|
|
| |
GD::Polyline(3) |
User Contributed Perl Documentation |
GD::Polyline(3) |
GD::Polyline - Polyline object and Polygon utilities (including splines) for use
with GD
use GD;
use GD::Polyline;
# create an image
$image = new GD::Image (500,300);
$white = $image->colorAllocate(255,255,255);
$black = $image->colorAllocate( 0, 0, 0);
$red = $image->colorAllocate(255, 0, 0);
# create a new polyline
$polyline = new GD::Polyline;
# add some points
$polyline->addPt( 0, 0);
$polyline->addPt( 0,100);
$polyline->addPt( 50,125);
$polyline->addPt(100, 0);
# polylines can use polygon methods (and vice versa)
$polyline->offset(200,100);
# rotate 60 degrees, about the centroid
$polyline->rotate(3.14159/3, $polyline->centroid());
# scale about the centroid
$polyline->scale(1.5, 2, $polyline->centroid());
# draw the polyline
$image->polydraw($polyline,$black);
# create a spline, which is also a polyine
$spline = $polyline->addControlPoints->toSpline;
$image->polydraw($spline,$red);
# output the png
binmode STDOUT;
print $image->png;
Polyline.pm extends the GD module by allowing you to create polylines.
Think of a polyline as "an open polygon", that is, the last vertex
is not connected to the first vertex (unless you expressly add the same value
as both points).
For the remainder of this doc, "polyline" will refer to
a GD::Polyline, "polygon" will refer to a GD::Polygon that is not
a polyline, and "polything" and "$poly" may be
either.
The big feature added to GD by this module is the means to create
splines, which are approximations to curves.
GD::Polyline defines the following class:
- "GD::Polyline"
- A polyline object, used for storing lists of vertices prior to rendering a
polyline into an image.
- "new"
- "GD::Polyline->new" class
method
Create an empty polyline with no vertices.
$polyline = new GD::Polyline;
$polyline->addPt( 0, 0);
$polyline->addPt( 0,100);
$polyline->addPt( 50,100);
$polyline->addPt(100, 0);
$image->polydraw($polyline,$black);
In fact GD::Polyline is a subclass of GD::Polygon, so all
polygon methods (such as offset and transform) may be used
on polylines. Some new methods have thus been added to GD::Polygon (such
as rotate) and a few updated/modified/enhanced (such as
scale) in this module. See section "New or Updated
GD::Polygon Methods" for more info.
Note that this module is very "young" and should be
considered subject to change in future releases, and/or possibly folded in
to the existing polygon object and/or GD module.
The following methods (defined in GD.pm) are OVERRIDDEN if you use this module.
All effort has been made to provide 100% backward compatibility,
but if you can confirm that has not been achieved, please consider that a
bug and let the the author of Polyline.pm know.
- "scale"
- "$poly->scale($sx, $sy, $cx, $cy)"
object method -- UPDATE to GD::Polygon::scale
Scale a polything in along x-axis by
$sx and along the y-axis by
$sy, about centery point ($cx,
$cy).
Center point ($cx, $cy) is optional --
if these are omitted, the function will scale about the origin.
To flip a polything, use a scale factor of -1. For example, to
flip the polything top to bottom about line y = 100, use:
$poly->scale(1, -1, 0, 100);
The following methods are added to GD::Polygon, and thus can be used by polygons
and polylines.
Don't forget: a polyline is a GD::Polygon, so GD::Polygon methods
like offset() can be used, and they can be used in GD::Image methods
like filledPolygon().
- "rotate"
- "$poly->rotate($angle, $cx, $cy)"
object method
Rotate a polything through $angle
(clockwise, in radians) about center point ($cx,
$cy).
Center point ($cx, $cy) is optional --
if these are omitted, the function will rotate about the origin
In this function and other angle-oriented functions in
GD::Polyline, positive $angle corresponds to
clockwise rotation. This is opposite of the usual Cartesian sense, but
that is because the raster is opposite of the usual Cartesian sense in
that the y-axis goes "down".
- "centroid"
- "($cx, $cy) =
$poly->centroid($scale)" object method
Calculate and return ($cx, $cy), the
centroid of the vertices of the polything. For example, to rotate
something 180 degrees about it's centroid:
$poly->rotate(3.14159, $poly->centroid());
$scale is optional; if supplied,
$cx and $cy are
multiplied by $scale before returning. The main
use of this is to shift an polything to the origin like this:
$poly->offset($poly->centroid(-1));
- "segLength"
- "@segLengths = $poly->segLength()"
object method
In array context, returns an array the lengths of the segments
in the polything. Segment n is the segment from vertex n to vertex n+1.
Polygons have as many segments as vertices; polylines have one
fewer.
In a scalar context, returns the sum of the array that would
have been returned in the array context.
- "segAngle"
- "@segAngles = $poly->segAngle()"
object method
Returns an array the angles of each segment from the x-axis.
Segment n is the segment from vertex n to vertex n+1. Polygons have as
many segments as vertices; polylines have one fewer.
Returned angles will be on the interval 0 <=
$angle < 2 * pi and angles increase in a
clockwise direction.
- "vertexAngle"
- "@vertexAngles =
$poly->vertexAngle()" object method
Returns an array of the angles between the segment into and
out of each vertex. For polylines, the vertex angle at vertex 0 and the
last vertex are not defined; however
$vertexAngle[0] will be undef so that
$vertexAngle[1] will correspond to vertex 1.
Returned angles will be on the interval 0 <=
$angle < 2 * pi and angles increase in a
clockwise direction.
Note that this calculation does not attempt to figure out the
"interior" angle with respect to "inside" or
"outside" the polygon, but rather, just the angle between the
adjacent segments in a clockwise sense. Thus a polygon with all right
angles will have vertex angles of either pi/2 or 3*pi/2, depending on
the way the polygon was "wound".
- "toSpline"
- "$poly->toSpline()" object method
& factory method
Create a new polything which is a reasonably smooth curve
using cubic spline algorithms, often referred to as Bezier curves. The
"source" polything is called the "control
polything". If it is a polyline, the control polyline must have 4,
7, 10, or some number of vertices of equal to 3n+1. If it is a polygon,
the control polygon must have 3, 6, 9, or some number of vertices of
equal to 3n.
$spline = $poly->toSpline();
$image->polydraw($spline,$red);
In brief, groups of four points from the control polyline are
considered "control points" for a given portion of the spline:
the first and fourth are "anchor points", and the spline
passes through them; the second and third are "director
points". The spline does not pass through director points, however
the spline is tangent to the line segment from anchor point to adjacent
director point.
The next portion of the spline reuses the previous portion's
last anchor point. The spline will have a cusp (non-continuous slope) at
an anchor point, unless the anchor points and its adjacent director
point are colinear.
In the current implementation, toSpline() return a
fixed number of segments in the returned polyline per set-of-four
control points. In the future, this and other parameters of the
algorithm may be configurable.
- "addControlPoints"
- "$polyline->addControlPoints()"
object method & factory method
So you say: "OK. Splines sound cool. But how can I get my
anchor points and its adjacent director point to be colinear so that I
have a nice smooth curves from my polyline?" Relax! For The Lazy:
addControlPoints() to the rescue.
addControlPoints() returns a polyline that can serve as
the control polyline for toSpline(), which returns another
polyline which is the spline. Is your head spinning yet? Think of it
this way:
- +
- If you have a polyline, and you have already put your control points where
you want them, call toSpline() directly. Remember, only every third
vertex will be "on" the spline.
You get something that looks like the spline
"inscribed" inside the control polyline.
- +
- If you have a polyline, and you want all of its vertices on the resulting
spline, call addControlPoints() and then toSpline():
$control = $polyline->addControlPoints();
$spline = $control->toSpline();
$image->polyline($spline,$red);
You get something that looks like the control polyline
"inscribed" inside the spline.
Adding "good" control points is subjective; this
particular algorithm reveals its author's tastes. In the future, you may be
able to alter the taste slightly via parameters to the algorithm. For The
Hubristic: please build a better one!
And for The Impatient: note that addControlPoints() returns
a polyline, so you can pile up the call like this, if you'd like:
$image->polyline($polyline->addControlPoints()->toSpline(),$mauve);
- "polyline"
- "$image->polyline(polyline,color)"
object method
$image->polyline($polyline,$black)
This draws a polyline with the specified color. Both real
color indexes and the special colors gdBrushed, gdStyled and
gdStyledBrushed can be specified.
Neither the polyline() method or the polygon()
method are very picky: you can call either method with either a
GD::Polygon or a GD::Polyline. The method determines if the shape
is "closed" or "open" as drawn, not the
object type.
- "polydraw"
- "$image->polydraw(polything,color)"
object method
$image->polydraw($poly,$black)
This method draws the polything as expected (polygons are
closed, polylines are open) by simply checking the object type and
calling either $image->polygon() or
$image->polyline().
Please see file "polyline-examples.pl" that is included with the
distribution.
For more info on Bezier splines, see
http://www.webreference.com/dlab/9902/bezier.html.
On the drawing board are additional features such as:
- polygon winding algorithms (to determine if a point is "inside" or "outside" the polygon)
- new polygon from bounding box
- find bounding polygon (tightest fitting simple convex polygon for a given set of vertices)
- addPts() method to add many points at once
- clone() method for polygon
- functions to interwork GD with SVG
Please provide input on other possible features you'd like to
see.
This module has been written by Daniel J. Harasty. Please send questions,
comments, complaints, and kudos to him at harasty@cpan.org.
Thanks to Lincoln Stein for input and patience with me and this,
my first CPAN contribution.
The Polyline.pm module is copyright 2002, Daniel J. Harasty. It is distributed
under the same terms as Perl itself. See the "Artistic License" in
the Perl source code distribution for licensing terms.
The latest version of Polyline.pm is available at your favorite
CPAN repository and/or along with GD.pm by Lincoln D. Stein at
http://stein.cshl.org/WWW/software/GD.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |