|
NAMEvpIdentity3, vpIdentity4, vpNormalize3, vpMatrixVectorMult4, vpMatrixMult4, vpCrossProduct, vpSolveSystem4, vpSetVector3, vpSetVector4 - linear algebra routinesSYNOPSIS#include <volpack.h>void vpIdentity3(m_dst)
void vpIdentity4(m_dst)
vpResult vpNormalize3(v_src1)
void vpMatrixVectorMult4(v_dst, m_src1, v_src1)
void vpMatrixMult4(m_dst, m_src1, m_src2)
void vpCrossProduct(v_dst, v_src1, v_src2)
vpResult vpSolveSystem4(m_src1, b, count)
void vpSetVector3(v_dst, x, y, z)
void vpSetVector4(v_dst, x, y, z, w)
ARGUMENTS
DESCRIPTIONThese routines form a simple linear algebra package used internally by VolPack. The routines are also available as utility routines for use by the application.vpIdentity3 assigns the identity matrix to a 3-by-3 matrix. vpIdentity4 assigns the identity matrix to a 4-by-4 matrix. vpNormalize3 normalizes a 3-element vector (so the magnitude is 1.0). The result overwrites the source vector. vpMatrixVectorMult4 multiplies a 4-by-4 matrix by a 4-element column vector and stores the result in the destination vector (v_dst = m . v_src). vpMatrixMult4 multiplies two 4-by-4 matrices and stores the result in the destination matrix (m_dst = m_src1 . m_src2). vpCrossProduct computes the cross product of two 3-element vectors and stores the result in the destination vector (v_dst = v_src1 x v_src2). vpSolveSystem4 solves the linear system m . x = b for each right-hand-side vector in the b array. The solution vectors overwrite the vectors in the b array. The solution is computed using Gauss-Jordan elimination with partial pivoting and implicit scaling. vpSetVector3 initializes the components of a 3-element vector (v_dst = [x, y, z]). It is a macro. vpSetVector4 initializes the components of a 4-element vector (v_dst = [x, y, z, w]). It is a macro. ERRORSvpNormalize3 and vpSolveSystem4 normally return VP_OK. The following error return value is possible:
SEE ALSOVolPack(3)
Visit the GSP FreeBSD Man Page Interface. |