|
|
| |
Data::Dumper(3) |
Perl Programmers Reference Guide |
Data::Dumper(3) |
Data::Dumper - stringified perl data structures, suitable for both printing and
"eval"
use Data::Dumper;
# simple procedural interface
print Dumper($foo, $bar);
# extended usage with names
print Data::Dumper->Dump([$foo, $bar], [qw(foo *ary)]);
# configuration variables
{
local $Data::Dumper::Purity = 1;
eval Data::Dumper->Dump([$foo, $bar], [qw(foo *ary)]);
}
# OO usage
$d = Data::Dumper->new([$foo, $bar], [qw(foo *ary)]);
...
print $d->Dump;
...
$d->Purity(1)->Terse(1)->Deepcopy(1);
eval $d->Dump;
Given a list of scalars or reference variables, writes out their contents in
perl syntax. The references can also be objects. The content of each variable
is output in a single Perl statement. Handles self-referential structures
correctly.
The return value can be "eval"ed
to get back an identical copy of the original reference structure. (Please
do consider the security implications of eval'ing code from untrusted
sources!)
Any references that are the same as one of those passed in will be
named $VARn (where n is a numeric
suffix), and other duplicate references to substructures within
$VARn will be appropriately labeled using
arrow notation. You can specify names for individual values to be dumped if
you use the "Dump()" method, or you can
change the default $VAR prefix to something else.
See $Data::Dumper::Varname and
$Data::Dumper::Terse below.
The default output of self-referential structures can be
"eval"ed, but the nested references to
$VARn will be undefined, since a recursive
structure cannot be constructed using one Perl statement. You should set the
"Purity" flag to 1 to get additional
statements that will correctly fill in these references. Moreover, if
"eval"ed when strictures are in effect,
you need to ensure that any variables it accesses are previously
declared.
In the extended usage form, the references to be dumped can be
given user-specified names. If a name begins with a
"*", the output will describe the
dereferenced type of the supplied reference for hashes and arrays, and
coderefs. Output of names will be avoided where possible if the
"Terse" flag is set.
In many cases, methods that are used to set the internal state of
the object will return the object itself, so method calls can be
conveniently chained together.
Several styles of output are possible, all controlled by setting
the "Indent" flag. See "Configuration
Variables or Methods" below for details.
- PACKAGE->new(ARRAYREF [, ARRAYREF])
- Returns a newly created "Data::Dumper"
object. The first argument is an anonymous array of values to be dumped.
The optional second argument is an anonymous array of names for the
values. The names need not have a leading
"$" sign, and must be comprised of
alphanumeric characters. You can begin a name with a
"*" to specify that the dereferenced
type must be dumped instead of the reference itself, for ARRAY and HASH
references.
The prefix specified by
$Data::Dumper::Varname will be used with a
numeric suffix if the name for a value is undefined.
Data::Dumper will catalog all references encountered while
dumping the values. Cross-references (in the form of names of
substructures in perl syntax) will be inserted at all possible points,
preserving any structural interdependencies in the original set of
values. Structure traversal is depth-first, and proceeds in order from
the first supplied value to the last.
- $OBJ->Dump or
PACKAGE->Dump(ARRAYREF [, ARRAYREF])
- Returns the stringified form of the values stored in the object
(preserving the order in which they were supplied to
"new"), subject to the configuration
options below. In a list context, it returns a list of strings
corresponding to the supplied values.
The second form, for convenience, simply calls the
"new" method on its arguments before
dumping the object immediately.
- $OBJ->Seen([HASHREF])
- Queries or adds to the internal table of already encountered references.
You must use "Reset" to explicitly clear
the table if needed. Such references are not dumped; instead, their names
are inserted wherever they are encountered subsequently. This is useful
especially for properly dumping subroutine references.
Expects an anonymous hash of name => value pairs. Same
rules apply for names as in "new". If
no argument is supplied, will return the "seen" list of name
=> value pairs, in a list context. Otherwise, returns the object
itself.
- $OBJ->Values([ARRAYREF])
- Queries or replaces the internal array of values that will be dumped. When
called without arguments, returns the values as a list. When called with a
reference to an array of replacement values, returns the object itself.
When called with any other type of argument, dies.
- $OBJ->Names([ARRAYREF])
- Queries or replaces the internal array of user supplied names for the
values that will be dumped. When called without arguments, returns the
names. When called with an array of replacement names, returns the object
itself. If the number of replacement names exceeds the number of values to
be named, the excess names will not be used. If the number of replacement
names falls short of the number of values to be named, the list of
replacement names will be exhausted and remaining values will not be
renamed. When called with any other type of argument, dies.
- $OBJ->Reset
- Clears the internal table of "seen" references and returns the
object itself.
- Dumper(LIST)
- Returns the stringified form of the values in the list, subject to the
configuration options below. The values will be named
$VARn in the output, where n is a
numeric suffix. Will return a list of strings in a list context.
Several configuration variables can be used to control the kind of output
generated when using the procedural interface. These variables are usually
"local"ized in a block so that other parts
of the code are not affected by the change.
These variables determine the default state of the object created
by calling the "new" method, but cannot be
used to alter the state of the object thereafter. The equivalent method
names should be used instead to query or set the internal state of the
object.
The method forms return the object itself when called with
arguments, so that they can be chained together nicely.
- $Data::Dumper::Indent or
$OBJ->Indent([NEWVAL])
Controls the style of indentation. It can be set to 0, 1, 2 or
3. Style 0 spews output without any newlines, indentation, or spaces
between list items. It is the most compact format possible that can
still be called valid perl. Style 1 outputs a readable form with
newlines but no fancy indentation (each level in the structure is simply
indented by a fixed amount of whitespace). Style 2 (the default) outputs
a very readable form which lines up the hash keys. Style 3 is like style
2, but also annotates the elements of arrays with their index (but the
comment is on its own line, so array output consumes twice the number of
lines). Style 2 is the default.
- $Data::Dumper::Trailingcomma or
$OBJ->Trailingcomma([NEWVAL])
Controls whether a comma is added after the last element of an
array or hash. Even when true, no comma is added between the last
element of an array or hash and a closing bracket when they appear on
the same line. The default is false.
- $Data::Dumper::Purity or
$OBJ->Purity([NEWVAL])
Controls the degree to which the output can be
"eval"ed to recreate the supplied
reference structures. Setting it to 1 will output additional perl
statements that will correctly recreate nested references. The default
is 0.
- $Data::Dumper::Pad or
$OBJ->Pad([NEWVAL])
Specifies the string that will be prefixed to every line of
the output. Empty string by default.
- $Data::Dumper::Varname or
$OBJ ->Varname([NEWVAL])
Contains the prefix to use for tagging variable names in the
output. The default is "VAR".
- $Data::Dumper::Useqq or
$OBJ->Useqq([NEWVAL])
When set, enables the use of double quotes for representing
string values. Whitespace other than space will be represented as
"[\n\t\r]", "unsafe"
characters will be backslashed, and unprintable characters will be
output as quoted octal integers. The default is 0.
- $Data::Dumper::Terse or
$OBJ->Terse([NEWVAL])
When set, Data::Dumper will emit single, non-self-referential
values as atoms/terms rather than statements. This means that the
$VARn names will be avoided where
possible, but be advised that such output may not always be parseable by
"eval".
- $Data::Dumper::Freezer or
$OBJ->Freezer([NEWVAL])
Can be set to a method name, or to an empty string to disable
the feature. Data::Dumper will invoke that method via the object before
attempting to stringify it. This method can alter the contents of the
object (if, for instance, it contains data allocated from C), and even
rebless it in a different package. The client is responsible for making
sure the specified method can be called via the object, and that the
object ends up containing only perl data types after the method has been
called. Defaults to an empty string.
If an object does not support the method specified (determined
using UNIVERSAL::can()) then the call will be skipped. If the
method dies a warning will be generated.
- $Data::Dumper::Toaster or
$OBJ->Toaster([NEWVAL])
Can be set to a method name, or to an empty string to disable
the feature. Data::Dumper will emit a method call for any objects that
are to be dumped using the syntax "bless(DATA,
CLASS)->METHOD()". Note that this means that the method
specified will have to perform any modifications required on the object
(like creating new state within it, and/or reblessing it in a different
package) and then return it. The client is responsible for making sure
the method can be called via the object, and that it returns a valid
object. Defaults to an empty string.
- $Data::Dumper::Deepcopy or
$OBJ->Deepcopy([NEWVAL])
Can be set to a boolean value to enable deep copies of
structures. Cross-referencing will then only be done when absolutely
essential (i.e., to break reference cycles). Default is 0.
- $Data::Dumper::Quotekeys or
$OBJ->Quotekeys([NEWVAL])
Can be set to a boolean value to control whether hash keys are
quoted. A defined false value will avoid quoting hash keys when it looks
like a simple string. Default is 1, which will always enclose hash keys
in quotes.
- $Data::Dumper::Bless or
$OBJ->Bless([NEWVAL])
Can be set to a string that specifies an alternative to the
"bless" builtin operator used to
create objects. A function with the specified name should exist, and
should accept the same arguments as the builtin. Default is
"bless".
- $Data::Dumper::Pair or
$OBJ->Pair([NEWVAL])
Can be set to a string that specifies the separator between
hash keys and values. To dump nested hash, array and scalar values to
JavaScript, use: "$Data::Dumper::Pair = ' :
';". Implementing "bless"
in JavaScript is left as an exercise for the reader. A function with the
specified name exists, and accepts the same arguments as the
builtin.
Default is: " => ".
- $Data::Dumper::Maxdepth or
$OBJ->Maxdepth([NEWVAL])
Can be set to a positive integer that specifies the depth
beyond which we don't venture into a structure. Has no effect when
"Data::Dumper::Purity" is set. (Useful
in debugger when we often don't want to see more than enough). Default
is 0, which means there is no maximum depth.
- $Data::Dumper::Maxrecurse or
$OBJ->Maxrecurse([NEWVAL])
Can be set to a positive integer that specifies the depth
beyond which recursion into a structure will throw an exception. This is
intended as a security measure to prevent perl running out of stack
space when dumping an excessively deep structure. Can be set to 0 to
remove the limit. Default is 1000.
- $Data::Dumper::Useperl or
$OBJ->Useperl([NEWVAL])
Can be set to a boolean value which controls whether the pure
Perl implementation of "Data::Dumper"
is used. The "Data::Dumper" module is
a dual implementation, with almost all functionality written in both
pure Perl and also in XS ('C'). Since the XS version is much faster, it
will always be used if possible. This option lets you override the
default behavior, usually for testing purposes only. Default is 0, which
means the XS implementation will be used if possible.
- $Data::Dumper::Sortkeys or
$OBJ->Sortkeys([NEWVAL])
Can be set to a boolean value to control whether hash keys are
dumped in sorted order. A true value will cause the keys of all hashes
to be dumped in Perl's default sort order. Can also be set to a
subroutine reference which will be called for each hash that is dumped.
In this case "Data::Dumper" will call
the subroutine once for each hash, passing it the reference of the hash.
The purpose of the subroutine is to return a reference to an array of
the keys that will be dumped, in the order that they should be dumped.
Using this feature, you can control both the order of the keys, and
which keys are actually used. In other words, this subroutine acts as a
filter by which you can exclude certain keys from being dumped. Default
is 0, which means that hash keys are not sorted.
- $Data::Dumper::Deparse or
$OBJ->Deparse([NEWVAL])
Can be set to a boolean value to control whether code
references are turned into perl source code. If set to a true value,
"B::Deparse" will be used to get the
source of the code reference. In older versions, using this option
imposed a significant performance penalty when dumping parts of a data
structure other than code references, but that is no longer the
case.
Caution : use this option only if you know that your coderefs
will be properly reconstructed by
"B::Deparse".
- $Data::Dumper::Sparseseen or
$OBJ->Sparseseen([NEWVAL])
By default, Data::Dumper builds up the "seen" hash
of scalars that it has encountered during serialization. This is very
expensive. This seen hash is necessary to support and even just detect
circular references. It is exposed to the user via the
"Seen()" call both for writing and
reading.
If you, as a user, do not need explicit access to the
"seen" hash, then you can set the
"Sparseseen" option to allow
Data::Dumper to eschew building the "seen" hash for scalars
that are known not to possess more than one reference. This speeds up
serialization considerably if you use the XS implementation.
Note: If you turn on
"Sparseseen", then you must not rely
on the content of the seen hash since its contents will be an
implementation detail!
Run these code snippets to get a quick feel for the behavior of this module.
When you are through with these examples, you may want to add or change the
various configuration variables described above, to see their behavior. (See
the testsuite in the Data::Dumper distribution for more examples.)
use Data::Dumper;
package Foo;
sub new {bless {'a' => 1, 'b' => sub { return "foo" }}, $_[0]};
package Fuz; # a weird REF-REF-SCALAR object
sub new {bless \($_ = \ 'fu\'z'), $_[0]};
package main;
$foo = Foo->new;
$fuz = Fuz->new;
$boo = [ 1, [], "abcd", \*foo,
{1 => 'a', 023 => 'b', 0x45 => 'c'},
\\"p\q\'r", $foo, $fuz];
########
# simple usage
########
$bar = eval(Dumper($boo));
print($@) if $@;
print Dumper($boo), Dumper($bar); # pretty print (no array indices)
$Data::Dumper::Terse = 1; # don't output names where feasible
$Data::Dumper::Indent = 0; # turn off all pretty print
print Dumper($boo), "\n";
$Data::Dumper::Indent = 1; # mild pretty print
print Dumper($boo);
$Data::Dumper::Indent = 3; # pretty print with array indices
print Dumper($boo);
$Data::Dumper::Useqq = 1; # print strings in double quotes
print Dumper($boo);
$Data::Dumper::Pair = " : "; # specify hash key/value separator
print Dumper($boo);
########
# recursive structures
########
@c = ('c');
$c = \@c;
$b = {};
$a = [1, $b, $c];
$b->{a} = $a;
$b->{b} = $a->[1];
$b->{c} = $a->[2];
print Data::Dumper->Dump([$a,$b,$c], [qw(a b c)]);
$Data::Dumper::Purity = 1; # fill in the holes for eval
print Data::Dumper->Dump([$a, $b], [qw(*a b)]); # print as @a
print Data::Dumper->Dump([$b, $a], [qw(*b a)]); # print as %b
$Data::Dumper::Deepcopy = 1; # avoid cross-refs
print Data::Dumper->Dump([$b, $a], [qw(*b a)]);
$Data::Dumper::Purity = 0; # avoid cross-refs
print Data::Dumper->Dump([$b, $a], [qw(*b a)]);
########
# deep structures
########
$a = "pearl";
$b = [ $a ];
$c = { 'b' => $b };
$d = [ $c ];
$e = { 'd' => $d };
$f = { 'e' => $e };
print Data::Dumper->Dump([$f], [qw(f)]);
$Data::Dumper::Maxdepth = 3; # no deeper than 3 refs down
print Data::Dumper->Dump([$f], [qw(f)]);
########
# object-oriented usage
########
$d = Data::Dumper->new([$a,$b], [qw(a b)]);
$d->Seen({'*c' => $c}); # stash a ref without printing it
$d->Indent(3);
print $d->Dump;
$d->Reset->Purity(0); # empty the seen cache
print join "----\n", $d->Dump;
########
# persistence
########
package Foo;
sub new { bless { state => 'awake' }, shift }
sub Freeze {
my $s = shift;
print STDERR "preparing to sleep\n";
$s->{state} = 'asleep';
return bless $s, 'Foo::ZZZ';
}
package Foo::ZZZ;
sub Thaw {
my $s = shift;
print STDERR "waking up\n";
$s->{state} = 'awake';
return bless $s, 'Foo';
}
package main;
use Data::Dumper;
$a = Foo->new;
$b = Data::Dumper->new([$a], ['c']);
$b->Freezer('Freeze');
$b->Toaster('Thaw');
$c = $b->Dump;
print $c;
$d = eval $c;
print Data::Dumper->Dump([$d], ['d']);
########
# symbol substitution (useful for recreating CODE refs)
########
sub foo { print "foo speaking\n" }
*other = \&foo;
$bar = [ \&other ];
$d = Data::Dumper->new([\&other,$bar],['*other','bar']);
$d->Seen({ '*foo' => \&foo });
print $d->Dump;
########
# sorting and filtering hash keys
########
$Data::Dumper::Sortkeys = \&my_filter;
my $foo = { map { (ord, "$_$_$_") } 'I'..'Q' };
my $bar = { %$foo };
my $baz = { reverse %$foo };
print Dumper [ $foo, $bar, $baz ];
sub my_filter {
my ($hash) = @_;
# return an array ref containing the hash keys to dump
# in the order that you want them to be dumped
return [
# Sort the keys of %$foo in reverse numeric order
$hash eq $foo ? (sort {$b <=> $a} keys %$hash) :
# Only dump the odd number keys of %$bar
$hash eq $bar ? (grep {$_ % 2} keys %$hash) :
# Sort keys in default order for all other hashes
(sort keys %$hash)
];
}
Due to limitations of Perl subroutine call semantics, you cannot pass an array
or hash. Prepend it with a "\" to pass its
reference instead. This will be remedied in time, now that Perl has subroutine
prototypes. For now, you need to use the extended usage form, and prepend the
name with a "*" to output it as a hash or
array.
"Data::Dumper" cheats with CODE
references. If a code reference is encountered in the structure being
processed (and if you haven't set the
"Deparse" flag), an anonymous subroutine
that contains the string '"DUMMY"' will be inserted in its place,
and a warning will be printed if "Purity"
is set. You can "eval" the result, but
bear in mind that the anonymous sub that gets created is just a placeholder.
Even using the "Deparse" flag will in some
cases produce results that behave differently after being passed to
"eval"; see the documentation for
B::Deparse.
SCALAR objects have the weirdest looking
"bless" workaround.
Pure Perl version of
"Data::Dumper" escapes UTF-8 strings
correctly only in Perl 5.8.0 and later.
Starting from Perl 5.8.1 different runs of Perl will have different ordering of
hash keys. The change was done for greater security, see "Algorithmic
Complexity Attacks" in perlsec. This means that different runs of Perl
will have different Data::Dumper outputs if the data contains hashes. If you
need to have identical Data::Dumper outputs from different runs of Perl, use
the environment variable PERL_HASH_SEED, see "PERL_HASH_SEED" in
perlrun. Using this restores the old (platform-specific) ordering: an even
prettier solution might be to use the
"Sortkeys" filter of Data::Dumper.
Gurusamy Sarathy gsar@activestate.com
Copyright (c) 1996-2019 Gurusamy Sarathy. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |