|
|
| |
BN_DUMP(3) |
FreeBSD Library Functions Manual |
BN_DUMP(3) |
bn_mul_words , bn_mul_add_words ,
bn_sqr_words , bn_div_words ,
bn_add_words , bn_sub_words ,
bn_mul_comba4 , bn_mul_comba8 ,
bn_sqr_comba4 , bn_sqr_comba8 ,
bn_cmp_words , bn_mul_normal ,
bn_mul_low_normal ,
bn_mul_recursive ,
bn_mul_part_recursive ,
bn_mul_low_recursive ,
bn_mul_high , bn_sqr_normal ,
bn_sqr_recursive , bn_expand ,
bn_wexpand , bn_expand2 ,
bn_fix_top , bn_check_top ,
bn_print , bn_dump ,
bn_set_max , bn_set_high ,
bn_set_low , mul ,
mul_add , sqr —
BIGNUM library internal functions
#include <openssl/bn.h>
BN_ULONG
bn_mul_words (BN_ULONG *rp,
BN_ULONG *ap, int num,
BN_ULONG w);
BN_ULONG
bn_mul_add_words (BN_ULONG *rp,
BN_ULONG *ap, int num,
BN_ULONG w);
void
bn_sqr_words (BN_ULONG *rp,
BN_ULONG *ap, int num);
BN_ULONG
bn_div_words (BN_ULONG h,
BN_ULONG l, BN_ULONG d);
BN_ULONG
bn_add_words (BN_ULONG *rp,
BN_ULONG *ap, BN_ULONG *bp,
int num);
BN_ULONG
bn_sub_words (BN_ULONG *rp,
BN_ULONG *ap, BN_ULONG *bp,
int num);
void
bn_mul_comba4 (BN_ULONG *r,
BN_ULONG *a, BN_ULONG *b);
void
bn_mul_comba8 (BN_ULONG *r,
BN_ULONG *a, BN_ULONG *b);
void
bn_sqr_comba4 (BN_ULONG *r,
BN_ULONG *a);
void
bn_sqr_comba8 (BN_ULONG *r,
BN_ULONG *a);
int
bn_cmp_words (BN_ULONG *a,
BN_ULONG *b, int n);
void
bn_mul_normal (BN_ULONG *r,
BN_ULONG *a, int na,
BN_ULONG *b, int nb);
void
bn_mul_low_normal (BN_ULONG *r,
BN_ULONG *a, BN_ULONG *b,
int n);
void
bn_mul_recursive (BN_ULONG *r,
BN_ULONG *a, BN_ULONG *b,
int n2, int dna,
int dnb, BN_ULONG *tmp);
void
bn_mul_part_recursive (BN_ULONG
*r, BN_ULONG *a, BN_ULONG
*b, int n, int tna,
int tnb, BN_ULONG *tmp);
void
bn_mul_low_recursive (BN_ULONG
*r, BN_ULONG *a, BN_ULONG
*b, int n2, BN_ULONG
*tmp);
void
bn_mul_high (BN_ULONG *r,
BN_ULONG *a, BN_ULONG *b,
BN_ULONG *l, int n2,
BN_ULONG *tmp);
void
bn_sqr_normal (BN_ULONG *r,
BN_ULONG *a, int n,
BN_ULONG *tmp);
void
bn_sqr_recursive (BN_ULONG *r,
BN_ULONG *a, int n2,
BN_ULONG *tmp);
void
mul (BN_ULONG r,
BN_ULONG a, BN_ULONG w,
BN_ULONG c);
void
mul_add (BN_ULONG r,
BN_ULONG a, BN_ULONG w,
BN_ULONG c);
void
sqr (BN_ULONG r0,
BN_ULONG r1, BN_ULONG a);
BIGNUM *
bn_expand (BIGNUM *a,
int bits);
BIGNUM *
bn_wexpand (BIGNUM *a,
int n);
BIGNUM *
bn_expand2 (BIGNUM *a,
int n);
void
bn_fix_top (BIGNUM *a);
void
bn_check_top (BIGNUM *a);
void
bn_print (BIGNUM *a);
void
bn_dump (BN_ULONG *d,
int n);
void
bn_set_max (BIGNUM *a);
void
bn_set_high (BIGNUM *r,
BIGNUM *a, int n);
void
bn_set_low (BIGNUM *r,
BIGNUM *a, int n);
This page documents the internal functions used by the OpenSSL
BIGNUM implementation. They are described here to
facilitate debugging and extending the library. They are not
to be used by applications.
typedef struct bignum_st BIGNUM;
struct bignum_st {
BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
int top; /* Index of last used d +1. */
/* The next are internal book keeping for bn_expand. */
int dmax; /* Size of the d array. */
int neg; /* one if the number is negative */
int flags;
};
The integer value is stored in d, a
malloc(3)'ed
array of words (BN_ULONG), least significant word
first. A BN_ULONG can be either 16, 32 or 64 bits in
size, depending on the 'number of bits' (BITS2 )
specified in
<openssl/bn.h> .
dmax is the size of the
d array that has been allocated.
top is the number of words being used, so for a value
of 4, bn.d[0]=4 and bn.top=1. neg is 1 if the number
is negative. When a BIGNUM is 0, the
d field can be NULL and
top == 0.
flags is a bit field of flags which are
defined in <openssl/bn.h> .
The flags begin with BN_FLG_ . The macros
BN_set_flags (b,
n) and
BN_get_flags (b,
n) exist to enable or fetch flag(s)
n from a BIGNUM structure
b.
Various routines in this library require the use of temporary
BIGNUM variables during their execution. Since dynamic
memory allocation to create BIGNUMs is rather
expensive when used in conjunction with repeated subroutine calls, the
BN_CTX structure is used. This structure contains
BN_CTX_NUM BIGNUMs; see
BN_CTX_start(3).
These functions are implemented in C and for several platforms in assembly
language:
bn_mul_words (rp,
ap, num,
w) operates on the num word
arrays rp and ap. It computes
ap * w, places the result in
rp, and returns the high word (carry).
bn_mul_add_words (rp,
ap, num,
w) operates on the num word
arrays rp and ap. It computes
ap * w +
rp, places the result in rp, and
returns the high word (carry).
bn_sqr_words (rp,
ap, num) operates on the
num word array ap and the
2*num word array ap. It computes
ap * ap word-wise, and places
the low and high bytes of the result in rp.
bn_div_words (h,
l, d) divides the two word
number (h, l) by
d and returns the result.
bn_add_words (rp,
ap, bp,
num) operates on the num word
arrays ap, bp and
rp. It computes ap +
bp, places the result in rp, and
returns the high word (carry).
bn_sub_words (rp,
ap, bp,
num) operates on the num word
arrays ap, bp and
rp. It computes ap -
bp, places the result in rp, and
returns the carry (1 if bp ⟩
ap, 0 otherwise).
bn_mul_comba4 (r,
a, b) operates on the 4 word
arrays a and b and the 8-word
array r. It computes
a*b and places the result in
r.
bn_mul_comba8 (r,
a, b) operates on the 8-word
arrays a and b and the 16-word
array r. It computes
a*b and places the result in
r.
bn_sqr_comba4 (r,
a, b) operates on the 4-word
arrays a and b and the 8-word
array r.
bn_sqr_comba8 (r,
a, b) operates on the 8-word
arrays a and b and the 16 word
array r.
The following functions are implemented in C:
bn_cmp_words (a,
b, n) operates on the
n word arrays a and
b. It returns 1, 0 and -1 if a
is greater than, equal and less than b.
bn_mul_normal (r,
a, na, b,
nb) operates on the na word
array a, the nb word array
b and the
na+nb word array
r. It computes
a*b and places the result in
r.
bn_mul_low_normal (r,
a, b, n)
operates on the n word arrays r,
a and b. It computes the
n low words of
a*b and places the result in
r.
bn_mul_recursive (r,
a, b, n2,
dna, dnb,
t) operates on the word arrays a
and b of length
n2+dna and
n2+dnb
(dna and dnb are currently
allowed to be 0 or negative) and the 2*n2 word arrays
r and t. n2
must be a power of 2. It computes
a*b and places the result in
r.
bn_mul_part_recursive (r,
a, b, n,
tna, tnb,
tmp) operates on the word arrays
a and b of length
n+tna and
n+tnb and the
4*n word arrays r and
tmp.
bn_mul_low_recursive (r,
a, b, n2,
tmp) operates on the n2 word
arrays r and tmp and the
n2/2 word arrays a and
b.
bn_mul_high (r,
a, b, l,
n2, tmp) operates on the
n2 word arrays r,
a, b and l
(?) and the 3*n2 word array
tmp.
BN_mul(3)
calls bn_mul_normal (), or an optimized
implementation if the factors have the same size:
bn_mul_comba8 () is used if they are 8 words long,
bn_mul_recursive () if they are larger than
BN_MULL_SIZE_NORMAL and the size is an exact
multiple of the word size, and
bn_mul_part_recursive () for others that are larger
than BN_MULL_SIZE_NORMAL .
bn_sqr_normal (r,
a, n, tmp)
operates on the n word array a
and the 2*n word arrays tmp and
r.
The implementations use the following macros which, depending on
the architecture, may use long long C operations or
inline assembler. They are defined in bn_lcl.h.
mul (r,
a, w, c)
computes
w*a+c and
places the low word of the result in r and the high
word in c.
mul_add (r,
a, w, c)
computes
w*a+r+c
and places the low word of the result in r and the
high word in c.
sqr (r0,
r1, a) computes
a*a and places the low word of
the result in r0 and the high word in
r1.
bn_expand () ensures that b has
enough space for a bits bit number.
bn_wexpand () ensures that b has
enough space for an n word number. If the number has to
be expanded, both macros call bn_expand2 (), which
allocates a new d array and copies the data. They return
NULL on error, b otherwise.
The bn_fix_top () macro reduces
a->top to point to the most
significant non-zero word plus one when a has
shrunk.
bn_check_top () verifies that
‘((a)-⟩top ⟩= 0 &&
(a)-⟩top ⟨= (a)-⟩dmax) ’. A violation will
cause the program to abort.
bn_print () prints a
to stderr . bn_dump () prints
n words at d (in reverse order,
i.e. most significant word first) to stderr .
bn_set_max () makes a
a static number with a dmax of its current size. This
is used by bn_set_low () and
bn_set_high () to make r a
read-only BIGNUM that contains the
n low or high words of a.
If BN_DEBUG is not defined,
bn_check_top (), bn_print (),
bn_dump () and bn_set_max ()
are defined as empty macros.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |