|
NAMEAnyEvent - the DBI of event loop programmingEV, Event, Glib, Tk, UV, Perl, Event::Lib, Irssi, rxvt-unicode, IO::Async, Qt, FLTK and POE are various supported event loops/environments. SYNOPSISuse AnyEvent; # if you prefer function calls, look at the AE manpage for # an alternative API. # file handle or descriptor readable my $w = AnyEvent->io (fh => $fh, poll => "r", cb => sub { ... }); # one-shot or repeating timers my $w = AnyEvent->timer (after => $seconds, cb => sub { ... }); my $w = AnyEvent->timer (after => $seconds, interval => $seconds, cb => ...); print AnyEvent->now; # prints current event loop time print AnyEvent->time; # think Time::HiRes::time or simply CORE::time. # POSIX signal my $w = AnyEvent->signal (signal => "TERM", cb => sub { ... }); # child process exit my $w = AnyEvent->child (pid => $pid, cb => sub { my ($pid, $status) = @_; ... }); # called when event loop idle (if applicable) my $w = AnyEvent->idle (cb => sub { ... }); my $w = AnyEvent->condvar; # stores whether a condition was flagged $w->send; # wake up current and all future recv's $w->recv; # enters "main loop" till $condvar gets ->send # use a condvar in callback mode: $w->cb (sub { $_[0]->recv }); INTRODUCTION/TUTORIALThis manpage is mainly a reference manual. If you are interested in a tutorial or some gentle introduction, have a look at the AnyEvent::Intro manpage.SUPPORTAn FAQ document is available as AnyEvent::FAQ.There also is a mailinglist for discussing all things AnyEvent, and an IRC channel, too. See the AnyEvent project page at the Schmorpforge Ta-Sa Software Repository, at <http://anyevent.schmorp.de>, for more info. WHY YOU SHOULD USE THIS MODULE (OR NOT)Glib, POE, IO::Async, Event... CPAN offers event models by the dozen nowadays. So what is different about AnyEvent?Executive Summary: AnyEvent is compatible, AnyEvent is free of policy and AnyEvent is small and efficient. First and foremost, AnyEvent is not an event model itself, it only interfaces to whatever event model the main program happens to use, in a pragmatic way. For event models and certain classes of immortals alike, the statement "there can only be one" is a bitter reality: In general, only one event loop can be active at the same time in a process. AnyEvent cannot change this, but it can hide the differences between those event loops. The goal of AnyEvent is to offer module authors the ability to do event programming (waiting for I/O or timer events) without subscribing to a religion, a way of living, and most importantly: without forcing your module users into the same thing by forcing them to use the same event model you use. For modules like POE or IO::Async (which is a total misnomer as it is actually doing all I/O synchronously...), using them in your module is like joining a cult: After you join, you are dependent on them and you cannot use anything else, as they are simply incompatible to everything that isn't them. What's worse, all the potential users of your module are also forced to use the same event loop you use. AnyEvent is different: AnyEvent + POE works fine. AnyEvent + Glib works fine. AnyEvent + Tk works fine etc. etc. but none of these work together with the rest: POE + EV? No go. Tk + Event? No go. Again: if your module uses one of those, every user of your module has to use it, too. But if your module uses AnyEvent, it works transparently with all event models it supports (including stuff like IO::Async, as long as those use one of the supported event loops. It is easy to add new event loops to AnyEvent, too, so it is future-proof). In addition to being free of having to use the one and only true event model, AnyEvent also is free of bloat and policy: with POE or similar modules, you get an enormous amount of code and strict rules you have to follow. AnyEvent, on the other hand, is lean and to the point, by only offering the functionality that is necessary, in as thin as a wrapper as technically possible. Of course, AnyEvent comes with a big (and fully optional!) toolbox of useful functionality, such as an asynchronous DNS resolver, 100% non-blocking connects (even with TLS/SSL, IPv6 and on broken platforms such as Windows) and lots of real-world knowledge and workarounds for platform bugs and differences. Now, if you do want lots of policy (this can arguably be somewhat useful) and you want to force your users to use the one and only event model, you should not use this module. DESCRIPTIONAnyEvent provides a uniform interface to various event loops. This allows module authors to use event loop functionality without forcing module users to use a specific event loop implementation (since more than one event loop cannot coexist peacefully).The interface itself is vaguely similar, but not identical to the Event module. During the first call of any watcher-creation method, the module tries to detect the currently loaded event loop by probing whether one of the following modules is already loaded: EV, AnyEvent::Loop, Event, Glib, Tk, Event::Lib, Qt, POE. The first one found is used. If none are detected, the module tries to load the first four modules in the order given; but note that if EV is not available, the pure-perl AnyEvent::Loop should always work, so the other two are not normally tried. Because AnyEvent first checks for modules that are already loaded, loading an event model explicitly before first using AnyEvent will likely make that model the default. For example: use Tk; use AnyEvent; # .. AnyEvent will likely default to Tk The likely means that, if any module loads another event model and starts using it, all bets are off - this case should be very rare though, as very few modules hardcode event loops without announcing this very loudly. The pure-perl implementation of AnyEvent is called "AnyEvent::Loop". Like other event modules you can load it explicitly and enjoy the high availability of that event loop :) WATCHERSAnyEvent has the central concept of a watcher, which is an object that stores relevant data for each kind of event you are waiting for, such as the callback to call, the file handle to watch, etc.These watchers are normal Perl objects with normal Perl lifetime. After creating a watcher it will immediately "watch" for events and invoke the callback when the event occurs (of course, only when the event model is in control). Note that callbacks must not permanently change global variables potentially in use by the event loop (such as $_ or $[) and that callbacks must not "die". The former is good programming practice in Perl and the latter stems from the fact that exception handling differs widely between event loops. To disable a watcher you have to destroy it (e.g. by setting the variable you store it in to "undef" or otherwise deleting all references to it). All watchers are created by calling a method on the "AnyEvent" class. Many watchers either are used with "recursion" (repeating timers for example), or need to refer to their watcher object in other ways. One way to achieve that is this pattern: my $w; $w = AnyEvent->type (arg => value ..., cb => sub { # you can use $w here, for example to undef it undef $w; }); Note that "my $w; $w =" combination. This is necessary because in Perl, my variables are only visible after the statement in which they are declared. I/O WATCHERS$w = AnyEvent->io ( fh => <filehandle_or_fileno>, poll => <"r" or "w">, cb => <callback>, ); You can create an I/O watcher by calling the "AnyEvent->io" method with the following mandatory key-value pairs as arguments: "fh" is the Perl file handle (or a naked file descriptor) to watch for events (AnyEvent might or might not keep a reference to this file handle). Note that only file handles pointing to things for which non-blocking operation makes sense are allowed. This includes sockets, most character devices, pipes, fifos and so on, but not for example files or block devices. "poll" must be a string that is either "r" or "w", which creates a watcher waiting for "r"eadable or "w"ritable events, respectively. "cb" is the callback to invoke each time the file handle becomes ready. Although the callback might get passed parameters, their value and presence is undefined and you cannot rely on them. Portable AnyEvent callbacks cannot use arguments passed to I/O watcher callbacks. The I/O watcher might use the underlying file descriptor or a copy of it. You must not close a file handle as long as any watcher is active on the underlying file descriptor. Some event loops issue spurious readiness notifications, so you should always use non-blocking calls when reading/writing from/to your file handles. Example: wait for readability of STDIN, then read a line and disable the watcher. my $w; $w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { chomp (my $input = <STDIN>); warn "read: $input\n"; undef $w; }); TIME WATCHERS$w = AnyEvent->timer (after => <seconds>, cb => <callback>); $w = AnyEvent->timer ( after => <fractional_seconds>, interval => <fractional_seconds>, cb => <callback>, ); You can create a time watcher by calling the "AnyEvent->timer" method with the following mandatory arguments: "after" specifies after how many seconds (fractional values are supported) the callback should be invoked. "cb" is the callback to invoke in that case. Although the callback might get passed parameters, their value and presence is undefined and you cannot rely on them. Portable AnyEvent callbacks cannot use arguments passed to time watcher callbacks. The callback will normally be invoked only once. If you specify another parameter, "interval", as a strictly positive number (> 0), then the callback will be invoked regularly at that interval (in fractional seconds) after the first invocation. If "interval" is specified with a false value, then it is treated as if it were not specified at all. The callback will be rescheduled before invoking the callback, but no attempt is made to avoid timer drift in most backends, so the interval is only approximate. Example: fire an event after 7.7 seconds. my $w = AnyEvent->timer (after => 7.7, cb => sub { warn "timeout\n"; }); # to cancel the timer: undef $w; Example 2: fire an event after 0.5 seconds, then roughly every second. my $w = AnyEvent->timer (after => 0.5, interval => 1, cb => sub { warn "timeout\n"; }); TIMING ISSUES There are two ways to handle timers: based on real time (relative, "fire in 10 seconds") and based on wallclock time (absolute, "fire at 12 o'clock"). While most event loops expect timers to specified in a relative way, they use absolute time internally. This makes a difference when your clock "jumps", for example, when ntp decides to set your clock backwards from the wrong date of 2014-01-01 to 2008-01-01, a watcher that is supposed to fire "after a second" might actually take six years to finally fire. AnyEvent cannot compensate for this. The only event loop that is conscious of these issues is EV, which offers both relative (ev_timer, based on true relative time) and absolute (ev_periodic, based on wallclock time) timers. AnyEvent always prefers relative timers, if available, matching the AnyEvent API. AnyEvent has two additional methods that return the "current time":
SIGNAL WATCHERS$w = AnyEvent->signal (signal => <uppercase_signal_name>, cb => <callback>); You can watch for signals using a signal watcher, "signal" is the signal name in uppercase and without any "SIG" prefix, "cb" is the Perl callback to be invoked whenever a signal occurs. Although the callback might get passed parameters, their value and presence is undefined and you cannot rely on them. Portable AnyEvent callbacks cannot use arguments passed to signal watcher callbacks. Multiple signal occurrences can be clumped together into one callback invocation, and callback invocation will be synchronous. Synchronous means that it might take a while until the signal gets handled by the process, but it is guaranteed not to interrupt any other callbacks. The main advantage of using these watchers is that you can share a signal between multiple watchers, and AnyEvent will ensure that signals will not interrupt your program at bad times. This watcher might use %SIG (depending on the event loop used), so programs overwriting those signals directly will likely not work correctly. Example: exit on SIGINT my $w = AnyEvent->signal (signal => "INT", cb => sub { exit 1 }); Restart Behaviour While restart behaviour is up to the event loop implementation, most will not restart syscalls (that includes Async::Interrupt and AnyEvent's pure perl implementation). Safe/Unsafe Signals Perl signals can be either "safe" (synchronous to opcode handling) or "unsafe" (asynchronous) - the former might delay signal delivery indefinitely, the latter might corrupt your memory. AnyEvent signal handlers are, in addition, synchronous to the event loop, i.e. they will not interrupt your running perl program but will only be called as part of the normal event handling (just like timer, I/O etc. callbacks, too). Signal Races, Delays and Workarounds Many event loops (e.g. Glib, Tk, Qt, IO::Async) do not support attaching callbacks to signals in a generic way, which is a pity, as you cannot do race-free signal handling in perl, requiring C libraries for this. AnyEvent will try to do its best, which means in some cases, signals will be delayed. The maximum time a signal might be delayed is 10 seconds by default, but can be overriden via $ENV{PERL_ANYEVENT_MAX_SIGNAL_LATENCY} or $AnyEvent::MAX_SIGNAL_LATENCY - see the "ENVIRONMENT VARIABLES" section for details. All these problems can be avoided by installing the optional Async::Interrupt module, which works with most event loops. It will not work with inherently broken event loops such as Event or Event::Lib (and not with POE currently). For those, you just have to suffer the delays. CHILD PROCESS WATCHERS$w = AnyEvent->child (pid => <process id>, cb => <callback>); You can also watch for a child process exit and catch its exit status. The child process is specified by the "pid" argument (on some backends, using 0 watches for any child process exit, on others this will croak). The watcher will be triggered only when the child process has finished and an exit status is available, not on any trace events (stopped/continued). The callback will be called with the pid and exit status (as returned by waitpid), so unlike other watcher types, you can rely on child watcher callback arguments. This watcher type works by installing a signal handler for "SIGCHLD", and since it cannot be shared, nothing else should use SIGCHLD or reap random child processes (waiting for specific child processes, e.g. inside "system", is just fine). There is a slight catch to child watchers, however: you usually start them after the child process was created, and this means the process could have exited already (and no SIGCHLD will be sent anymore). Not all event models handle this correctly (neither POE nor IO::Async do, see their AnyEvent::Impl manpages for details), but even for event models that do handle this correctly, they usually need to be loaded before the process exits (i.e. before you fork in the first place). AnyEvent's pure perl event loop handles all cases correctly regardless of when you start the watcher. This means you cannot create a child watcher as the very first thing in an AnyEvent program, you have to create at least one watcher before you "fork" the child (alternatively, you can call "AnyEvent::detect"). As most event loops do not support waiting for child events, they will be emulated by AnyEvent in most cases, in which case the latency and race problems mentioned in the description of signal watchers apply. Example: fork a process and wait for it my $done = AnyEvent->condvar; # this forks and immediately calls exit in the child. this # normally has all sorts of bad consequences for your parent, # so take this as an example only. always fork and exec, # or call POSIX::_exit, in real code. my $pid = fork or exit 5; my $w = AnyEvent->child ( pid => $pid, cb => sub { my ($pid, $status) = @_; warn "pid $pid exited with status $status"; $done->send; }, ); # do something else, then wait for process exit $done->recv; IDLE WATCHERS$w = AnyEvent->idle (cb => <callback>); This will repeatedly invoke the callback after the process becomes idle, until either the watcher is destroyed or new events have been detected. Idle watchers are useful when there is a need to do something, but it is not so important (or wise) to do it instantly. The callback will be invoked only when there is "nothing better to do", which is usually defined as "all outstanding events have been handled and no new events have been detected". That means that idle watchers ideally get invoked when the event loop has just polled for new events but none have been detected. Instead of blocking to wait for more events, the idle watchers will be invoked. Unfortunately, most event loops do not really support idle watchers (only EV, Event and Glib do it in a usable fashion) - for the rest, AnyEvent will simply call the callback "from time to time". Example: read lines from STDIN, but only process them when the program is otherwise idle: my @lines; # read data my $idle_w; my $io_w = AnyEvent->io (fh => \*STDIN, poll => 'r', cb => sub { push @lines, scalar <STDIN>; # start an idle watcher, if not already done $idle_w ||= AnyEvent->idle (cb => sub { # handle only one line, when there are lines left if (my $line = shift @lines) { print "handled when idle: $line"; } else { # otherwise disable the idle watcher again undef $idle_w; } }); }); CONDITION VARIABLES$cv = AnyEvent->condvar; $cv->send (<list>); my @res = $cv->recv; If you are familiar with some event loops you will know that all of them require you to run some blocking "loop", "run" or similar function that will actively watch for new events and call your callbacks. AnyEvent is slightly different: it expects somebody else to run the event loop and will only block when necessary (usually when told by the user). The tool to do that is called a "condition variable", so called because they represent a condition that must become true. Now is probably a good time to look at the examples further below. Condition variables can be created by calling the "AnyEvent->condvar" method, usually without arguments. The only argument pair allowed is "cb", which specifies a callback to be called when the condition variable becomes true, with the condition variable as the first argument (but not the results). After creation, the condition variable is "false" until it becomes "true" by calling the "send" method (or calling the condition variable as if it were a callback, read about the caveats in the description for the "->send" method). Since condition variables are the most complex part of the AnyEvent API, here are some different mental models of what they are - pick the ones you can connect to:
Condition variables are very useful to signal that something has finished, for example, if you write a module that does asynchronous http requests, then a condition variable would be the ideal candidate to signal the availability of results. The user can either act when the callback is called or can synchronously "->recv" for the results. You can also use them to simulate traditional event loops - for example, you can block your main program until an event occurs - for example, you could "->recv" in your main program until the user clicks the Quit button of your app, which would "->send" the "quit" event. Note that condition variables recurse into the event loop - if you have two pieces of code that call "->recv" in a round-robin fashion, you lose. Therefore, condition variables are good to export to your caller, but you should avoid making a blocking wait yourself, at least in callbacks, as this asks for trouble. Condition variables are represented by hash refs in perl, and the keys used by AnyEvent itself are all named "_ae_XXX" to make subclassing easy (it is often useful to build your own transaction class on top of AnyEvent). To subclass, use "AnyEvent::CondVar" as base class and call its "new" method in your own "new" method. There are two "sides" to a condition variable - the "producer side" which eventually calls "-> send", and the "consumer side", which waits for the send to occur. Example: wait for a timer. # condition: "wait till the timer is fired" my $timer_fired = AnyEvent->condvar; # create the timer - we could wait for, say # a handle becomign ready, or even an # AnyEvent::HTTP request to finish, but # in this case, we simply use a timer: my $w = AnyEvent->timer ( after => 1, cb => sub { $timer_fired->send }, ); # this "blocks" (while handling events) till the callback # calls ->send $timer_fired->recv; Example: wait for a timer, but take advantage of the fact that condition variables are also callable directly. my $done = AnyEvent->condvar; my $delay = AnyEvent->timer (after => 5, cb => $done); $done->recv; Example: Imagine an API that returns a condvar and doesn't support callbacks. This is how you make a synchronous call, for example from the main program: use AnyEvent::CouchDB; ... my @info = $couchdb->info->recv; And this is how you would just set a callback to be called whenever the results are available: $couchdb->info->cb (sub { my @info = $_[0]->recv; }); METHODS FOR PRODUCERS These methods should only be used by the producing side, i.e. the code/module that eventually sends the signal. Note that it is also the producer side which creates the condvar in most cases, but it isn't uncommon for the consumer to create it as well.
METHODS FOR CONSUMERS These methods should only be used by the consuming side, i.e. the code awaits the condition.
SUPPORTED EVENT LOOPS/BACKENDSThe following backend classes are part of the AnyEvent distribution (every class has its own manpage):
GLOBAL VARIABLES AND FUNCTIONSThese are not normally required to use AnyEvent, but can be useful to write AnyEvent extension modules.
WHAT TO DO IN A MODULEAs a module author, you should "use AnyEvent" and call AnyEvent methods freely, but you should not load a specific event module or rely on it.Be careful when you create watchers in the module body - AnyEvent will decide which event module to use as soon as the first method is called, so by calling AnyEvent in your module body you force the user of your module to load the event module first. Never call "->recv" on a condition variable unless you know that the "->send" method has been called on it already. This is because it will stall the whole program, and the whole point of using events is to stay interactive. It is fine, however, to call "->recv" when the user of your module requests it (i.e. if you create a http request object ad have a method called "results" that returns the results, it may call "->recv" freely, as the user of your module knows what she is doing. Always). WHAT TO DO IN THE MAIN PROGRAMThere will always be a single main program - the only place that should dictate which event model to use.If the program is not event-based, it need not do anything special, even when it depends on a module that uses an AnyEvent. If the program itself uses AnyEvent, but does not care which event loop is used, all it needs to do is "use AnyEvent". In either case, AnyEvent will choose the best available loop implementation. If the main program relies on a specific event model - for example, in Gtk2 programs you have to rely on the Glib module - you should load the event module before loading AnyEvent or any module that uses it: generally speaking, you should load it as early as possible. The reason is that modules might create watchers when they are loaded, and AnyEvent will decide on the event model to use as soon as it creates watchers, and it might choose the wrong one unless you load the correct one yourself. You can chose to use a pure-perl implementation by loading the "AnyEvent::Loop" module, which gives you similar behaviour everywhere, but letting AnyEvent chose the model is generally better. MAINLOOP EMULATIONSometimes (often for short test scripts, or even standalone programs who only want to use AnyEvent), you do not want to run a specific event loop.In that case, you can use a condition variable like this: AnyEvent->condvar->recv; This has the effect of entering the event loop and looping forever. Note that usually your program has some exit condition, in which case it is better to use the "traditional" approach of storing a condition variable somewhere, waiting for it, and sending it when the program should exit cleanly. OTHER MODULESThe following is a non-exhaustive list of additional modules that use AnyEvent as a client and can therefore be mixed easily with other AnyEvent modules and other event loops in the same program. Some of the modules come as part of AnyEvent, the others are available via CPAN (see <http://search.cpan.org/search?m=module&q=anyevent%3A%3A*> for a longer non-exhaustive list), and the list is heavily biased towards modules of the AnyEvent author himself :)
SIMPLIFIED AE APIStarting with version 5.0, AnyEvent officially supports a second, much simpler, API that is designed to reduce the calling, typing and memory overhead by using function call syntax and a fixed number of parameters.See the AE manpage for details. ERROR AND EXCEPTION HANDLINGIn general, AnyEvent does not do any error handling - it relies on the caller to do that if required. The AnyEvent::Strict module (see also the "PERL_ANYEVENT_STRICT" environment variable, below) provides strict checking of all AnyEvent methods, however, which is highly useful during development.As for exception handling (i.e. runtime errors and exceptions thrown while executing a callback), this is not only highly event-loop specific, but also not in any way wrapped by this module, as this is the job of the main program. The pure perl event loop simply re-throws the exception (usually within "condvar->recv"), the Event and EV modules call "$Event/EV::DIED->()", Glib uses "install_exception_handler" and so on. ENVIRONMENT VARIABLESAnyEvent supports a number of environment variables that tune the runtime behaviour. They are usually evaluated when AnyEvent is loaded, initialised, or a submodule that uses them is loaded. Many of them also cause AnyEvent to load additional modules - for example, "PERL_ANYEVENT_DEBUG_WRAP" causes the AnyEvent::Debug module to be loaded.All the environment variables documented here start with "PERL_ANYEVENT_", which is what AnyEvent considers its own namespace. Other modules are encouraged (but by no means required) to use "PERL_ANYEVENT_SUBMODULE" if they have registered the AnyEvent::Submodule namespace on CPAN, for any submodule. For example, AnyEvent::HTTP could be expected to use "PERL_ANYEVENT_HTTP_PROXY" (it should not access env variables starting with "AE_", see below). All variables can also be set via the "AE_" prefix, that is, instead of setting "PERL_ANYEVENT_VERBOSE" you can also set "AE_VERBOSE". In case there is a clash btween anyevent and another program that uses "AE_something" you can set the corresponding "PERL_ANYEVENT_something" variable to the empty string, as those variables take precedence. When AnyEvent is first loaded, it copies all "AE_xxx" env variables to their "PERL_ANYEVENT_xxx" counterpart unless that variable already exists. If taint mode is on, then AnyEvent will remove all environment variables starting with "PERL_ANYEVENT_" from %ENV (or replace them with "undef" or the empty string, if the corresaponding "AE_" variable is set). The exact algorithm is currently: 1. if taint mode enabled, delete all PERL_ANYEVENT_xyz variables from %ENV 2. copy over AE_xyz to PERL_ANYEVENT_xyz unless the latter alraedy exists 3. if taint mode enabled, set all PERL_ANYEVENT_xyz variables to undef. This ensures that child processes will not see the "AE_" variables. The following environment variables are currently known to AnyEvent:
SUPPLYING YOUR OWN EVENT MODEL INTERFACEThis is an advanced topic that you do not normally need to use AnyEvent in a module. This section is only of use to event loop authors who want to provide AnyEvent compatibility.If you need to support another event library which isn't directly supported by AnyEvent, you can supply your own interface to it by pushing, before the first watcher gets created, the package name of the event module and the package name of the interface to use onto @AnyEvent::REGISTRY. You can do that before and even without loading AnyEvent, so it is reasonably cheap. Example: push @AnyEvent::REGISTRY, [urxvt => urxvt::anyevent::]; This tells AnyEvent to (literally) use the "urxvt::anyevent::" package/class when it finds the "urxvt" package/module is already loaded. When AnyEvent is loaded and asked to find a suitable event model, it will first check for the presence of urxvt by trying to "use" the "urxvt::anyevent" module. The class should provide implementations for all watcher types. See AnyEvent::Impl::EV (source code), AnyEvent::Impl::Glib (Source code) and so on for actual examples. Use "perldoc -m AnyEvent::Impl::Glib" to see the sources. If you don't provide "signal" and "child" watchers than AnyEvent will provide suitable (hopefully) replacements. The above example isn't fictitious, the rxvt-unicode (a.k.a. urxvt) terminal emulator uses the above line as-is. An interface isn't included in AnyEvent because it doesn't make sense outside the embedded interpreter inside rxvt-unicode, and it is updated and maintained as part of the rxvt-unicode distribution. rxvt-unicode also cheats a bit by not providing blocking access to condition variables: code blocking while waiting for a condition will "die". This still works with most modules/usages, and blocking calls must not be done in an interactive application, so it makes sense. EXAMPLE PROGRAMThe following program uses an I/O watcher to read data from STDIN, a timer to display a message once per second, and a condition variable to quit the program when the user enters quit:use AnyEvent; my $cv = AnyEvent->condvar; my $io_watcher = AnyEvent->io ( fh => \*STDIN, poll => 'r', cb => sub { warn "io event <$_[0]>\n"; # will always output <r> chomp (my $input = <STDIN>); # read a line warn "read: $input\n"; # output what has been read $cv->send if $input =~ /^q/i; # quit program if /^q/i }, ); my $time_watcher = AnyEvent->timer (after => 1, interval => 1, cb => sub { warn "timeout\n"; # print 'timeout' at most every second }); $cv->recv; # wait until user enters /^q/i REAL-WORLD EXAMPLEConsider the Net::FCP module. It features (among others) the following API calls, which are to freenet what HTTP GET requests are to http:my $data = $fcp->client_get ($url); # blocks my $transaction = $fcp->txn_client_get ($url); # does not block $transaction->cb ( sub { ... } ); # set optional result callback my $data = $transaction->result; # possibly blocks The "client_get" method works like "LWP::Simple::get": it requests the given URL and waits till the data has arrived. It is defined to be: sub client_get { $_[0]->txn_client_get ($_[1])->result } And in fact is automatically generated. This is the blocking API of Net::FCP, and it works as simple as in any other, similar, module. More complicated is "txn_client_get": It only creates a transaction (completion, result, ...) object and initiates the transaction. my $txn = bless { }, Net::FCP::Txn::; It also creates a condition variable that is used to signal the completion of the request: $txn->{finished} = AnyAvent->condvar; It then creates a socket in non-blocking mode. socket $txn->{fh}, ...; fcntl $txn->{fh}, F_SETFL, O_NONBLOCK; connect $txn->{fh}, ... and !$!{EWOULDBLOCK} and !$!{EINPROGRESS} and Carp::croak "unable to connect: $!\n"; Then it creates a write-watcher which gets called whenever an error occurs or the connection succeeds: $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'w', cb => sub { $txn->fh_ready_w }); And returns this transaction object. The "fh_ready_w" callback gets called as soon as the event loop detects that the socket is ready for writing. The "fh_ready_w" method makes the socket blocking again, writes the request data and replaces the watcher by a read watcher (waiting for reply data). The actual code is more complicated, but that doesn't matter for this example: fcntl $txn->{fh}, F_SETFL, 0; syswrite $txn->{fh}, $txn->{request} or die "connection or write error"; $txn->{w} = AnyEvent->io (fh => $txn->{fh}, poll => 'r', cb => sub { $txn->fh_ready_r }); Again, "fh_ready_r" waits till all data has arrived, and then stores the result and signals any possible waiters that the request has finished: sysread $txn->{fh}, $txn->{buf}, length $txn->{$buf}; if (end-of-file or data complete) { $txn->{result} = $txn->{buf}; $txn->{finished}->send; $txb->{cb}->($txn) of $txn->{cb}; # also call callback } The "result" method, finally, just waits for the finished signal (if the request was already finished, it doesn't wait, of course, and returns the data: $txn->{finished}->recv; return $txn->{result}; The actual code goes further and collects all errors ("die"s, exceptions) that occurred during request processing. The "result" method detects whether an exception as thrown (it is stored inside the $txn object) and just throws the exception, which means connection errors and other problems get reported to the code that tries to use the result, not in a random callback. All of this enables the following usage styles: 1. Blocking: my $data = $fcp->client_get ($url); 2. Blocking, but running in parallel: my @datas = map $_->result, map $fcp->txn_client_get ($_), @urls; Both blocking examples work without the module user having to know anything about events. 3a. Event-based in a main program, using any supported event module: use EV; $fcp->txn_client_get ($url)->cb (sub { my $txn = shift; my $data = $txn->result; ... }); EV::run; 3b. The module user could use AnyEvent, too: use AnyEvent; my $quit = AnyEvent->condvar; $fcp->txn_client_get ($url)->cb (sub { ... $quit->send; }); $quit->recv; BENCHMARKSTo give you an idea of the performance and overheads that AnyEvent adds over the event loops themselves and to give you an impression of the speed of various event loops I prepared some benchmarks.BENCHMARKING ANYEVENT OVERHEADHere is a benchmark of various supported event models used natively and through AnyEvent. The benchmark creates a lot of timers (with a zero timeout) and I/O watchers (watching STDOUT, a pty, to become writable, which it is), lets them fire exactly once and destroys them again.Source code for this benchmark is found as eg/bench in the AnyEvent distribution. It uses the AE interface, which makes a real difference for the EV and Perl backends only. Explanation of the columns watcher is the number of event watchers created/destroyed. Since different event models feature vastly different performances, each event loop was given a number of watchers so that overall runtime is acceptable and similar between tested event loop (and keep them from crashing): Glib would probably take thousands of years if asked to process the same number of watchers as EV in this benchmark. bytes is the number of bytes (as measured by the resident set size, RSS) consumed by each watcher. This method of measuring captures both C and Perl-based overheads. create is the time, in microseconds (millionths of seconds), that it takes to create a single watcher. The callback is a closure shared between all watchers, to avoid adding memory overhead. That means closure creation and memory usage is not included in the figures. invoke is the time, in microseconds, used to invoke a simple callback. The callback simply counts down a Perl variable and after it was invoked "watcher" times, it would "->send" a condvar once to signal the end of this phase. destroy is the time, in microseconds, that it takes to destroy a single watcher. Results name watchers bytes create invoke destroy comment EV/EV 100000 223 0.47 0.43 0.27 EV native interface EV/Any 100000 223 0.48 0.42 0.26 EV + AnyEvent watchers Coro::EV/Any 100000 223 0.47 0.42 0.26 coroutines + Coro::Signal Perl/Any 100000 431 2.70 0.74 0.92 pure perl implementation Event/Event 16000 516 31.16 31.84 0.82 Event native interface Event/Any 16000 1203 42.61 34.79 1.80 Event + AnyEvent watchers IOAsync/Any 16000 1911 41.92 27.45 16.81 via IO::Async::Loop::IO_Poll IOAsync/Any 16000 1726 40.69 26.37 15.25 via IO::Async::Loop::Epoll Glib/Any 16000 1118 89.00 12.57 51.17 quadratic behaviour Tk/Any 2000 1346 20.96 10.75 8.00 SEGV with >> 2000 watchers POE/Any 2000 6951 108.97 795.32 14.24 via POE::Loop::Event POE/Any 2000 6648 94.79 774.40 575.51 via POE::Loop::Select Discussion The benchmark does not measure scalability of the event loop very well. For example, a select-based event loop (such as the pure perl one) can never compete with an event loop that uses epoll when the number of file descriptors grows high. In this benchmark, all events become ready at the same time, so select/poll-based implementations get an unnatural speed boost. Also, note that the number of watchers usually has a nonlinear effect on overall speed, that is, creating twice as many watchers doesn't take twice the time - usually it takes longer. This puts event loops tested with a higher number of watchers at a disadvantage. To put the range of results into perspective, consider that on the benchmark machine, handling an event takes roughly 1600 CPU cycles with EV, 3100 CPU cycles with AnyEvent's pure perl loop and almost 3000000 CPU cycles with POE. "EV" is the sole leader regarding speed and memory use, which are both maximal/minimal, respectively. When using the AE API there is zero overhead (when going through the AnyEvent API create is about 5-6 times slower, with other times being equal, so still uses far less memory than any other event loop and is still faster than Event natively). The pure perl implementation is hit in a few sweet spots (both the constant timeout and the use of a single fd hit optimisations in the perl interpreter and the backend itself). Nevertheless this shows that it adds very little overhead in itself. Like any select-based backend its performance becomes really bad with lots of file descriptors (and few of them active), of course, but this was not subject of this benchmark. The "Event" module has a relatively high setup and callback invocation cost, but overall scores in on the third place. "IO::Async" performs admirably well, about on par with "Event", even when using its pure perl backend. "Glib"'s memory usage is quite a bit higher, but it features a faster callback invocation and overall ends up in the same class as "Event". However, Glib scales extremely badly, doubling the number of watchers increases the processing time by more than a factor of four, making it completely unusable when using larger numbers of watchers (note that only a single file descriptor was used in the benchmark, so inefficiencies of "poll" do not account for this). The "Tk" adaptor works relatively well. The fact that it crashes with more than 2000 watchers is a big setback, however, as correctness takes precedence over speed. Nevertheless, its performance is surprising, as the file descriptor is dup()ed for each watcher. This shows that the dup() employed by some adaptors is not a big performance issue (it does incur a hidden memory cost inside the kernel which is not reflected in the figures above). "POE", regardless of underlying event loop (whether using its pure perl select-based backend or the Event module, the POE-EV backend couldn't be tested because it wasn't working) shows abysmal performance and memory usage with AnyEvent: Watchers use almost 30 times as much memory as EV watchers, and 10 times as much memory as Event (the high memory requirements are caused by requiring a session for each watcher). Watcher invocation speed is almost 900 times slower than with AnyEvent's pure perl implementation. The design of the POE adaptor class in AnyEvent can not really account for the performance issues, though, as session creation overhead is small compared to execution of the state machine, which is coded pretty optimally within AnyEvent::Impl::POE (and while everybody agrees that using multiple sessions is not a good approach, especially regarding memory usage, even the author of POE could not come up with a faster design). Summary
BENCHMARKING THE LARGE SERVER CASEThis benchmark actually benchmarks the event loop itself. It works by creating a number of "servers": each server consists of a socket pair, a timeout watcher that gets reset on activity (but never fires), and an I/O watcher waiting for input on one side of the socket. Each time the socket watcher reads a byte it will write that byte to a random other "server".The effect is that there will be a lot of I/O watchers, only part of which are active at any one point (so there is a constant number of active fds for each loop iteration, but which fds these are is random). The timeout is reset each time something is read because that reflects how most timeouts work (and puts extra pressure on the event loops). In this benchmark, we use 10000 socket pairs (20000 sockets), of which 100 (1%) are active. This mirrors the activity of large servers with many connections, most of which are idle at any one point in time. Source code for this benchmark is found as eg/bench2 in the AnyEvent distribution. It uses the AE interface, which makes a real difference for the EV and Perl backends only. Explanation of the columns sockets is the number of sockets, and twice the number of "servers" (as each server has a read and write socket end). create is the time it takes to create a socket pair (which is nontrivial) and two watchers: an I/O watcher and a timeout watcher. request, the most important value, is the time it takes to handle a single "request", that is, reading the token from the pipe and forwarding it to another server. This includes deleting the old timeout and creating a new one that moves the timeout into the future. Results name sockets create request EV 20000 62.66 7.99 Perl 20000 68.32 32.64 IOAsync 20000 174.06 101.15 epoll IOAsync 20000 174.67 610.84 poll Event 20000 202.69 242.91 Glib 20000 557.01 1689.52 POE 20000 341.54 12086.32 uses POE::Loop::Event Discussion This benchmark does measure scalability and overall performance of the particular event loop. EV is again fastest. Since it is using epoll on my system, the setup time is relatively high, though. Perl surprisingly comes second. It is much faster than the C-based event loops Event and Glib. IO::Async performs very well when using its epoll backend, and still quite good compared to Glib when using its pure perl backend. Event suffers from high setup time as well (look at its code and you will understand why). Callback invocation also has a high overhead compared to the "$_->() for .."-style loop that the Perl event loop uses. Event uses select or poll in basically all documented configurations. Glib is hit hard by its quadratic behaviour w.r.t. many watchers. It clearly fails to perform with many filehandles or in busy servers. POE is still completely out of the picture, taking over 1000 times as long as EV, and over 100 times as long as the Perl implementation, even though it uses a C-based event loop in this case. Summary
BENCHMARKING SMALL SERVERSWhile event loops should scale (and select-based ones do not...) even to large servers, most programs we (or I :) actually write have only a few I/O watchers.In this benchmark, I use the same benchmark program as in the large server case, but it uses only eight "servers", of which three are active at any one time. This should reflect performance for a small server relatively well. The columns are identical to the previous table. Results name sockets create request EV 16 20.00 6.54 Perl 16 25.75 12.62 Event 16 81.27 35.86 Glib 16 32.63 15.48 POE 16 261.87 276.28 uses POE::Loop::Event Discussion The benchmark tries to test the performance of a typical small server. While knowing how various event loops perform is interesting, keep in mind that their overhead in this case is usually not as important, due to the small absolute number of watchers (that is, you need efficiency and speed most when you have lots of watchers, not when you only have a few of them). EV is again fastest. Perl again comes second. It is noticeably faster than the C-based event loops Event and Glib, although the difference is too small to really matter. POE also performs much better in this case, but is is still far behind the others. Summary
THE IO::Lambda BENCHMARKRecently I was told about the benchmark in the IO::Lambda manpage, which could be misinterpreted to make AnyEvent look bad. In fact, the benchmark simply compares IO::Lambda with POE, and IO::Lambda looks better (which shouldn't come as a surprise to anybody). As such, the benchmark is fine, and mostly shows that the AnyEvent backend from IO::Lambda isn't very optimal. But how would AnyEvent compare when used without the extra baggage? To explore this, I wrote the equivalent benchmark for AnyEvent.The benchmark itself creates an echo-server, and then, for 500 times, connects to the echo server, sends a line, waits for the reply, and then creates the next connection. This is a rather bad benchmark, as it doesn't test the efficiency of the framework or much non-blocking I/O, but it is a benchmark nevertheless. name runtime Lambda/select 0.330 sec + optimized 0.122 sec Lambda/AnyEvent 0.327 sec + optimized 0.138 sec Raw sockets/select 0.077 sec POE/select, components 0.662 sec POE/select, raw sockets 0.226 sec POE/select, optimized 0.404 sec AnyEvent/select/nb 0.085 sec AnyEvent/EV/nb 0.068 sec +state machine 0.134 sec The benchmark is also a bit unfair (my fault): the IO::Lambda/POE benchmarks actually make blocking connects and use 100% blocking I/O, defeating the purpose of an event-based solution. All of the newly written AnyEvent benchmarks use 100% non-blocking connects (using AnyEvent::Socket::tcp_connect and the asynchronous pure perl DNS resolver), so AnyEvent is at a disadvantage here, as non-blocking connects generally require a lot more bookkeeping and event handling than blocking connects (which involve a single syscall only). The last AnyEvent benchmark additionally uses AnyEvent::Handle, which offers similar expressive power as POE and IO::Lambda, using conventional Perl syntax. This means that both the echo server and the client are 100% non-blocking, further placing it at a disadvantage. As you can see, the AnyEvent + EV combination even beats the hand-optimised "raw sockets benchmark", while AnyEvent + its pure perl backend easily beats IO::Lambda and POE. And even the 100% non-blocking version written using the high-level (and slow :) AnyEvent::Handle abstraction beats both POE and IO::Lambda higher level ("unoptimised") abstractions by a large margin, even though it does all of DNS, tcp-connect and socket I/O in a non-blocking way. The two AnyEvent benchmarks programs can be found as eg/ae0.pl and eg/ae2.pl in the AnyEvent distribution, the remaining benchmarks are part of the IO::Lambda distribution and were used without any changes. SIGNALSAnyEvent currently installs handlers for these signals:
RECOMMENDED/OPTIONAL MODULESOne of AnyEvent's main goals is to be 100% Pure-Perl(tm): only perl (and its built-in modules) are required to use it.That does not mean that AnyEvent won't take advantage of some additional modules if they are installed. This section explains which additional modules will be used, and how they affect AnyEvent's operation.
FORKMost event libraries are not fork-safe. The ones who are usually are because they rely on inefficient but fork-safe "select" or "poll" calls - higher performance APIs such as BSD's kqueue or the dreaded Linux epoll are usually badly thought-out hacks that are incompatible with fork in one way or another. Only EV is fully fork-aware and ensures that you continue event-processing in both parent and child (or both, if you know what you are doing).This means that, in general, you cannot fork and do event processing in the child if the event library was initialised before the fork (which usually happens when the first AnyEvent watcher is created, or the library is loaded). If you have to fork, you must either do so before creating your first watcher OR you must not use AnyEvent at all in the child OR you must do something completely out of the scope of AnyEvent (see below). The problem of doing event processing in the parent and the child is much more complicated: even for backends that are fork-aware or fork-safe, their behaviour is not usually what you want: fork clones all watchers, that means all timers, I/O watchers etc. are active in both parent and child, which is almost never what you want. Using "exec" to start worker children from some kind of manage prrocess is usually preferred, because it is much easier and cleaner, at the expense of having to have another binary. In addition to logical problems with fork, there are also implementation problems. For example, on POSIX systems, you cannot fork at all in Perl code if a thread (I am talking of pthreads here) was ever created in the process, and this is just the tip of the iceberg. In general, using fork from Perl is difficult, and attempting to use fork without an exec to implement some kind of parallel processing is almost certainly doomed. To safely fork and exec, you should use a module such as Proc::FastSpawn that let's you safely fork and exec new processes. If you want to do multiprocessing using processes, you can look at the AnyEvent::Fork module (and some related modules such as AnyEvent::Fork::RPC, AnyEvent::Fork::Pool and AnyEvent::Fork::Remote). This module allows you to safely create subprocesses without any limitations - you can use X11 toolkits or AnyEvent in the children created by AnyEvent::Fork safely and without any special precautions. SECURITY CONSIDERATIONSAnyEvent can be forced to load any event model via $ENV{PERL_ANYEVENT_MODEL}. While this cannot (to my knowledge) be used to execute arbitrary code or directly gain access, it can easily be used to make the program hang or malfunction in subtle ways, as AnyEvent watchers will not be active when the program uses a different event model than specified in the variable.You can make AnyEvent completely ignore this variable by deleting it before the first watcher gets created, e.g. with a "BEGIN" block: BEGIN { delete $ENV{PERL_ANYEVENT_MODEL} } use AnyEvent; Similar considerations apply to $ENV{PERL_ANYEVENT_VERBOSE}, as that can be used to probe what backend is used and gain other information (which is probably even less useful to an attacker than PERL_ANYEVENT_MODEL), and $ENV{PERL_ANYEVENT_STRICT}. Note that AnyEvent will remove all environment variables starting with "PERL_ANYEVENT_" from %ENV when it is loaded while taint mode is enabled. BUGSPerl 5.8 has numerous memleaks that sometimes hit this module and are hard to work around. If you suffer from memleaks, first upgrade to Perl 5.10 and check wether the leaks still show up. (Perl 5.10.0 has other annoying memleaks, such as leaking on "map" and "grep" but it is usually not as pronounced).SEE ALSOTutorial/Introduction: AnyEvent::Intro.FAQ: AnyEvent::FAQ. Utility functions: AnyEvent::Util (misc. grab-bag), AnyEvent::Log (simply logging). Development/Debugging: AnyEvent::Strict (stricter checking), AnyEvent::Debug (interactive shell, watcher tracing). Supported event modules: AnyEvent::Loop, EV, EV::Glib, Glib::EV, Event, Glib::Event, Glib, Tk, Event::Lib, Qt, POE, FLTK, Cocoa::EventLoop, UV. Implementations: AnyEvent::Impl::EV, AnyEvent::Impl::Event, AnyEvent::Impl::Glib, AnyEvent::Impl::Tk, AnyEvent::Impl::Perl, AnyEvent::Impl::EventLib, AnyEvent::Impl::Qt, AnyEvent::Impl::POE, AnyEvent::Impl::IOAsync, AnyEvent::Impl::Irssi, AnyEvent::Impl::FLTK, AnyEvent::Impl::Cocoa, AnyEvent::Impl::UV. Non-blocking handles, pipes, stream sockets, TCP clients and servers: AnyEvent::Handle, AnyEvent::Socket, AnyEvent::TLS. Asynchronous File I/O: AnyEvent::IO. Asynchronous DNS: AnyEvent::DNS. Thread support: Coro, Coro::AnyEvent, Coro::EV, Coro::Event. Nontrivial usage examples: AnyEvent::GPSD, AnyEvent::IRC, AnyEvent::HTTP. AUTHORMarc Lehmann <schmorp@schmorp.de> http://anyevent.schmorp.de
Visit the GSP FreeBSD Man Page Interface. |