GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
EVP_AEAD_CTX_INIT(3) FreeBSD Library Functions Manual EVP_AEAD_CTX_INIT(3)

EVP_AEAD_CTX_new, EVP_AEAD_CTX_free, EVP_AEAD_CTX_init, EVP_AEAD_CTX_cleanup, EVP_AEAD_CTX_open, EVP_AEAD_CTX_seal, EVP_AEAD_key_length, EVP_AEAD_max_overhead, EVP_AEAD_max_tag_len, EVP_AEAD_nonce_length, EVP_aead_aes_128_gcm, EVP_aead_aes_256_gcm, EVP_aead_chacha20_poly1305, EVP_aead_xchacha20_poly1305
authenticated encryption with additional data

#include <openssl/evp.h>

EVP_AEAD_CTX *
EVP_AEAD_CTX_new(void);

void
EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);

int
EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const unsigned char *key, size_t key_len, size_t tag_len, ENGINE *impl);

void
EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);

int
EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len, size_t max_out_len, const unsigned char *nonce, size_t nonce_len, const unsigned char *in, size_t in_len, const unsigned char *ad, size_t ad_len);

int
EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len, size_t max_out_len, const unsigned char *nonce, size_t nonce_len, const unsigned char *in, size_t in_len, const unsigned char *ad, size_t ad_len);

size_t
EVP_AEAD_key_length(const EVP_AEAD *aead);

size_t
EVP_AEAD_max_overhead(const EVP_AEAD *aead);

size_t
EVP_AEAD_max_tag_len(const EVP_AEAD *aead);

size_t
EVP_AEAD_nonce_length(const EVP_AEAD *aead);

const EVP_AEAD *
EVP_aead_aes_128_gcm(void);

const EVP_AEAD *
EVP_aead_aes_256_gcm(void);

const EVP_AEAD *
EVP_aead_chacha20_poly1305(void);

const EVP_AEAD *
EVP_aead_xchacha20_poly1305(void);

AEAD (Authenticated Encryption with Additional Data) couples confidentiality and integrity in a single primitive. AEAD algorithms take a key and can then seal and open individual messages. Each message has a unique, per-message nonce and, optionally, additional data which is authenticated but not included in the output.

EVP_AEAD_CTX_new() allocates a new context for use with EVP_AEAD_CTX_init(). It can be cleaned up for reuse with EVP_AEAD_CTX_cleanup() and must be freed with EVP_AEAD_CTX_free().

EVP_AEAD_CTX_free() cleans up ctx and frees the space allocated to it.

EVP_AEAD_CTX_init() initializes the context ctx for the given AEAD algorithm aead. The impl argument must be NULL for the default implementation; other values are currently not supported. Authentication tags may be truncated by passing a tag length. A tag length of zero indicates the default tag length should be used.

EVP_AEAD_CTX_cleanup() frees any data allocated for the context ctx. After EVP_AEAD_CTX_cleanup(), ctx is in the same state as after EVP_AEAD_CTX_new().

EVP_AEAD_CTX_open() authenticates the input in and optional additional data ad, decrypting the input and writing it as output out. This function may be called (with the same EVP_AEAD_CTX) concurrently with itself or with EVP_AEAD_CTX_seal(). At most the number of input bytes are written as output. In order to ensure success, max_out_len should be at least the same as the input length in_len. On successful return out_len is set to the actual number of bytes written. The length of the nonce specified with nonce_len must be equal to the result of EVP_AEAD_nonce_length for this AEAD. EVP_AEAD_CTX_open() never results in partial output. If max_out_len is insufficient, zero will be returned and out_len will be set to zero. If the input and output are aliased then out must be <= in.

EVP_AEAD_CTX_seal() encrypts and authenticates the input and authenticates any additional data provided in ad, the encrypted input and authentication tag being written as output out. This function may be called (with the same EVP_AEAD_CTX) concurrently with itself or with EVP_AEAD_CTX_open(). At most max_out_len bytes are written as output and, in order to ensure success, this value should be the in_len plus the result of EVP_AEAD_max_overhead(). On successful return, out_len is set to the actual number of bytes written. The length of the nonce specified with nonce_len must be equal to the result of EVP_AEAD_nonce_length() for this AEAD. EVP_AEAD_CTX_seal() never results in a partial output. If max_out_len is insufficient, zero will be returned and out_len will be set to zero. If the input and output are aliased then out must be <= in.

EVP_AEAD_key_length(), EVP_AEAD_max_overhead(), EVP_AEAD_max_tag_len(), and EVP_AEAD_nonce_length() provide information about the AEAD algorithm aead.

All cipher algorithms have a fixed key length unless otherwise stated. The following ciphers are available:

EVP_aead_aes_128_gcm()
AES-128 in Galois Counter Mode.
EVP_aead_aes_256_gcm()
AES-256 in Galois Counter Mode.
EVP_aead_chacha20_poly1305()
ChaCha20 with a Poly1305 authenticator.
EVP_aead_xchacha20_poly1305()
XChaCha20 with a Poly1305 authenticator.

Where possible the EVP_AEAD interface to AEAD ciphers should be used in preference to the older EVP variants or to the low level interfaces. This is because the code then becomes transparent to the AEAD cipher used and much more flexible. It is also safer to use as it prevents common mistakes with the native APIs.

EVP_AEAD_CTX_new() returns the new EVP_AEAD_CTX object or NULL on failure. EVP_AEAD_CTX_init(), EVP_AEAD_CTX_open(), and EVP_AEAD_CTX_seal() return 1 for success or zero for failure.

EVP_AEAD_key_length() returns the length of the key used for this AEAD.

EVP_AEAD_max_overhead() returns the maximum number of additional bytes added by the act of sealing data with the AEAD.

EVP_AEAD_max_tag_len() returns the maximum tag length when using this AEAD. This is the largest value that can be passed as a tag length to EVP_AEAD_CTX_init().

EVP_AEAD_nonce_length() returns the length of the per-message nonce.

Encrypt a string using ChaCha20-Poly1305:
const EVP_AEAD *aead = EVP_aead_chacha20_poly1305();
static const unsigned char nonce[32] = {0};
size_t buf_len, nonce_len;
EVP_AEAD_CTX *ctx;

ctx = EVP_AEAD_CTX_new();
EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead),
    EVP_AEAD_DEFAULT_TAG_LENGTH, NULL);
nonce_len = EVP_AEAD_nonce_length(aead);

EVP_AEAD_CTX_seal(ctx, out, &out_len, BUFSIZE, nonce,
    nonce_len, in, in_len, NULL, 0);

EVP_AEAD_CTX_free(ctx);

evp(3), EVP_EncryptInit(3)

A. Langley and W. Chang, ChaCha20 and Poly1305 based Cipher Suites for TLS, draft-agl-tls-chacha20poly1305-04, November 2013.

Y. Nir and A. Langley, ChaCha20 and Poly1305 for IETF Protocols, RFC 7539, May 2015.

S. Arciszewski, XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305, draft-arciszewski-xchacha-02, October 2018.

AEAD is based on the implementation by Adam Langley for Chromium/BoringSSL and first appeared in OpenBSD 5.6.

EVP_AEAD_CTX_new() and EVP_AEAD_CTX_free() first appeared in OpenBSD 7.1.

January 10, 2022 FreeBSD 13.1-RELEASE

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.