|
|
| |
scrub - write patterns on disk/file
scrub [OPTIONS] special-file [special-file ...]
scrub [OPTIONS] file [file ...]
scrub -X [OPTIONS] directory
Scrub iteratively writes patterns on files or disk devices to make
retrieving the data more difficult. Scrub operates in one of three
modes:
1) The special file corresponding to an entire disk is scrubbed
and all data on it is destroyed. This mode is selected if file is a
character or block special file. This is the most effective method.
2) A regular file is scrubbed and only the data in the file (and
optionally its name in the directory entry) is destroyed. The file size is
rounded up to fill out the last file system block. This mode is selected if
file is a regular file. See CAVEATS below.
3) directory is created and filled with files until the
file system is full, then the files are scrubbed as in 2). This mode is
selected with the -X option. See CAVEATS below.
Scrub accepts the following options:
- -v, --version
- Print scrub version and exit.
- -r, --remove
- Remove the file after scrubbing.
- -p, --pattern PATTERN
- Select the patterns to write. See SCRUB METHODS below. The default,
nnsa, is reasonable for sanitizing modern PRML/EPRML encoded disk
devices.
- -b, --blocksize blocksize
- Perform read(2) and write(2) calls using the specified blocksize (in
bytes). K, M, or G may be appended to the number to
change the units to KiBytes, MiBytes, or GiBytes, respectively. Default:
4M.
- -f, --force
- Scrub even if target contains signature indicating it has already been
scrubbed.
- -S, --no-signature
- Do not write scrub signature. Later, scrub will not be able to
ascertain if the disk has already been scrubbed.
- -X, --freespace
- Create specified directory and fill it with files until write returns
ENOSPC (file system full), then scrub the files as usual. The size of each
file can be set with -s, otherwise it will be the maximum file size
creatable given the user's file size limit or 1g if unlimited.
- -D, --dirent newname
- After scrubbing the file, scrub its name in the directory entry, then
rename it to the new name. The scrub patterns used on the directory entry
are constrained by the operating system and thus are not compliant with
cited standards. This option only works with a single target.
- -s, --device-size size
- Override the device size (in bytes). Without this option, scrub
determines media capacity using OS-specific ioctl(2) calls. K,
M, or G may be appended to the number to change the units to
KiBytes, MiBytes, or GiBytes, respectively.
- -L, --no-link
- If file is a symbolic link, do not scrub the link target. Do remove
it, however, if --remove is specified.
- -R, --no-hwrand
- Don't use a hardware random number generator even if one is
available.
- -t, --no-threads
- Don't generate random data in parallel with I/O.
- -n, --dry-run
- Do everything but write to targets.
- -h, --help
- Print a summary of command line options on stderr.
- nnsa
- 4-pass NNSA Policy Letter NAP-14.1-C (XVI-8) for sanitizing removable and
non-removable hard disks, which requires overwriting all locations with a
pseudorandom pattern twice and then with a known pattern: random(x2),
0x00, verify.
- dod
- 4-pass DoD 5220.22-M section 8-306 procedure (d) for sanitizing removable
and non-removable rigid disks which requires overwriting all addressable
locations with a character, its complement, a random character, then
verify. NOTE: scrub performs the random pass first to make
verification easier: random, 0x00, 0xff, verify.
- bsi
- 9-pass method recommended by the German Center of Security in Information
Technologies (http://www.bsi.bund.de): 0xff, 0xfe, 0xfd, 0xfb, 0xf7,
0xef, 0xdf, 0xbf, 0x7f.
- gutmann
- The canonical 35-pass sequence described in Gutmann's paper cited
below.
- schneier
- 7-pass method described by Bruce Schneier in "Applied
Cryptography" (1996): 0x00, 0xff, random(x5)
- pfitzner7
- Roy Pfitzner's 7-random-pass method: random(x7).
- pfitzner33
- Roy Pfitzner's 33-random-pass method: random(x33).
- usarmy
- US Army AR380-19 method: 0x00, 0xff, random. (Note: identical to
DoD 522.22-M section 8-306 procedure (e) for sanitizing magnetic core
memory).
- fillzero
- 1-pass pattern: 0x00.
- fillff
- 1-pass pattern: 0xff.
- random
- 1-pass pattern: random(x1).
- random2
- 2-pass pattern: random(x2).
- old
- 6-pass pre-version 1.7 scrub method: 0x00, 0xff, 0xaa, 0x00, 0x55,
verify.
- fastold
- 5-pass pattern: 0x00, 0xff, 0xaa, 0x55, verify.
- custom=string
- 1-pass custom pattern. String may contain C-style numerical escapes: \nnn
(octal) or \xnn (hex).
Scrub may be insufficient to thwart heroic efforts to recover data in an
appropriately equipped lab. If you need this level of protection, physical
destruction is your best bet.
The effectiveness of scrubbing regular files through a file system
will be limited by the OS and file system. File systems that are known to be
problematic are journaled, log structured, copy-on-write, versioned, and
network file systems. If in doubt, scrub the raw disk device.
Scrubbing free blocks in a file system with the -X method
is subject to the same caveats as scrubbing regular files, and in addition,
is only useful to the extent the file system allows you to reallocate the
target blocks as data blocks in a new file. If in doubt, scrub the raw disk
device.
On MacOS X HFS file system, scrub attempts to overwrite a
file's resource fork if it exists. Although MacOS X claims it will support
additional named forks in the future, scrub is only aware of the
traditional data and resource forks.
scrub cannot access disk blocks that have been spared out
by the disk controller. For SATA/PATA drives, the ATA "security
erase" command built into the drive controller can do this. Similarly,
the ATA "enhanced security erase" can erase data on track edges
and between tracks. The DOS utility HDDERASE from the UCSD Center for
Magnetic Recording Research can issue these commands, as can modern versions
of Linux hdparm. Unfortunately, the analogous SCSI command is
optional according to T-10, and not widely implemented.
To scrub a raw device /dev/sdf1 with default NNSA patterns:
-
# scrub /dev/sdf1
scrub: using NNSA NAP-14.1-C patterns
scrub: please verify that device size below is correct!
scrub: scrubbing /dev/sdf1 1995650048 bytes (~1GB)
scrub: random |................................................|
scrub: random |................................................|
scrub: 0x00 |................................................|
scrub: verify |................................................|
To scrub the file /tmp/scrubme with a sequence of 0xff 0xaa
bytes:
-
# scrub -p custom="\xff\xaa" /tmp/scrubme
scrub: using Custom single-pass patterns
scrub: scrubbing /tmp/scrubme 78319616 bytes (~74MB)
scrub: 0xffaa |................................................|
Jim Garlick <garlick@llnl.gov>
This work was produced at the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-ENG-48 with the DOE.
Designated UCRL-CODE-2003-006, scrub is licensed under terms of the GNU
General Public License.
DoD 5220.22-M, "National Industrial Security Program Operating
Manual", Chapter 8, 01/1995.
NNSA Policy Letter: NAP-14.1-C, "Clearing, Sanitizing, and
Destroying Information System Storage Media, Memory Devices, and other
Related Hardware", 05-02-08, page XVI-8.
"Secure Deletion of Data from Magnetic and Solid-State
Memory", by Peter Gutmann, Sixth USENIX Security Symposium, San Jose,
CA, July 22-25, 1996.
"Gutmann Method", Wikipedia,
http://en.wikipedia.org/wiki/Gutmann_method.
Darik's boot and Nuke FAQ:
http://dban.sourceforge.net/faq/index.html
"Tutorial on Disk Drive Data Sanitization", by Gordon
Hugues and Tom Coughlin,
http://cmrr.ucsd.edu/people/Hughes/DataSanitizationTutorial.pdf.
"Guidelines for Media Sanitization", NIST special
publication 800-88, Kissel et al, September, 2006.
shred(1), hdparm(8)
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |