|
NAMEopenssl-pkeyutl - public key algorithm commandSYNOPSISopenssl pkeyutl [-help] [-in file] [-rawin] [-digest algorithm] [-out file] [-sigfile file] [-inkey filename|uri] [-keyform DER|PEM|P12|ENGINE] [-passin arg] [-peerkey file] [-peerform DER|PEM|P12|ENGINE] [-pubin] [-certin] [-rev] [-sign] [-verify] [-verifyrecover] [-encrypt] [-decrypt] [-derive] [-kdf algorithm] [-kdflen length] [-pkeyopt opt:value] [-pkeyopt_passin opt[:passarg]] [-hexdump] [-asn1parse] [-engine id] [-engine_impl] [-rand files] [-writerand file] [-provider name] [-provider-path path] [-propquery propq] [-config configfile]DESCRIPTIONThis command can be used to perform low-level public key operations using any supported algorithm.OPTIONS
NOTESThe operations and options supported vary according to the key algorithm and its implementation. The OpenSSL operations and options are indicated below.Unless otherwise mentioned all algorithms support the digest:alg option which specifies the digest in use for sign, verify and verifyrecover operations. The value alg should represent a digest name as used in the EVP_get_digestbyname() function for example sha1. This value is not used to hash the input data. It is used (by some algorithms) for sanity-checking the lengths of data passed in and for creating the structures that make up the signature (e.g. DigestInfo in RSASSA PKCS#1 v1.5 signatures). This command does not hash the input data (except where -rawin is used) but rather it will use the data directly as input to the signature algorithm. Depending on the key type, signature type, and mode of padding, the maximum acceptable lengths of input data differ. The signed data can't be longer than the key modulus with RSA. In case of ECDSA and DSA the data shouldn't be longer than the field size, otherwise it will be silently truncated to the field size. In any event the input size must not be larger than the largest supported digest size. In other words, if the value of digest is sha1 the input should be the 20 bytes long binary encoding of the SHA-1 hash function output. RSA ALGORITHMThe RSA algorithm generally supports the encrypt, decrypt, sign, verify and verifyrecover operations. However, some padding modes support only a subset of these operations. The following additional pkeyopt values are supported:
RSA-PSS ALGORITHMThe RSA-PSS algorithm is a restricted version of the RSA algorithm which only supports the sign and verify operations with PSS padding. The following additional -pkeyopt values are supported:
DSA ALGORITHMThe DSA algorithm supports signing and verification operations only. Currently there are no additional -pkeyopt options other than digest. The SHA1 digest is assumed by default.DH ALGORITHMThe DH algorithm only supports the derivation operation and no additional -pkeyopt options.EC ALGORITHMThe EC algorithm supports sign, verify and derive operations. The sign and verify operations use ECDSA and derive uses ECDH. SHA1 is assumed by default for the -pkeyopt digest option.X25519 AND X448 ALGORITHMSThe X25519 and X448 algorithms support key derivation only. Currently there are no additional options.ED25519 AND ED448 ALGORITHMSThese algorithms only support signing and verifying. OpenSSL only implements the "pure" variants of these algorithms so raw data can be passed directly to them without hashing them first. The option -rawin must be used with these algorithms with no -digest specified. Additionally OpenSSL only supports "oneshot" operation with these algorithms. This means that the entire file to be signed/verified must be read into memory before processing it. Signing or Verifying very large files should be avoided. Additionally the size of the file must be known for this to work. If the size of the file cannot be determined (for example if the input is stdin) then the sign or verify operation will fail.SM2The SM2 algorithm supports sign, verify, encrypt and decrypt operations. For the sign and verify operations, SM2 requires an Distinguishing ID string to be passed in. The following -pkeyopt value is supported:
EXAMPLESSign some data using a private key:openssl pkeyutl -sign -in file -inkey key.pem -out sig Recover the signed data (e.g. if an RSA key is used): openssl pkeyutl -verifyrecover -in sig -inkey key.pem Verify the signature (e.g. a DSA key): openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem Sign data using a message digest value (this is currently only valid for RSA): openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256 Derive a shared secret value: openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret Hexdump 48 bytes of TLS1 PRF using digest SHA256 and shared secret and seed consisting of the single byte 0xFF: openssl pkeyutl -kdf TLS1-PRF -kdflen 48 -pkeyopt md:SHA256 \ -pkeyopt hexsecret:ff -pkeyopt hexseed:ff -hexdump Derive a key using scrypt where the password is read from command line: openssl pkeyutl -kdf scrypt -kdflen 16 -pkeyopt_passin pass \ -pkeyopt hexsalt:aabbcc -pkeyopt N:16384 -pkeyopt r:8 -pkeyopt p:1 Derive using the same algorithm, but read key from environment variable MYPASS: openssl pkeyutl -kdf scrypt -kdflen 16 -pkeyopt_passin pass:env:MYPASS \ -pkeyopt hexsalt:aabbcc -pkeyopt N:16384 -pkeyopt r:8 -pkeyopt p:1 Sign some data using an SM2(7) private key and a specific ID: openssl pkeyutl -sign -in file -inkey sm2.key -out sig -rawin -digest sm3 \ -pkeyopt distid:someid Verify some data using an SM2(7) certificate and a specific ID: openssl pkeyutl -verify -certin -in file -inkey sm2.cert -sigfile sig \ -rawin -digest sm3 -pkeyopt distid:someid Decrypt some data using a private key with OAEP padding using SHA256: openssl pkeyutl -decrypt -in file -inkey key.pem -out secret \ -pkeyopt rsa_padding_mode:oaep -pkeyopt rsa_oaep_md:sha256 SEE ALSOopenssl(1), openssl-genpkey(1), openssl-pkey(1), openssl-rsautl(1) openssl-dgst(1), openssl-rsa(1), openssl-genrsa(1), openssl-kdf(1) EVP_PKEY_CTX_set_hkdf_md(3), EVP_PKEY_CTX_set_tls1_prf_md(3),HISTORYThe -engine option was deprecated in OpenSSL 3.0.COPYRIGHTCopyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>.
Visit the GSP FreeBSD Man Page Interface. |