GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
ATAN2(3) FreeBSD Library Functions Manual ATAN2(3)

atan2, atan2f, atan2l, carg, cargf, cargl
arc tangent and complex phase angle functions

Math Library (libm, -lm)

#include <math.h>

double
atan2(double y, double x);

float
atan2f(float y, float x);

long double
atan2l(long double y, long double x);

#include <complex.h>

double
carg(double complex z);

float
cargf(float complex z);

long double
cargl(long double complex z);

The atan2(), atan2f(), and atan2l() functions compute the principal value of the arc tangent of y/x, using the signs of both arguments to determine the quadrant of the return value.

The carg(), cargf(), and cargl() functions compute the complex argument (or phase angle) of z. The complex argument is the number theta such that z = r * e^(I * theta), where r = cabs(z). The call carg(z) is equivalent to atan2(cimag(z), creal(z)), and similarly for cargf() and cargl().

The atan2(), atan2f(), and atan2l() functions, if successful, return the arc tangent of y/x in the range [-pi, +pi] radians. Here are some of the special cases:
atan2(y, x) := atan(y/x) if x > 0,
sign(y)*(pi - atan(|y/x|)) if x < 0,
if x = y = 0, or
sign(y)*pi/2 if x = 0 ≠ y.

The function atan2() defines "if x > 0," atan2(0, 0) = 0 despite that previously atan2(0, 0) may have generated an error message. The reasons for assigning a value to atan2(0, 0) are these:
  1. Programs that test arguments to avoid computing atan2(0, 0) must be indifferent to its value. Programs that require it to be invalid are vulnerable to diverse reactions to that invalidity on diverse computer systems.
  2. The atan2() function is used mostly to convert from rectangular (x,y) to polar (r,theta) coordinates that must satisfy x = r∗cos theta and y = r∗sin theta. These equations are satisfied when (x=0,y=0) is mapped to (r=0,theta=0). In general, conversions to polar coordinates should be computed thus:
    r	:= hypot(x,y);  ... := sqrt(x∗x+y∗y)
    theta	:= atan2(y,x).
        
  3. The foregoing formulas need not be altered to cope in a reasonable way with signed zeros and infinities on a machine that conforms to IEEE 754; the versions of hypot(3) and atan2() provided for such a machine are designed to handle all cases. That is why atan2(±0, -0) = ±pi for instance. In general the formulas above are equivalent to these:
    r := sqrt(x∗x+y∗y); if r = 0 then x := copysign(1,x);
        

acos(3), asin(3), atan(3), cabs(3), cos(3), cosh(3), math(3), sin(3), sinh(3), tan(3), tanh(3)

The atan2(), atan2f(), atan2l(), carg(), cargf(), and cargl() functions conform to ISO/IEC 9899:1999 (“ISO C99”).
July 31, 2008 FreeBSD 13.1-RELEASE

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.