GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lsolve(1) Utility Commands lsolve(1)

lsolve - linear solver for sparse matrices

lsolve matrix_filename rhs_setting solution_filename rhistory_filename [options]

This program inputs the data of the coefficient matrix from matrix_filename and solves the linear equation A*x = b with the solver specified by options. It outputs the solution to solution_filename in the extended Matrix Market format and the residual history to rhistory_filename in the PLAIN format (see Appendix of the Lis User Guide). Both the extended Matrix Market format and the Harwell-Boeing format are supported for the matrix filename.

One of the following values can be specified by rhs_setting:

0
Use the right hand side vector b included in matrix_filename
1
Use b = (1, ..., 1)^T
2
Use b = A * (1, ..., 1)^T
rhs_filename
The filename for the right-hand side vector

The PLAIN and Matrix Market formats are supported for rhs_filename.

The following options are supported:
-i linear solver
The following options are supported for linear solver:
-i {cg|1}
CG
-i {bicg|2}
BiCG
-i {cgs|3}
CGS
-i {bicgstab|4}
BiCGSTAB
-i {bicgstabl|5}
BiCGSTAB(l)
-ell [2]
The degree l
-i {gpbicg|6}
GPBiCG
-i {tfqmr|7}
TFQMR
-i {orthomin|8}
Orthomin(m)
-restart [40]
The restart value m
-i {gmres|9}
GMRES(m)
-restart [40]
The restart value m
-i {jacobi|10}
Jacobi
-i {gs|11}
Gauss-Seidel
-i {sor|12}
SOR
-omega [1.9]
The relaxation coefficient omega (0<omega<2)
-i {bicgsafe|13}
BiCGSafe
-i {cr|14}
CR
-i {bicr|15}
BiCR
-i {crs|16}
CRS
-i {bicrstab|17}
BiCRSTAB
-i {gpbicr|18}
GPBiCR
-i {bicrsafe|19}
BiCRSafe
-i {fgmres|20}
FGMRES(m)
-restart [40]
The restart value m
-i {idrs|21}
IDR(s)
-irestart [2]
The restart value s
-i {idr1|22}
IDR(1)
-i {minres|23}
MINRES
-i {COCG|24}
COCG
-i {COCR|25}
COCR

-p preconditioner
The following options are supported for preconditioner:
-p {none|0}
None
-p {jacobi|1}
Jacobi
-p {ilu|2}
ILU(k)
-ilu_fill [0]
The fill level k
-p {ssor|3}
SSOR
-ssor_omega [1.0]
The relaxation coefficient omega (0<omega<2)
-p {hybrid|4}
Hybrid
-hybrid_i [sor]
The linear solver
-hybrid_maxiter [25]
The maximum number of the iterations
-hybrid_tol [1.0e-3]
The convergence criterion
-hybrid_omega [1.5]
The relaxation coefficient omega of the SOR (0<omega<2)
-hybrid_ell [2]
The degree l of the BiCGSTAB(l)
-hybrid_restart [40]
The restart values of the GMRES and Orthomin
-p {is|5}
I+S
-is_alpha [1.0]
The parameter alpha of I+alpha*S(m)
-is_m [3]
The parameter m of I+alpha*S(m)
-p {sainv|6}
SAINV
-sainv_drop [0.05]
The drop criterion
-p {saamg|7}
SA-AMG
-saamg_unsym [false]
Select the unsymmetric version (The matrix structure must be symmetric)
-saamg_theta [0.05|0.12]
The drop criterion
-p {iluc|8}
Crout ILU
-iluc_drop [0.05]
The drop criterion
-iluc_rate [5.0]
The ration of maximum fill-in
-p {ilut|9}
ILUT
-ilut_drop [0.05]
The drop criterion
-ilut_rate [5.0]
The ration of maximum fill-in
-adds true
Additive Schwarz
-adds_iter [1]
The number of the iteration

Other Options:

-maxiter [1000]
The maximum number of the iterations
-tol [1.0e-12]
The convergence criterion
-print [0]
The output of the residual history
-print {none|0}
None
-print {mem|1}
Save the residual history
-print {out|2}
Output it to the standard output
-print {all|3}
Save the residual history and output it to the standard output
-scale [0]
The scaling
-scale {none|0}
No scaling
-scale {jacobi|1}
The Jacobi scaling
-scale {symm_diag|2}
The diagonal scaling
-initx_zeros [true]
The behavior of the initial vector x_0
-initx_zero {false|0}
Given values
-initx_zero {true|1}
All values are set to 0
-omp_num_threads [t]
The number of the threads (t represents the maximum number of the threads)
-storage [0]
The matrix storage format
-storage_block [2]
The block size of the BSR and BSC formats
-f [0]
The precision of the linear solver
-f {double|0}
Double precision
-f {quad|1}
Double-double (quadruple) precision

See Lis User Guide for full description.

The following exit values are returned:
0
The process is normally terminated
unspecified
An error occurred

lis(3), esolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1), spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1)

http://www.ssisc.org/lis/
http://math.nist.gov/MatrixMarket/

14 Sep 2017 Man Page

Search for    or go to Top of page |  Section 1 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.