GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
gesolve(1) Utility Commands gesolve(1)

gesolve - eigensolver for generalized eigenvalue problems

gesolve matrix_a_filename matrix_b_filename evalues_filename evectors_filename residuals_filename iters_filename [options]

This program inputs the matrix data from matrix_a_filename matrix_b_filename, and solves the generalized eigenvalue problem A*x = l*B*x with the solver specified by options. It outputs the specified number of eigenvalues, the number of which is given by option -ss, to evalues_filename and the associated eigenvectors, residual norms, and numbers of iterations to evectors_filename, residuals_filename, and iters_filename respectively in the extended Matrix Market format (see Appendix of Lis User Guide). Both the Matrix Market format and the Harwell-Boeing format are supported for the matrix filenames.

The following options are supported:
-e eigensolver
The following options are supported for eigensolver:
-e {gpi|9}
Generalized Power
-e {gii|10}
Generalized Inverse
-e {grqi|11}
Generalized Rayleigh Quotient
-e {gcg|12}
Generalized CR
-e {gcr|13}
Generalized CR
-e {gsi|14}
Generalized Subspace
-ss [1]
The size of the subspace
-e {gli|15}
Generalized Lanczos
-ss [1]
The size of the subspace
-e {gai|16}
Generalized Arnoldi
-ss [1]
The size of the subspace
-i linear solver
The following options are supported for inner linear solver:
-i {cg|1}
CG
-i {bicg|2}
BiCG
-i {cgs|3}
CGS
-i {bicgstab|4}
BiCGSTAB
-i {bicgstabl|5}
BiCGSTAB(l)
-ell [2]
The degree l
-i {gpbicg|6}
GPBiCG
-i {tfqmr|7}
TFQMR
-i {orthomin|8}
Orthomin(m)
-restart [40]
The restart value m
-i {gmres|9}
GMRES(m)
-restart [40]
The restart value m
-i {jacobi|10}
Jacobi
-i {gs|11}
Gauss-Seidel
-i {sor|12}
SOR
-omega [1.9]
The relaxation coefficient omega (0<omega<2)
-i {bicgsafe|13}
BiCGSafe
-i {cr|14}
CR
-i {bicr|15}
BiCR
-i {crs|16}
CRS
-i {bicrstab|17}
BiCRSTAB
-i {gpbicr|18}
GPBiCR
-i {bicrsafe|19}
BiCRSafe
-i {fgmres|20}
FGMRES(m)
-restart [40]
The restart value m
-i {idrs|21}
IDR(s)
-irestart [2]
The restart value s
-i {idr1|22}
IDR(1)
-i {minres|23}
MINRES
-i {cocg|24}
COCG
-i {cocr|25}
COCR

-p preconditioner
The following options are supported for preconditioner:
-p {none|0}
None
-p {jacobi|1}
Jacobi
-p {ilu|2}
ILU(k)
-ilu_fill [0]
The fill level k
-p {ssor|3}
SSOR
-ssor_omega [1.0]
The relaxation coefficient omega (0<omega<2)
-p {hybrid|4}
Hybrid
-hybrid_i [sor]
The linear solver
-hybrid_maxiter [25]
The maximum number of the iterations
-hybrid_tol [1.0e-3]
The convergence criterion
-hybrid_omega [1.5]
The relaxation coefficient omega of the SOR (0<omega<2)
-hybrid_ell [2]
The degree l of the BiCGSTAB(l)
-hybrid_restart [40]
The restart values of the GMRES and Orthomin
-p {is|5}
I+S
-is_alpha [1.0]
The parameter alpha of I+alpha*S(m)
-is_m [3]
The parameter m of I+alpha*S(m)
-p {sainv|6}
SAINV
-sainv_drop [0.05]
The drop criterion
-p {saamg|7}
SA-AMG
-saamg_unsym [false]
Select the unsymmetric version (The matrix structure must be symmetric)
-saamg_theta [0.05|0.12]
The drop criterion
-p {iluc|8}
Crout ILU
-iluc_drop [0.05]
The drop criterion
-iluc_rate [5.0]
The ration of maximum fill-in
-p {ilut|9}
ILUT
-ilut_drop [0.05]
The drop criterion
-ilut_rate [5.0]
The ration of maximum fill-in
-adds true
Additive Schwarz
-adds_iter [1]
The number of the iteration

Other Options for eigensolver:

-emaxiter [1000]
The maximum number of the iterations
-etol [1.0e-12]
The convergence criterion
-eprint [0]
The output of the residual history
-eprint {none|0}
None
-eprint {mem|1}
Save the residual history
-eprint {out|2}
Output it to the standard output
-eprint {all|3}
Save the residual history and output it to the standard output
-ige [gii]
The inner eigensolver used in generalized Subspace, generalized Lanczos, and generalized Arnoldi
-shift [0.0]
The amount of the shift
-initx_ones [true]
The behavior of the initial vector x_0
-initx_ones {false|0}
Given values
-initx_ones {true|1}
All values are set to 1
-omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
-estorage [0]
The matrix storage format
-estorage_block [2]
The block size of the BSR and BSC formats
-ef [0]
The precision of the eigensolver
-ef {double|0}
Double precision
-ef {quad|1}
Double-double (quadruple) precision

Other options for inner linear solver:

-maxiter [1000]
The maximum number of the iterations
-tol [1.0e-12]
The convergence criterion
-print [0]
The output of the residual history
-print {none|0}
None
-print {mem|1}
Save the residual history
-print {out|2}
Output it to the standard output
-print {all|3}
Save the residual history and output it to the standard output
-scale [0]
The scaling
-scale {none|0}
No scaling
-scale {jacobi|1}
The Jacobi scaling
-scale {symm_diag|2}
The diagonal scaling
-initx_zeros [true]
The behavior of the initial vector x_0
-initx_zero {false|0}
Given values
-initx_zero {true|1}
All values are set to 0
-omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
-storage [0]
The matrix storage format
-storage_block [2]
The block size of the BSR and BSC formats
-f [0]
The precision of the linear solver
-f {double|0}
Double precision
-f {quad|1}
Double-double (quadruple) precision

See Lis User Guide for full description.

The following exit values are returned:
0
The process is normally terminated
unspecified
An error occurred

lis(3), lsolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1), spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1)

http://www.ssisc.org/lis/
http://math.nist.gov/MatrixMarket/

4 Nov 2017 Man Page

Search for    or go to Top of page |  Section 1 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.