend-cmove
- Prefer zero-displacement conditional branches for conditional move
instruction patterns. This can result in faster code on the SH4
processor.
These -m options are supported on Solaris 2:
- -mimpure-text
- -mimpure-text, used in addition to -shared, tells the
compiler to not pass -z text to the linker when linking a shared
object. Using this option, you can link position-dependent code into a
shared object.
-mimpure-text suppresses the "relocations remain
against allocatable but non-writable sections" linker error
message. However, the necessary relocations trigger copy-on-write, and
the shared object is not actually shared across processes. Instead of
using -mimpure-text, you should compile all source code with
-fpic or -fPIC.
These switches are supported in addition to the above on Solaris
2:
- -pthreads
- Add support for multithreading using the POSIX threads library. This
option sets flags for both the preprocessor and linker. This option does
not affect the thread safety of object code produced by the compiler or
that of libraries supplied with it.
- -pthread
- This is a synonym for -pthreads.
These -m options are supported on the SPARC:
- -mno-app-regs
- -mapp-regs
- Specify -mapp-regs to generate output using the global registers 2
through 4, which the SPARC SVR4 ABI reserves for applications. Like the
global register 1, each global register 2 through 4 is then treated as an
allocable register that is clobbered by function calls. This is the
default.
To be fully SVR4 ABI-compliant at the cost of some performance
loss, specify -mno-app-regs. You should compile libraries and
system software with this option.
- -mflat
- -mno-flat
- With -mflat, the compiler does not generate save/restore
instructions and uses a "flat" or single register window model.
This model is compatible with the regular register window model. The local
registers and the input registers (0--5) are still treated as
"call-saved" registers and are saved on the stack as needed.
With -mno-flat (the default), the compiler generates
save/restore instructions (except for leaf functions). This is the
normal operating mode.
- -mfpu
- -mhard-float
- Generate output containing floating-point instructions. This is the
default.
- -mno-fpu
- -msoft-float
- Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all SPARC
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation. The embedded targets sparc-*-aout and
sparclite-*-* do provide software floating-point support.
-msoft-float changes the calling convention in the
output file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to compile
libgcc.a, the library that comes with GCC, with
-msoft-float in order for this to work.
- -mhard-quad-float
- Generate output containing quad-word (long double) floating-point
instructions.
- -msoft-quad-float
- Generate output containing library calls for quad-word (long double)
floating-point instructions. The functions called are those specified in
the SPARC ABI. This is the default.
As of this writing, there are no SPARC implementations that
have hardware support for the quad-word floating-point instructions.
They all invoke a trap handler for one of these instructions, and then
the trap handler emulates the effect of the instruction. Because of the
trap handler overhead, this is much slower than calling the ABI library
routines. Thus the -msoft-quad-float option is the default.
- -mno-unaligned-doubles
- -munaligned-doubles
- Assume that doubles have 8-byte alignment. This is the default.
With -munaligned-doubles, GCC assumes that doubles have
8-byte alignment only if they are contained in another type, or if they
have an absolute address. Otherwise, it assumes they have 4-byte
alignment. Specifying this option avoids some rare compatibility
problems with code generated by other compilers. It is not the default
because it results in a performance loss, especially for floating-point
code.
- -muser-mode
- -mno-user-mode
- Do not generate code that can only run in supervisor mode. This is
relevant only for the "casa" instruction
emitted for the LEON3 processor. The default is
-mno-user-mode.
- -mno-faster-structs
- -mfaster-structs
- With -mfaster-structs, the compiler assumes that structures should
have 8-byte alignment. This enables the use of pairs of
"ldd" and
"std" instructions for copies in
structure assignment, in place of twice as many
"ld" and
"st" pairs. However, the use of this
changed alignment directly violates the SPARC ABI. Thus, it's intended
only for use on targets where the developer acknowledges that their
resulting code is not directly in line with the rules of the ABI.
- -mcpu=cpu_type
- Set the instruction set, register set, and instruction scheduling
parameters for machine type cpu_type. Supported values for
cpu_type are v7, cypress, v8,
supersparc, hypersparc, leon, leon3,
leon3v7, sparclite, f930, f934,
sparclite86x, sparclet, tsc701, v9,
ultrasparc, ultrasparc3, niagara, niagara2,
niagara3 and niagara4.
Native Solaris and GNU/Linux toolchains also support the value
native, which selects the best architecture option for the host
processor. -mcpu=native has no effect if GCC does not recognize
the processor.
Default instruction scheduling parameters are used for values
that select an architecture and not an implementation. These are
v7, v8, sparclite, sparclet, v9.
Here is a list of each supported architecture and their
supported implementations.
- v7
- cypress, leon3v7
- v8
- supersparc, hypersparc, leon, leon3
- sparclite
- f930, f934, sparclite86x
- sparclet
- tsc701
- v9
- ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
By default (unless configured otherwise), GCC generates code for
the V7 variant of the SPARC architecture. With -mcpu=cypress, the
compiler additionally optimizes it for the Cypress CY7C602 chip, as used in
the SPARCStation/SPARCServer 3xx series. This is also appropriate for the
older SPARCStation 1, 2, IPX etc.
With -mcpu=v8, GCC generates code for the V8 variant of the
SPARC architecture. The only difference from V7 code is that the compiler
emits the integer multiply and integer divide instructions which exist in
SPARC-V8 but not in SPARC-V7. With -mcpu=supersparc, the compiler
additionally optimizes it for the SuperSPARC chip, as used in the
SPARCStation 10, 1000 and 2000 series.
With -mcpu=sparclite, GCC generates code for the SPARClite
variant of the SPARC architecture. This adds the integer multiply, integer
divide step and scan ("ffs") instructions
which exist in SPARClite but not in SPARC-V7. With -mcpu=f930, the
compiler additionally optimizes it for the Fujitsu MB86930 chip, which is
the original SPARClite, with no FPU. With -mcpu=f934, the compiler
additionally optimizes it for the Fujitsu MB86934 chip, which is the more
recent SPARClite with FPU.
With -mcpu=sparclet, GCC generates code for the SPARClet
variant of the SPARC architecture. This adds the integer multiply,
multiply/accumulate, integer divide step and scan
("ffs") instructions which exist in
SPARClet but not in SPARC-V7. With -mcpu=tsc701, the compiler
additionally optimizes it for the TEMIC SPARClet chip.
With -mcpu=v9, GCC generates code for the V9 variant of the
SPARC architecture. This adds 64-bit integer and floating-point move
instructions, 3 additional floating-point condition code registers and
conditional move instructions. With -mcpu=ultrasparc, the compiler
additionally optimizes it for the Sun UltraSPARC I/II/IIi chips. With
-mcpu=ultrasparc3, the compiler additionally optimizes it for the Sun
UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With -mcpu=niagara, the
compiler additionally optimizes it for Sun UltraSPARC T1 chips. With
-mcpu=niagara2, the compiler additionally optimizes it for Sun
UltraSPARC T2 chips. With -mcpu=niagara3, the compiler additionally
optimizes it for Sun UltraSPARC T3 chips. With -mcpu=niagara4, the
compiler additionally optimizes it for Sun UltraSPARC T4 chips.
- -mtune=cpu_type
- Set the instruction scheduling parameters for machine type
cpu_type, but do not set the instruction set or register set that
the option -mcpu=cpu_type does.
The same values for -mcpu=cpu_type can be used
for -mtune=cpu_type, but the only useful values are those
that select a particular CPU implementation. Those are cypress,
supersparc, hypersparc, leon, leon3,
leon3v7, f930, f934, sparclite86x,
tsc701, ultrasparc, ultrasparc3, niagara,
niagara2, niagara3 and niagara4. With native
Solaris and GNU/Linux toolchains, native can also be used.
- -mv8plus
- -mno-v8plus
- With -mv8plus, GCC generates code for the SPARC-V8+ ABI. The
difference from the V8 ABI is that the global and out registers are
considered 64 bits wide. This is enabled by default on Solaris in 32-bit
mode for all SPARC-V9 processors.
- -mvis
- -mno-vis
- With -mvis, GCC generates code that takes advantage of the
UltraSPARC Visual Instruction Set extensions. The default is
-mno-vis.
- -mvis2
- -mno-vis2
- With -mvis2, GCC generates code that takes advantage of version 2.0
of the UltraSPARC Visual Instruction Set extensions. The default is
-mvis2 when targeting a cpu that supports such instructions, such
as UltraSPARC-III and later. Setting -mvis2 also sets
-mvis.
- -mvis3
- -mno-vis3
- With -mvis3, GCC generates code that takes advantage of version 3.0
of the UltraSPARC Visual Instruction Set extensions. The default is
-mvis3 when targeting a cpu that supports such instructions, such
as niagara-3 and later. Setting -mvis3 also sets -mvis2 and
-mvis.
- -mcbcond
- -mno-cbcond
- With -mcbcond, GCC generates code that takes advantage of
compare-and-branch instructions, as defined in the Sparc Architecture
2011. The default is -mcbcond when targeting a cpu that supports
such instructions, such as niagara-4 and later.
- -mpopc
- -mno-popc
- With -mpopc, GCC generates code that takes advantage of the
UltraSPARC population count instruction. The default is -mpopc when
targeting a cpu that supports such instructions, such as Niagara-2 and
later.
- -mfmaf
- -mno-fmaf
- With -mfmaf, GCC generates code that takes advantage of the
UltraSPARC Fused Multiply-Add Floating-point extensions. The default is
-mfmaf when targeting a cpu that supports such instructions, such
as Niagara-3 and later.
- -mfix-at697f
- Enable the documented workaround for the single erratum of the Atmel
AT697F processor (which corresponds to erratum #13 of the AT697E
processor).
- -mfix-ut699
- Enable the documented workarounds for the floating-point errata and the
data cache nullify errata of the UT699 processor.
These -m options are supported in addition to the above on
SPARC-V9 processors in 64-bit environments:
- -m32
- -m64
- Generate code for a 32-bit or 64-bit environment. The 32-bit environment
sets int, long and pointer to 32 bits. The 64-bit environment sets int to
32 bits and long and pointer to 64 bits.
- -mcmodel=which
- Set the code model to one of
- medlow
- The Medium/Low code model: 64-bit addresses, programs must be linked in
the low 32 bits of memory. Programs can be statically or dynamically
linked.
- medmid
- The Medium/Middle code model: 64-bit addresses, programs must be linked in
the low 44 bits of memory, the text and data segments must be less than
2GB in size and the data segment must be located within 2GB of the text
segment.
- medany
- The Medium/Anywhere code model: 64-bit addresses, programs may be linked
anywhere in memory, the text and data segments must be less than 2GB in
size and the data segment must be located within 2GB of the text
segment.
- embmedany
- The Medium/Anywhere code model for embedded systems: 64-bit addresses, the
text and data segments must be less than 2GB in size, both starting
anywhere in memory (determined at link time). The global register
%g4 points to the base of the data segment.
Programs are statically linked and PIC is not supported.
- -mmemory-model=mem-model
- Set the memory model in force on the processor to one of
- default
- The default memory model for the processor and operating system.
- rmo
- Relaxed Memory Order
- pso
- Partial Store Order
- tso
- Total Store Order
- sc
- Sequential Consistency
These memory models are formally defined in Appendix D of the
Sparc V9 architecture manual, as set in the processor's
"PSTATE.MM" field.
- -mstack-bias
- -mno-stack-bias
- With -mstack-bias, GCC assumes that the stack pointer, and frame
pointer if present, are offset by -2047 which must be added back when
making stack frame references. This is the default in 64-bit mode.
Otherwise, assume no such offset is present.
These -m options are supported on the SPU:
- -mwarn-reloc
- -merror-reloc
- The loader for SPU does not handle dynamic relocations. By default, GCC
gives an error when it generates code that requires a dynamic relocation.
-mno-error-reloc disables the error, -mwarn-reloc generates
a warning instead.
- -msafe-dma
- -munsafe-dma
- Instructions that initiate or test completion of DMA must not be reordered
with respect to loads and stores of the memory that is being accessed.
With -munsafe-dma you must use the
"volatile" keyword to protect memory
accesses, but that can lead to inefficient code in places where the memory
is known to not change. Rather than mark the memory as volatile, you can
use -msafe-dma to tell the compiler to treat the DMA instructions
as potentially affecting all memory.
- -mbranch-hints
- By default, GCC generates a branch hint instruction to avoid pipeline
stalls for always-taken or probably-taken branches. A hint is not
generated closer than 8 instructions away from its branch. There is little
reason to disable them, except for debugging purposes, or to make an
object a little bit smaller.
- -msmall-mem
- -mlarge-mem
- By default, GCC generates code assuming that addresses are never larger
than 18 bits. With -mlarge-mem code is generated that assumes a
full 32-bit address.
- -mstdmain
- By default, GCC links against startup code that assumes the SPU-style main
function interface (which has an unconventional parameter list). With
-mstdmain, GCC links your program against startup code that assumes
a C99-style interface to "main",
including a local copy of "argv"
strings.
- -mfixed-range=register-range
- Generate code treating the given register range as fixed registers. A
fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as two
registers separated by a dash. Multiple register ranges can be specified
separated by a comma.
- -mea32
- -mea64
- Compile code assuming that pointers to the PPU address space accessed via
the "__ea" named address space qualifier
are either 32 or 64 bits wide. The default is 32 bits. As this is an
ABI-changing option, all object code in an executable must be compiled
with the same setting.
- -maddress-space-conversion
- -mno-address-space-conversion
- Allow/disallow treating the "__ea"
address space as superset of the generic address space. This enables
explicit type casts between "__ea" and
generic pointer as well as implicit conversions of generic pointers to
"__ea" pointers. The default is to allow
address space pointer conversions.
- -mcache-size=cache-size
- This option controls the version of libgcc that the compiler links to an
executable and selects a software-managed cache for accessing variables in
the "__ea" address space with a
particular cache size. Possible options for cache-size are
8, 16, 32, 64 and 128. The default
cache size is 64KB.
- -matomic-updates
- -mno-atomic-updates
- This option controls the version of libgcc that the compiler links to an
executable and selects whether atomic updates to the software-managed
cache of PPU-side variables are used. If you use atomic updates, changes
to a PPU variable from SPU code using the
"__ea" named address space qualifier do
not interfere with changes to other PPU variables residing in the same
cache line from PPU code. If you do not use atomic updates, such
interference may occur; however, writing back cache lines is more
efficient. The default behavior is to use atomic updates.
- -mdual-nops
- -mdual-nops=n
- By default, GCC inserts nops to increase dual issue when it expects it to
increase performance. n can be a value from 0 to 10. A smaller
n inserts fewer nops. 10 is the default, 0 is the same as
-mno-dual-nops. Disabled with -Os.
- -mhint-max-nops=n
- Maximum number of nops to insert for a branch hint. A branch hint must be
at least 8 instructions away from the branch it is affecting. GCC inserts
up to n nops to enforce this, otherwise it does not generate the
branch hint.
- -mhint-max-distance=n
- The encoding of the branch hint instruction limits the hint to be within
256 instructions of the branch it is affecting. By default, GCC makes sure
it is within 125.
- -msafe-hints
- Work around a hardware bug that causes the SPU to stall indefinitely. By
default, GCC inserts the "hbrp"
instruction to make sure this stall won't happen.
These additional options are available on System V Release 4 for compatibility
with other compilers on those systems:
- -G
- Create a shared object. It is recommended that -symbolic or
-shared be used instead.
- -Qy
- Identify the versions of each tool used by the compiler, in a
".ident" assembler directive in the
output.
- -Qn
- Refrain from adding ".ident" directives
to the output file (this is the default).
- -YP,dirs
- Search the directories dirs, and no others, for libraries specified
with -l.
- -Ym,dir
- Look in the directory dir to find the M4 preprocessor. The
assembler uses this option.
These -m options are supported on the TILE-Gx:
- -mcmodel=small
- Generate code for the small model. The distance for direct calls is
limited to 500M in either direction. PC-relative addresses are 32 bits.
Absolute addresses support the full address range.
- -mcmodel=large
- Generate code for the large model. There is no limitation on call
distance, pc-relative addresses, or absolute addresses.
- -mcpu=name
- Selects the type of CPU to be targeted. Currently the only supported type
is tilegx.
- -m32
- -m64
- Generate code for a 32-bit or 64-bit environment. The 32-bit environment
sets int, long, and pointer to 32 bits. The 64-bit environment sets int to
32 bits and long and pointer to 64 bits.
These -m options are supported on the TILEPro:
- -mcpu=name
- Selects the type of CPU to be targeted. Currently the only supported type
is tilepro.
- -m32
- Generate code for a 32-bit environment, which sets int, long, and pointer
to 32 bits. This is the only supported behavior so the flag is essentially
ignored.
These -m options are defined for V850 implementations:
- -mlong-calls
- -mno-long-calls
- Treat all calls as being far away (near). If calls are assumed to be far
away, the compiler always loads the function's address into a register,
and calls indirect through the pointer.
- -mno-ep
- -mep
- Do not optimize (do optimize) basic blocks that use the same index pointer
4 or more times to copy pointer into the
"ep" register, and use the shorter
"sld" and
"sst" instructions. The -mep
option is on by default if you optimize.
- -mno-prolog-function
- -mprolog-function
- Do not use (do use) external functions to save and restore registers at
the prologue and epilogue of a function. The external functions are
slower, but use less code space if more than one function saves the same
number of registers. The -mprolog-function option is on by default
if you optimize.
- -mspace
- Try to make the code as small as possible. At present, this just turns on
the -mep and -mprolog-function options.
- -mtda=n
- Put static or global variables whose size is n bytes or less into
the tiny data area that register "ep"
points to. The tiny data area can hold up to 256 bytes in total (128 bytes
for byte references).
- -msda=n
- Put static or global variables whose size is n bytes or less into
the small data area that register "gp"
points to. The small data area can hold up to 64 kilobytes.
- -mzda=n
- Put static or global variables whose size is n bytes or less into
the first 32 kilobytes of memory.
- -mv850
- Specify that the target processor is the V850.
- -mv850e3v5
- Specify that the target processor is the V850E3V5. The preprocessor
constant __v850e3v5__ is defined if this option is used.
- -mv850e2v4
- Specify that the target processor is the V850E3V5. This is an alias for
the -mv850e3v5 option.
- -mv850e2v3
- Specify that the target processor is the V850E2V3. The preprocessor
constant __v850e2v3__ is defined if this option is used.
- -mv850e2
- Specify that the target processor is the V850E2. The preprocessor constant
__v850e2__ is defined if this option is used.
- -mv850e1
- Specify that the target processor is the V850E1. The preprocessor
constants __v850e1__ and __v850e__ are defined if this
option is used.
- -mv850es
- Specify that the target processor is the V850ES. This is an alias for the
-mv850e1 option.
- -mv850e
- Specify that the target processor is the V850E. The preprocessor constant
__v850e__ is defined if this option is used.
If neither -mv850 nor -mv850e nor
-mv850e1 nor -mv850e2 nor -mv850e2v3 nor
-mv850e3v5 are defined then a default target processor is chosen
and the relevant __v850*__ preprocessor constant is defined.
The preprocessor constants __v850 and __v851__
are always defined, regardless of which processor variant is the
target.
- -mdisable-callt
- -mno-disable-callt
- This option suppresses generation of the
"CALLT" instruction for the v850e,
v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture.
This option is enabled by default when the RH850 ABI is in use
(see -mrh850-abi), and disabled by default when the GCC ABI is in
use. If "CALLT" instructions are being
generated then the C preprocessor symbol
"__V850_CALLT__" will be defined.
- -mrelax
- -mno-relax
- Pass on (or do not pass on) the -mrelax command line option to the
assembler.
- -mlong-jumps
- -mno-long-jumps
- Disable (or re-enable) the generation of PC-relative jump
instructions.
- -msoft-float
- -mhard-float
- Disable (or re-enable) the generation of hardware floating point
instructions. This option is only significant when the target architecture
is V850E2V3 or higher. If hardware floating point instructions are
being generated then the C preprocessor symbol
"__FPU_OK__" will be defined, otherwise
the symbol "__NO_FPU__" will be
defined.
- -mloop
- Enables the use of the e3v5 LOOP instruction. The use of this instruction
is not enabled by default when the e3v5 architecture is selected because
its use is still experimental.
- -mrh850-abi
- -mghs
- Enables support for the RH850 version of the V850 ABI. This is the
default. With this version of the ABI the following rules apply:
- Integer sized structures and unions are returned via a memory pointer
rather than a register.
- Large structures and unions (more than 8 bytes in size) are passed by
value.
- Functions are aligned to 16-bit boundaries.
- The -m8byte-align command line option is supported.
- The -mdisable-callt command line option is enabled by default. The
-mno-disable-callt command line option is not supported.
When this version of the ABI is enabled the C preprocessor symbol
"__V850_RH850_ABI__" is defined.
- -mgcc-abi
- Enables support for the old GCC version of the V850 ABI. With this version
of the ABI the following rules apply:
- Integer sized structures and unions are returned in register
"r10".
- Large structures and unions (more than 8 bytes in size) are passed by
reference.
- Functions are aligned to 32-bit boundaries, unless optimizing for
size.
- The -m8byte-align command line option is not supported.
- The -mdisable-callt command line option is supported but not
enabled by default.
When this version of the ABI is enabled the C preprocessor symbol
"__V850_GCC_ABI__" is defined.
- -m8byte-align
- -mno-8byte-align
- Enables support for "doubles" and
"long long" types to be aligned on
8-byte boundaries. The default is to restrict the alignment of all objects
to at most 4-bytes. When -m8byte-align is in effect the C
preprocessor symbol
"__V850_8BYTE_ALIGN__" will be
defined.
- -mbig-switch
- Generate code suitable for big switch tables. Use this option only if the
assembler/linker complain about out of range branches within a switch
table.
- -mapp-regs
- This option causes r2 and r5 to be used in the code generated by the
compiler. This setting is the default.
- -mno-app-regs
- This option causes r2 and r5 to be treated as fixed registers.
These -m options are defined for the VAX:
- -munix
- Do not output certain jump instructions
("aobleq" and so on) that the Unix
assembler for the VAX cannot handle across long ranges.
- -mgnu
- Do output those jump instructions, on the assumption that the GNU
assembler is being used.
- -mg
- Output code for G-format floating-point numbers instead of D-format.
These -m options are defined for the VMS implementations:
- -mvms-return-codes
- Return VMS condition codes from "main".
The default is to return POSIX-style condition (e.g. error) codes.
- -mdebug-main=prefix
- Flag the first routine whose name starts with prefix as the main
routine for the debugger.
- -mmalloc64
- Default to 64-bit memory allocation routines.
- -mpointer-size=size
- Set the default size of pointers. Possible options for size are
32 or short for 32 bit pointers, 64 or long
for 64 bit pointers, and no for supporting only 32 bit pointers.
The later option disables "pragma
pointer_size".
The options in this section are defined for all VxWorks targets. Options
specific to the target hardware are listed with the other options for that
target.
- -mrtp
- GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also
defines the preprocessor macro
"__RTP__".
- -non-static
- Link an RTP executable against shared libraries rather than static
libraries. The options -static and -shared can also be used
for RTPs; -static is the default.
- -Bstatic
- -Bdynamic
- These options are passed down to the linker. They are defined for
compatibility with Diab.
- -Xbind-lazy
- Enable lazy binding of function calls. This option is equivalent to
-Wl,-z,now and is defined for compatibility with Diab.
- -Xbind-now
- Disable lazy binding of function calls. This option is the default and is
defined for compatibility with Diab.
These options are defined for Xstormy16:
- -msim
- Choose startup files and linker script suitable for the simulator.
These options are supported for Xtensa targets:
- -mconst16
- -mno-const16
- Enable or disable use of "CONST16"
instructions for loading constant values. The
"CONST16" instruction is currently not a
standard option from Tensilica. When enabled,
"CONST16" instructions are always used
in place of the standard "L32R"
instructions. The use of "CONST16" is
enabled by default only if the "L32R"
instruction is not available.
- -mfused-madd
- -mno-fused-madd
- Enable or disable use of fused multiply/add and multiply/subtract
instructions in the floating-point option. This has no effect if the
floating-point option is not also enabled. Disabling fused multiply/add
and multiply/subtract instructions forces the compiler to use separate
instructions for the multiply and add/subtract operations. This may be
desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the
intermediate result, thereby producing results with more bits of
precision than specified by the IEEE standard. Disabling fused multiply
add/subtract instructions also ensures that the program output is not
sensitive to the compiler's ability to combine multiply and add/subtract
operations.
- -mserialize-volatile
- -mno-serialize-volatile
- When this option is enabled, GCC inserts
"MEMW" instructions before
"volatile" memory references to
guarantee sequential consistency. The default is
-mserialize-volatile. Use -mno-serialize-volatile to omit
the "MEMW" instructions.
- -mforce-no-pic
- For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling
kernel code.
- -mtext-section-literals
- -mno-text-section-literals
- Control the treatment of literal pools. The default is
-mno-text-section-literals, which places literals in a separate
section in the output file. This allows the literal pool to be placed in a
data RAM/ROM, and it also allows the linker to combine literal pools from
separate object files to remove redundant literals and improve code size.
With -mtext-section-literals, the literals are interspersed in the
text section in order to keep them as close as possible to their
references. This may be necessary for large assembly files.
- -mtarget-align
- -mno-target-align
- When this option is enabled, GCC instructs the assembler to automatically
align instructions to reduce branch penalties at the expense of some code
density. The assembler attempts to widen density instructions to align
branch targets and the instructions following call instructions. If there
are not enough preceding safe density instructions to align a target, no
widening is performed. The default is -mtarget-align. These options
do not affect the treatment of auto-aligned instructions like
"LOOP", which the assembler always
aligns, either by widening density instructions or by inserting NOP
instructions.
- -mlongcalls
- -mno-longcalls
- When this option is enabled, GCC instructs the assembler to translate
direct calls to indirect calls unless it can determine that the target of
a direct call is in the range allowed by the call instruction. This
translation typically occurs for calls to functions in other source files.
Specifically, the assembler translates a direct
"CALL" instruction into an
"L32R" followed by a
"CALLX" instruction. The default is
-mno-longcalls. This option should be used in programs where the
call target can potentially be out of range. This option is implemented in
the assembler, not the compiler, so the assembly code generated by GCC
still shows direct call instructions---look at the disassembled object
code to see the actual instructions. Note that the assembler uses an
indirect call for every cross-file call, not just those that really are
out of range.
These machine-independent options control the interface conventions used in code
generation.
Most of them have both positive and negative forms; the negative
form of -ffoo is -fno-foo. In the table below, only one of the
forms is listed---the one that is not the default. You can figure out the
other form by either removing no- or adding it.
- -fbounds-check
- For front ends that support it, generate additional code to check that
indices used to access arrays are within the declared range. This is
currently only supported by the Java and Fortran front ends, where this
option defaults to true and false respectively.
- -fstack-reuse=reuse-level
- This option controls stack space reuse for user declared local/auto
variables and compiler generated temporaries. reuse_level can be
all, named_vars, or none. all enables stack
reuse for all local variables and temporaries, named_vars enables
the reuse only for user defined local variables with names, and
none disables stack reuse completely. The default value is
all. The option is needed when the program extends the lifetime of
a scoped local variable or a compiler generated temporary beyond the end
point defined by the language. When a lifetime of a variable ends, and if
the variable lives in memory, the optimizing compiler has the freedom to
reuse its stack space with other temporaries or scoped local variables
whose live range does not overlap with it. Legacy code extending local
lifetime will likely to break with the stack reuse optimization.
For example,
int *p;
{
int local1;
p = &local1;
local1 = 10;
....
}
{
int local2;
local2 = 20;
...
}
if (*p == 10) // out of scope use of local1
{
}
Another example:
struct A
{
A(int k) : i(k), j(k) { }
int i;
int j;
};
A *ap;
void foo(const A& ar)
{
ap = &ar;
}
void bar()
{
foo(A(10)); // temp object's lifetime ends when foo returns
{
A a(20);
....
}
ap->i+= 10; // ap references out of scope temp whose space
// is reused with a. What is the value of ap->i?
}
The lifetime of a compiler generated temporary is well defined
by the C++ standard. When a lifetime of a temporary ends, and if the
temporary lives in memory, the optimizing compiler has the freedom to
reuse its stack space with other temporaries or scoped local variables
whose live range does not overlap with it. However some of the legacy
code relies on the behavior of older compilers in which temporaries'
stack space is not reused, the aggressive stack reuse can lead to
runtime errors. This option is used to control the temporary stack reuse
optimization.
- -ftrapv
- This option generates traps for signed overflow on addition, subtraction,
multiplication operations.
- -fwrapv
- This option instructs the compiler to assume that signed arithmetic
overflow of addition, subtraction and multiplication wraps around using
twos-complement representation. This flag enables some optimizations and
disables others. This option is enabled by default for the Java front end,
as required by the Java language specification.
- -fexceptions
- Enable exception handling. Generates extra code needed to propagate
exceptions. For some targets, this implies GCC generates frame unwind
information for all functions, which can produce significant data size
overhead, although it does not affect execution. If you do not specify
this option, GCC enables it by default for languages like C++ that
normally require exception handling, and disables it for languages like C
that do not normally require it. However, you may need to enable this
option when compiling C code that needs to interoperate properly with
exception handlers written in C++. You may also wish to disable this
option if you are compiling older C++ programs that don't use exception
handling.
- -fnon-call-exceptions
- Generate code that allows trapping instructions to throw exceptions. Note
that this requires platform-specific runtime support that does not exist
everywhere. Moreover, it only allows trapping instructions to throw
exceptions, i.e. memory references or floating-point instructions. It does
not allow exceptions to be thrown from arbitrary signal handlers such as
"SIGALRM".
- -fdelete-dead-exceptions
- Consider that instructions that may throw exceptions but don't otherwise
contribute to the execution of the program can be optimized away. This
option is enabled by default for the Ada front end, as permitted by the
Ada language specification. Optimization passes that cause dead exceptions
to be removed are enabled independently at different optimization
levels.
- -funwind-tables
- Similar to -fexceptions, except that it just generates any needed
static data, but does not affect the generated code in any other way. You
normally do not need to enable this option; instead, a language processor
that needs this handling enables it on your behalf.
- -fasynchronous-unwind-tables
- Generate unwind table in DWARF 2 format, if supported by target machine.
The table is exact at each instruction boundary, so it can be used for
stack unwinding from asynchronous events (such as debugger or garbage
collector).
- -fno-gnu-unique
- On systems with recent GNU assembler and C library, the C++ compiler uses
the "STB_GNU_UNIQUE" binding to make
sure that definitions of template static data members and static local
variables in inline functions are unique even in the presence of
"RTLD_LOCAL"; this is necessary to avoid
problems with a library used by two different
"RTLD_LOCAL" plugins depending on a
definition in one of them and therefore disagreeing with the other one
about the binding of the symbol. But this causes
"dlclose" to be ignored for affected
DSOs; if your program relies on reinitialization of a DSO via
"dlclose" and
"dlopen", you can use
-fno-gnu-unique.
- -fpcc-struct-return
- Return "short" "struct" and
"union" values in memory like longer
ones, rather than in registers. This convention is less efficient, but it
has the advantage of allowing intercallability between GCC-compiled files
and files compiled with other compilers, particularly the Portable C
Compiler (pcc).
The precise convention for returning structures in memory
depends on the target configuration macros.
Short structures and unions are those whose size and alignment
match that of some integer type.
Warning: code compiled with the
-fpcc-struct-return switch is not binary compatible with code
compiled with the -freg-struct-return switch. Use it to conform
to a non-default application binary interface.
- -freg-struct-return
- Return "struct" and
"union" values in registers when
possible. This is more efficient for small structures than
-fpcc-struct-return.
If you specify neither -fpcc-struct-return nor
-freg-struct-return, GCC defaults to whichever convention is
standard for the target. If there is no standard convention, GCC
defaults to -fpcc-struct-return, except on targets where GCC is
the principal compiler. In those cases, we can choose the standard, and
we chose the more efficient register return alternative.
Warning: code compiled with the
-freg-struct-return switch is not binary compatible with code
compiled with the -fpcc-struct-return switch. Use it to conform
to a non-default application binary interface.
- -fshort-enums
- Allocate to an "enum" type only as many
bytes as it needs for the declared range of possible values. Specifically,
the "enum" type is equivalent to the
smallest integer type that has enough room.
Warning: the -fshort-enums switch causes GCC to
generate code that is not binary compatible with code generated without
that switch. Use it to conform to a non-default application binary
interface.
- -fshort-double
- Use the same size for "double" as for
"float".
Warning: the -fshort-double switch causes GCC to
generate code that is not binary compatible with code generated without
that switch. Use it to conform to a non-default application binary
interface.
- -fshort-wchar
- Override the underlying type for wchar_t to be short
unsigned int instead of the default for the target. This option is
useful for building programs to run under WINE.
Warning: the -fshort-wchar switch causes GCC to
generate code that is not binary compatible with code generated without
that switch. Use it to conform to a non-default application binary
interface.
- -fno-common
- In C code, controls the placement of uninitialized global variables. Unix
C compilers have traditionally permitted multiple definitions of such
variables in different compilation units by placing the variables in a
common block. This is the behavior specified by -fcommon, and is
the default for GCC on most targets. On the other hand, this behavior is
not required by ISO C, and on some targets may carry a speed or code size
penalty on variable references. The -fno-common option specifies
that the compiler should place uninitialized global variables in the data
section of the object file, rather than generating them as common blocks.
This has the effect that if the same variable is declared (without
"extern") in two different compilations,
you get a multiple-definition error when you link them. In this case, you
must compile with -fcommon instead. Compiling with
-fno-common is useful on targets for which it provides better
performance, or if you wish to verify that the program will work on other
systems that always treat uninitialized variable declarations this
way.
- -fno-ident
- Ignore the #ident directive.
- -finhibit-size-directive
- Don't output a ".size" assembler
directive, or anything else that would cause trouble if the function is
split in the middle, and the two halves are placed at locations far apart
in memory. This option is used when compiling crtstuff.c; you
should not need to use it for anything else.
- -fverbose-asm
- Put extra commentary information in the generated assembly code to make it
more readable. This option is generally only of use to those who actually
need to read the generated assembly code (perhaps while debugging the
compiler itself).
-fno-verbose-asm, the default, causes the extra
information to be omitted and is useful when comparing two assembler
files.
- -frecord-gcc-switches
- This switch causes the command line used to invoke the compiler to be
recorded into the object file that is being created. This switch is only
implemented on some targets and the exact format of the recording is
target and binary file format dependent, but it usually takes the form of
a section containing ASCII text. This switch is related to the
-fverbose-asm switch, but that switch only records information in
the assembler output file as comments, so it never reaches the object
file. See also -grecord-gcc-switches for another way of storing
compiler options into the object file.
- -fpic
- Generate position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine. Such code accesses all
constant addresses through a global offset table (GOT). The dynamic loader
resolves the GOT entries when the program starts (the dynamic loader is
not part of GCC; it is part of the operating system). If the GOT size for
the linked executable exceeds a machine-specific maximum size, you get an
error message from the linker indicating that -fpic does not work;
in that case, recompile with -fPIC instead. (These maximums are 8k
on the SPARC and 32k on the m68k and RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and
therefore works only on certain machines. For the 386, GCC supports PIC
for System V but not for the Sun 386i. Code generated for the IBM
RS/6000 is always position-independent.
When this flag is set, the macros
"__pic__" and
"__PIC__" are defined to 1.
- -fPIC
- If supported for the target machine, emit position-independent code,
suitable for dynamic linking and avoiding any limit on the size of the
global offset table. This option makes a difference on the m68k, PowerPC
and SPARC.
Position-independent code requires special support, and
therefore works only on certain machines.
When this flag is set, the macros
"__pic__" and
"__PIC__" are defined to 2.
- -fpie
- -fPIE
- These options are similar to -fpic and -fPIC, but generated
position independent code can be only linked into executables. Usually
these options are used when -pie GCC option is used during linking.
-fpie and -fPIE both define the macros
"__pie__" and
"__PIE__". The macros have the value 1
for -fpie and 2 for -fPIE.
- -fno-jump-tables
- Do not use jump tables for switch statements even where it would be more
efficient than other code generation strategies. This option is of use in
conjunction with -fpic or -fPIC for building code that forms
part of a dynamic linker and cannot reference the address of a jump table.
On some targets, jump tables do not require a GOT and this option is not
needed.
- -ffixed-reg
- Treat the register named reg as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame pointer
or in some other fixed role).
reg must be the name of a register. The register names
accepted are machine-specific and are defined in the
"REGISTER_NAMES" macro in the machine
description macro file.
This flag does not have a negative form, because it specifies
a three-way choice.
- -fcall-used-reg
- Treat the register named reg as an allocable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way do
not save and restore the register reg.
It is an error to use this flag with the frame pointer or
stack pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine's execution model produces disastrous
results.
This flag does not have a negative form, because it specifies
a three-way choice.
- -fcall-saved-reg
- Treat the register named reg as an allocable register saved by
functions. It may be allocated even for temporaries or variables that live
across a call. Functions compiled this way save and restore the register
reg if they use it.
It is an error to use this flag with the frame pointer or
stack pointer. Use of this flag for other registers that have fixed
pervasive roles in the machine's execution model produces disastrous
results.
A different sort of disaster results from the use of this flag
for a register in which function values may be returned.
This flag does not have a negative form, because it specifies
a three-way choice.
- -fpack-struct[=n]
- Without a value specified, pack all structure members together without
holes. When a value is specified (which must be a small power of two),
pack structure members according to this value, representing the maximum
alignment (that is, objects with default alignment requirements larger
than this are output potentially unaligned at the next fitting location.
Warning: the -fpack-struct switch causes GCC to
generate code that is not binary compatible with code generated without
that switch. Additionally, it makes the code suboptimal. Use it to
conform to a non-default application binary interface.
- -finstrument-functions
- Generate instrumentation calls for entry and exit to functions. Just after
function entry and just before function exit, the following profiling
functions are called with the address of the current function and its call
site. (On some platforms,
"__builtin_return_address" does not work
beyond the current function, so the call site information may not be
available to the profiling functions otherwise.)
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
This instrumentation is also done for functions expanded
inline in other functions. The profiling calls indicate where,
conceptually, the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all your
uses of a function are expanded inline, this may mean an additional
expansion of code size. If you use extern inline in your C code,
an addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always
expands the functions inline, you might have gotten away without
providing static copies.)
A function may be given the attribute
"no_instrument_function", in which
case this instrumentation is not done. This can be used, for example,
for the profiling functions listed above, high-priority interrupt
routines, and any functions from which the profiling functions cannot
safely be called (perhaps signal handlers, if the profiling routines
generate output or allocate memory).
- -finstrument-functions-exclude-file-list=file,file,...
- Set the list of functions that are excluded from instrumentation (see the
description of
"-finstrument-functions"). If the file
that contains a function definition matches with one of file, then
that function is not instrumented. The match is done on substrings: if the
file parameter is a substring of the file name, it is considered to
be a match.
For example:
-finstrument-functions-exclude-file-list=/bits/stl,include/sys
excludes any inline function defined in files whose pathnames
contain "/bits/stl" or
"include/sys".
If, for some reason, you want to include letter
',' in one of sym, write
','. For example,
"-finstrument-functions-exclude-file-list=',,tmp'"
(note the single quote surrounding the option).
- -finstrument-functions-exclude-function-list=sym,sym,...
- This is similar to
"-finstrument-functions-exclude-file-list",
but this option sets the list of function names to be excluded from
instrumentation. The function name to be matched is its user-visible name,
such as "vector<int> blah(const
vector<int> &)", not the internal mangled name
(e.g., "_Z4blahRSt6vectorIiSaIiEE"). The
match is done on substrings: if the sym parameter is a substring of
the function name, it is considered to be a match. For C99 and C++
extended identifiers, the function name must be given in UTF-8, not using
universal character names.
- -fstack-check
- Generate code to verify that you do not go beyond the boundary of the
stack. You should specify this flag if you are running in an environment
with multiple threads, but you only rarely need to specify it in a
single-threaded environment since stack overflow is automatically detected
on nearly all systems if there is only one stack.
Note that this switch does not actually cause checking to be
done; the operating system or the language runtime must do that. The
switch causes generation of code to ensure that they see the stack being
extended.
You can additionally specify a string parameter:
"no" means no checking,
"generic" means force the use of
old-style checking, "specific" means
use the best checking method and is equivalent to bare
-fstack-check.
Old-style checking is a generic mechanism that requires no
specific target support in the compiler but comes with the following
drawbacks:
- 1.
- Modified allocation strategy for large objects: they are always allocated
dynamically if their size exceeds a fixed threshold. Note this may change
the semantics of some code.
- 2.
- Fixed limit on the size of the static frame of functions: when it is
topped by a particular function, stack checking is not reliable and a
warning is issued by the compiler.
- 3.
- Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.
Note that old-style stack checking is also the fallback method for
"specific" if no target support has been
added in the compiler.
-fstack-check= is designed for Ada's needs to detect
infinite recursion and stack overflows. specific is an excellent
choice when compiling Ada code. It is not generally sufficient to protect
against stack-clash attacks. To protect against those you want
-fstack-clash-protection.
- -fstack-clash-protection
- Generate code to prevent stack clash style attacks. When this option is
enabled, the compiler will only allocate one page of stack space at a time
and each page is accessed immediately after allocation. Thus, it prevents
allocations from jumping over any stack guard page provided by the
operating system.
Most targets do not fully support stack clash protection.
However, on those targets -fstack-clash-protection will protect
dynamic stack allocations. -fstack-clash-protection may also
provide limited protection for static stack allocations if the target
supports -fstack-check=specific.
- -fstack-limit-register=reg
- -fstack-limit-symbol=sym
- -fno-stack-limit
- Generate code to ensure that the stack does not grow beyond a certain
value, either the value of a register or the address of a symbol. If a
larger stack is required, a signal is raised at run time. For most
targets, the signal is raised before the stack overruns the boundary, so
it is possible to catch the signal without taking special precautions.
For instance, if the stack starts at absolute address
0x80000000 and grows downwards, you can use the flags
-fstack-limit-symbol=__stack_limit and
-Wl,--defsym,__stack_limit=0x7ffe0000 to enforce a stack limit of
128KB. Note that this may only work with the GNU linker.
- -fsplit-stack
- Generate code to automatically split the stack before it overflows. The
resulting program has a discontiguous stack which can only overflow if the
program is unable to allocate any more memory. This is most useful when
running threaded programs, as it is no longer necessary to calculate a
good stack size to use for each thread. This is currently only implemented
for the i386 and x86_64 back ends running GNU/Linux.
When code compiled with -fsplit-stack calls code
compiled without -fsplit-stack, there may not be much stack space
available for the latter code to run. If compiling all code, including
library code, with -fsplit-stack is not an option, then the
linker can fix up these calls so that the code compiled without
-fsplit-stack always has a large stack. Support for this is
implemented in the gold linker in GNU binutils release 2.21 and
later.
- -fleading-underscore
- This option and its counterpart, -fno-leading-underscore, forcibly
change the way C symbols are represented in the object file. One use is to
help link with legacy assembly code.
Warning: the -fleading-underscore switch causes
GCC to generate code that is not binary compatible with code generated
without that switch. Use it to conform to a non-default application
binary interface. Not all targets provide complete support for this
switch.
- -ftls-model=model
- Alter the thread-local storage model to be used. The model argument
should be one of "global-dynamic",
"local-dynamic",
"initial-exec" or
"local-exec".
The default without -fpic is
"initial-exec"; with -fpic the
default is "global-dynamic".
- -fvisibility=default|internal|hidden|protected
- Set the default ELF image symbol visibility to the specified option---all
symbols are marked with this unless overridden within the code. Using this
feature can very substantially improve linking and load times of shared
object libraries, produce more optimized code, provide near-perfect API
export and prevent symbol clashes. It is strongly recommended that
you use this in any shared objects you distribute.
Despite the nomenclature,
"default" always means public; i.e.,
available to be linked against from outside the shared object.
"protected" and
"internal" are pretty useless in
real-world usage so the only other commonly used option is
"hidden". The default if
-fvisibility isn't specified is
"default", i.e., make every symbol
public---this causes the same behavior as previous versions of GCC.
A good explanation of the benefits offered by ensuring ELF
symbols have the correct visibility is given by "How To Write
Shared Libraries" by Ulrich Drepper (which can be found at
<http://people.redhat.com/~drepper/>)---however a superior
solution made possible by this option to marking things hidden when the
default is public is to make the default hidden and mark things public.
This is the norm with DLLs on Windows and with
-fvisibility=hidden and "__attribute__
((visibility("default")))" instead of
"__declspec(dllexport)" you get almost
identical semantics with identical syntax. This is a great boon to those
working with cross-platform projects.
For those adding visibility support to existing code, you may
find #pragma GCC visibility of use. This works by you enclosing
the declarations you wish to set visibility for with (for example)
#pragma GCC visibility push(hidden) and #pragma GCC visibility
pop. Bear in mind that symbol visibility should be viewed as
part of the API interface contract and thus all new code should
always specify visibility when it is not the default; i.e., declarations
only for use within the local DSO should always be marked
explicitly as hidden as so to avoid PLT indirection overheads---making
this abundantly clear also aids readability and self-documentation of
the code. Note that due to ISO C++ specification requirements,
"operator new" and
"operator delete" must always be of
default visibility.
Be aware that headers from outside your project, in particular
system headers and headers from any other library you use, may not be
expecting to be compiled with visibility other than the default. You may
need to explicitly say #pragma GCC visibility push(default)
before including any such headers.
extern declarations are not affected by
-fvisibility, so a lot of code can be recompiled with
-fvisibility=hidden with no modifications. However, this means
that calls to "extern" functions with
no explicit visibility use the PLT, so it is more effective to use
"__attribute ((visibility))" and/or
"#pragma GCC visibility" to tell the
compiler which "extern" declarations
should be treated as hidden.
Note that -fvisibility does affect C++ vague linkage
entities. This means that, for instance, an exception class that is be
thrown between DSOs must be explicitly marked with default visibility so
that the type_info nodes are unified between the DSOs.
An overview of these techniques, their benefits and how to use
them is at <http://gcc.gnu.org/wiki/Visibility>.
- -fstrict-volatile-bitfields
- This option should be used if accesses to volatile bit-fields (or other
structure fields, although the compiler usually honors those types anyway)
should use a single access of the width of the field's type, aligned to a
natural alignment if possible. For example, targets with memory-mapped
peripheral registers might require all such accesses to be 16 bits wide;
with this flag you can declare all peripheral bit-fields as
"unsigned short" (assuming short is 16
bits on these targets) to force GCC to use 16-bit accesses instead of,
perhaps, a more efficient 32-bit access.
If this option is disabled, the compiler uses the most
efficient instruction. In the previous example, that might be a 32-bit
load instruction, even though that accesses bytes that do not contain
any portion of the bit-field, or memory-mapped registers unrelated to
the one being updated.
If the target requires strict alignment, and honoring the
field type would require violating this alignment, a warning is issued.
If the field has "packed" attribute,
the access is done without honoring the field type. If the field doesn't
have "packed" attribute, the access is
done honoring the field type. In both cases, GCC assumes that the user
knows something about the target hardware that it is unaware of.
The default value of this option is determined by the
application binary interface for the target processor.
- -fsync-libcalls
- This option controls whether any out-of-line instance of the
"__sync" family of functions may be used
to implement the C++11 "__atomic" family
of functions.
The default value of this option is enabled, thus the only
useful form of the option is -fno-sync-libcalls. This option is
used in the implementation of the libatomic runtime library.
This section describes several environment variables that affect how GCC
operates. Some of them work by specifying directories or prefixes to use when
searching for various kinds of files. Some are used to specify other aspects
of the compilation environment.
Note that you can also specify places to search using options such
as -B, -I and -L. These take precedence over places
specified using environment variables, which in turn take precedence over
those specified by the configuration of GCC.
- LANG
- LC_CTYPE
- LC_MESSAGES
- LC_ALL
- These environment variables control the way that GCC uses localization
information which allows GCC to work with different national conventions.
GCC inspects the locale categories LC_CTYPE and LC_MESSAGES
if it has been configured to do so. These locale categories can be set to
any value supported by your installation. A typical value is
en_GB.UTF-8 for English in the United Kingdom encoded in UTF-8.
The LC_CTYPE environment variable specifies character
classification. GCC uses it to determine the character boundaries in a
string; this is needed for some multibyte encodings that contain quote
and escape characters that are otherwise interpreted as a string end or
escape.
The LC_MESSAGES environment variable specifies the
language to use in diagnostic messages.
If the LC_ALL environment variable is set, it overrides
the value of LC_CTYPE and LC_MESSAGES; otherwise,
LC_CTYPE and LC_MESSAGES default to the value of the
LANG environment variable. If none of these variables are set,
GCC defaults to traditional C English behavior.
- TMPDIR
- If TMPDIR is set, it specifies the directory to use for temporary
files. GCC uses temporary files to hold the output of one stage of
compilation which is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
- GCC_COMPARE_DEBUG
- Setting GCC_COMPARE_DEBUG is nearly equivalent to passing
-fcompare-debug to the compiler driver. See the documentation of
this option for more details.
- GCC_EXEC_PREFIX
- If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is added when
this prefix is combined with the name of a subprogram, but you can specify
a prefix that ends with a slash if you wish.
If GCC_EXEC_PREFIX is not set, GCC attempts to figure
out an appropriate prefix to use based on the pathname it is invoked
with.
If GCC cannot find the subprogram using the specified prefix,
it tries looking in the usual places for the subprogram.
The default value of GCC_EXEC_PREFIX is
prefix/lib/gcc/ where prefix is the prefix
to the installed compiler. In many cases prefix is the value of
"prefix" when you ran the
configure script.
Other prefixes specified with -B take precedence over
this prefix.
This prefix is also used for finding files such as
crt0.o that are used for linking.
In addition, the prefix is used in an unusual way in finding
the directories to search for header files. For each of the standard
directories whose name normally begins with /usr/local/lib/gcc
(more precisely, with the value of GCC_INCLUDE_DIR), GCC tries
replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with -Bfoo/, GCC searches
foo/bar just before it searches the standard directory
/usr/local/lib/bar. If a standard directory begins with the
configured prefix then the value of prefix is replaced by
GCC_EXEC_PREFIX when looking for header files.
- COMPILER_PATH
- The value of COMPILER_PATH is a colon-separated list of
directories, much like PATH. GCC tries the directories thus
specified when searching for subprograms, if it can't find the subprograms
using GCC_EXEC_PREFIX.
- LIBRARY_PATH
- The value of LIBRARY_PATH is a colon-separated list of directories,
much like PATH. When configured as a native compiler, GCC tries the
directories thus specified when searching for special linker files, if it
can't find them using GCC_EXEC_PREFIX. Linking using GCC also uses
these directories when searching for ordinary libraries for the -l
option (but directories specified with -L come first).
- LANG
- This variable is used to pass locale information to the compiler. One way
in which this information is used is to determine the character set to be
used when character literals, string literals and comments are parsed in C
and C++. When the compiler is configured to allow multibyte characters,
the following values for LANG are recognized:
- C-JIS
- Recognize JIS characters.
- C-SJIS
- Recognize SJIS characters.
- C-EUCJP
- Recognize EUCJP characters.
If LANG is not defined, or if it has some other value, then
the compiler uses "mblen" and
"mbtowc" as defined by the default locale
to recognize and translate multibyte characters.
Some additional environment variables affect the behavior of the
preprocessor.
- CPATH
- C_INCLUDE_PATH
- CPLUS_INCLUDE_PATH
- OBJC_INCLUDE_PATH
- Each variable's value is a list of directories separated by a special
character, much like PATH, in which to look for header files. The
special character, "PATH_SEPARATOR", is
target-dependent and determined at GCC build time. For Microsoft
Windows-based targets it is a semicolon, and for almost all other targets
it is a colon.
CPATH specifies a list of directories to be searched as
if specified with -I, but after any paths given with -I
options on the command line. This environment variable is used
regardless of which language is being preprocessed.
The remaining environment variables apply only when
preprocessing the particular language indicated. Each specifies a list
of directories to be searched as if specified with -isystem, but
after any paths given with -isystem options on the command
line.
In all these variables, an empty element instructs the
compiler to search its current working directory. Empty elements can
appear at the beginning or end of a path. For instance, if the value of
CPATH is ":/special/include",
that has the same effect as -I. -I/special/include.
- DEPENDENCIES_OUTPUT
- If this variable is set, its value specifies how to output dependencies
for Make based on the non-system header files processed by the compiler.
System header files are ignored in the dependency output.
The value of DEPENDENCIES_OUTPUT can be just a file
name, in which case the Make rules are written to that file, guessing
the target name from the source file name. Or the value can have the
form file target, in which case the rules are
written to file file using target as the target name.
In other words, this environment variable is equivalent to
combining the options -MM and -MF, with an optional
-MT switch too.
- SUNPRO_DEPENDENCIES
- This variable is the same as DEPENDENCIES_OUTPUT (see above),
except that system header files are not ignored, so it implies -M
rather than -MM. However, the dependence on the main input file is
omitted.
For instructions on reporting bugs, see
<http://bugzilla.redhat.com/bugzilla>.
- 1.
- On some systems, gcc -shared needs to build supplementary stub code
for constructors to work. On multi-libbed systems, gcc -shared must
select the correct support libraries to link against. Failing to supply
the correct flags may lead to subtle defects. Supplying them in cases
where they are not necessary is innocuous.
gpl(7), gfdl(7), fsf-funding(7), cpp(1),
gcov(1), as(1), ld(1), gdb(1), adb(1),
dbx(1), sdb(1) and the Info entries for gcc, cpp,
as, ld, binutils and gdb.
See the Info entry for gcc, or
<http://gcc.gnu.org/onlinedocs/gcc/Contributors.html>, for
contributors to GCC.
Copyright (c) 1988-2015 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and
"Funding Free Software", the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the
license is included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |