|
|
| |
MIME::Parser(3) |
User Contributed Perl Documentation |
MIME::Parser(3) |
MIME::Parser - experimental class for parsing MIME streams
Before reading further, you should see MIME::Tools to make sure that you
understand where this module fits into the grand scheme of things. Go on, do
it now. I'll wait.
Ready? Ok...
### Create a new parser object:
my $parser = new MIME::Parser;
### Tell it where to put things:
$parser->output_under("/tmp");
### Parse an input filehandle:
$entity = $parser->parse(\*STDIN);
### Congratulations: you now have a (possibly multipart) MIME entity!
$entity->dump_skeleton; # for debugging
### Parse from filehandles:
$entity = $parser->parse(\*STDIN);
$entity = $parser->parse(IO::File->new("some command|");
### Parse from any object that supports getline() and read():
$entity = $parser->parse($myHandle);
### Parse an in-core MIME message:
$entity = $parser->parse_data($message);
### Parse an MIME message in a file:
$entity = $parser->parse_open("/some/file.msg");
### Parse an MIME message out of a pipeline:
$entity = $parser->parse_open("gunzip - < file.msg.gz |");
### Parse already-split input (as "deliver" would give it to you):
$entity = $parser->parse_two("msg.head", "msg.body");
### Keep parsed message bodies in core (default outputs to disk):
$parser->output_to_core(1);
### Output each message body to a one-per-message directory:
$parser->output_under("/tmp");
### Output each message body to the same directory:
$parser->output_dir("/tmp");
### Change how nameless message-component files are named:
$parser->output_prefix("msg");
### Put temporary files somewhere else
$parser->tmp_dir("/var/tmp/mytmpdir");
### Normal mechanism:
eval { $entity = $parser->parse(\*STDIN) };
if ($@) {
$results = $parser->results;
$decapitated = $parser->last_head; ### get last top-level head
}
### Ultra-tolerant mechanism:
$parser->ignore_errors(1);
$entity = eval { $parser->parse(\*STDIN) };
$error = ($@ || $parser->last_error);
### Cleanup all files created by the parse:
eval { $entity = $parser->parse(\*STDIN) };
...
$parser->filer->purge;
### Automatically attempt to RFC 2047-decode the MIME headers?
$parser->decode_headers(1); ### default is false
### Parse contained "message/rfc822" objects as nested MIME streams?
$parser->extract_nested_messages(0); ### default is true
### Look for uuencode in "text" messages, and extract it?
$parser->extract_uuencode(1); ### default is false
### Should we forgive normally-fatal errors?
$parser->ignore_errors(0); ### default is true
### Convert a Mail::Internet object to a MIME::Entity:
my $data = join('', (@{$mail->header}, "\n", @{$mail->body}));
$entity = $parser->parse_data(\$data);
You can inherit from this class to create your own subclasses that parse MIME
streams into MIME::Entity objects.
- new ARGS...
- Class method. Create a new parser object. Once you do this, you can
then set up various parameters before doing the actual parsing. For
example:
my $parser = new MIME::Parser;
$parser->output_dir("/tmp");
$parser->output_prefix("msg1");
my $entity = $parser->parse(\*STDIN);
Any arguments are passed into
"init()". Don't override this in your
subclasses; override init() instead.
- init ARGS...
- Instance method. Initiallize a new MIME::Parser object. This is
automatically sent to a new object; you may want to override it. If you
override this, be sure to invoke the inherited method.
- init_parse
- Instance method. Invoked automatically whenever one of the
top-level parse() methods is called, to reset the parser to a
"ready" state.
- decode_headers [YESNO]
- Instance method. Controls whether the parser will attempt to decode
all the MIME headers (as per RFC 2047) the moment it sees them. This is
not advisable for two very important reasons:
- It screws up the extraction of information from MIME fields. If you
fully decode the headers into bytes, you can inadvertently transform a
parseable MIME header like this:
Content-type: text/plain; filename="=?ISO-8859-1?Q?Hi=22Ho?="
into unparseable gobbledygook; in this case:
Content-type: text/plain; filename="Hi"Ho"
- It is information-lossy. An encoded string which contains both
Latin-1 and Cyrillic characters will be turned into a binary mishmosh
which simply can't be rendered.
History. This method was once the only out-of-the-box way
to deal with attachments whose filenames had non-ASCII characters. However,
since MIME-tools 5.4xx this is no longer necessary.
Parameters. If YESNO is true, decoding is done. However,
you will get a warning unless you use one of the special "true"
values:
"I_NEED_TO_FIX_THIS"
Just shut up and do it. Not recommended.
Provided only for those who need to keep old scripts functioning.
"I_KNOW_WHAT_I_AM_DOING"
Just shut up and do it. Not recommended.
Provided for those who REALLY know what they are doing.
If YESNO is false (the default), no attempt at decoding will be
done. With no argument, just returns the current setting. Remember:
you can always decode the headers after the parsing has completed
(see MIME::Head::decode()), or decode the words on demand (see
MIME::Words).
- extract_nested_messages OPTION
- Instance method. Some MIME messages will contain a part of type
"message/rfc822"
,"message/partial" or
"message/external-body": literally, the
text of an embedded mail/news/whatever message. This option controls
whether (and how) we parse that embedded message.
If the OPTION is false, we treat such a message just as if it
were a "text/plain" document, without
attempting to decode its contents.
If the OPTION is true (the default), the body of the
"message/rfc822" or
"message/partial" part is parsed by
this parser, creating an entity object. What happens then is determined
by the actual OPTION:
- NEST or 1
- The default setting. The contained message becomes the sole
"part" of the "message/rfc822"
entity (as if the containing message were a special kind of
"multipart" message). You can recover the sub-entity by invoking
the parts() method on the
"message/rfc822" entity.
- REPLACE
- The contained message replaces the
"message/rfc822" entity, as though the
"message/rfc822" "container"
never existed.
Warning: notice that, with this option, all the header
information in the "message/rfc822"
header is lost. This might seriously bother you if you're dealing with a
top-level message, and you've just lost the sender's address and the
subject line. ":-/".
Thanks to Andreas Koenig for suggesting this method.
- extract_uuencode [YESNO]
- Instance method. If set true, then whenever we are confronted with
a message whose effective content-type is "text/plain" and whose
encoding is 7bit/8bit/binary, we scan the encoded body to see if it
contains uuencoded data (generally given away by a "begin XXX"
line).
If it does, we explode the uuencoded message into a multipart,
where the text before the first "begin XXX" becomes the first
part, and all "begin...end" sections following become the
subsequent parts. The filename (if given) is accessible through the
normal means.
- ignore_errors [YESNO]
- Instance method. Controls whether the parser will attempt to ignore
normally-fatal errors, treating them as warnings and continuing with the
parse.
If YESNO is true (the default), many syntax errors are
tolerated. If YESNO is false, fatal errors throw exceptions. With no
argument, just returns the current setting.
- decode_bodies [YESNO]
- Instance method. Controls whether the parser should decode entity
bodies or not. If this is set to a false value (default is true), all
entity bodies will be kept as-is in the original content-transfer
encoding.
To prevent double encoding on the output side
MIME::Body->is_encoded is set, which tells MIME::Body not to encode
the data again, if encoded data was requested. This is in particular
useful, when it's important that the content must not be
modified, e.g. if you want to calculate OpenPGP signatures from it.
WARNING: the semantics change significantly if you
parse MIME messages with this option set, because MIME::Entity resp.
MIME::Body *always* see encoded data now, while the default behaviour is
working with *decoded* data (and encoding it only if you request it).
You need to decode the data yourself, if you want to have it
decoded.
So use this option only if you exactly know, what you're
doing, and that you're sure, that you really need it.
- parse_data DATA
- Instance method. Parse a MIME message that's already in core. This
internally creates an "in memory" filehandle on a Perl scalar
value using PerlIO
You may supply the DATA in any of a number of ways...
- A scalar which holds the message. A reference to this scalar will
be used internally.
- A ref to a scalar which holds the message. This reference will be
used internally.
- DEPRECATED
A ref to an array of scalars. The array is internally
concatenated into a temporary string, and a reference to the new string
is used internally.
It is much more efficient to pass in a scalar reference, so
please consider refactoring your code to use that interface instead. If
you absolutely MUST pass an array, you may be better off using
IO::ScalarArray in the calling code to generate a filehandle, and
passing that filehandle to parse()
Returns the parsed MIME::Entity on success.
- parse INSTREAM
- Instance method. Takes a MIME-stream and splits it into its
component entities.
The INSTREAM can be given as an IO::File, a globref filehandle
(like "\*STDIN"), or as any
blessed object conforming to the IO:: interface (which minimally
implements getline() and read()).
Returns the parsed MIME::Entity on success. Throws exception
on failure. If the message contained too many parts (as set by
max_parts), returns undef.
- parse_open EXPR
- Instance method. Convenience front-end onto
"parse()". Simply give this method any
expression that may be sent as the second argument to open() to
open a filehandle for reading.
Returns the parsed MIME::Entity on success. Throws exception
on failure.
- parse_two HEADFILE, BODYFILE
- Instance method. Convenience front-end onto
"parse_open()", intended for programs
running under mail-handlers like deliver, which splits the incoming
mail message into a header file and a body file. Simply give this method
the paths to the respective files.
Warning: it is assumed that, once the files are cat'ed
together, there will be a blank line separating the head part and the
body part.
Warning: new implementation slurps files into line
array for portability, instead of using 'cat'. May be an issue if your
messages are large.
Returns the parsed MIME::Entity on success. Throws exception
on failure.
Warning: in 5.212 and before, this was done by methods of MIME::Parser.
However, since many users have requested fine-tuned control over how this is
done, the logic has been split off from the parser into its own class,
MIME::Parser::Filer Every MIME::Parser maintains an instance of a
MIME::Parser::Filer subclass to manage disk output (see MIME::Parser::Filer
for details.)
The benefit to this is that the MIME::Parser code won't be
confounded with a lot of garbage related to disk output. The drawback is
that the way you override the default behavior will change.
For now, all the normal public-interface methods are still
provided, but many are only stubs which create or delegate to the underlying
MIME::Parser::Filer object.
- filer [FILER]
- Instance method. Get/set the FILER object used to manage the output
of files to disk. This will be some subclass of MIME::Parser::Filer.
- output_dir DIRECTORY
- Instance method. Causes messages to be filed directly into the
given DIRECTORY. It does this by setting the underlying filer() to
a new instance of MIME::Parser::FileInto, and passing the arguments into
that class' new() method.
Note: Since this method replaces the underlying filer,
you must invoke it before doing changing any attributes of the
filer, like the output prefix; otherwise those changes will be lost.
- output_under BASEDIR, OPTS...
- Instance method. Causes messages to be filed directly into
subdirectories of the given BASEDIR, one subdirectory per message. It does
this by setting the underlying filer() to a new instance of
MIME::Parser::FileUnder, and passing the arguments into that class'
new() method.
Note: Since this method replaces the underlying filer,
you must invoke it before doing changing any attributes of the
filer, like the output prefix; otherwise those changes will be lost.
- output_path HEAD
- Instance method, DEPRECATED. Given a MIME head for a file to be
extracted, come up with a good output pathname for the extracted file.
Identical to the preferred form:
$parser->filer->output_path(...args...);
We just delegate this to the underlying filer()
object.
- output_prefix [PREFIX]
- Instance method, DEPRECATED. Get/set the short string that all
filenames for extracted body-parts will begin with (assuming that there is
no better "recommended filename"). Identical to the preferred
form:
$parser->filer->output_prefix(...args...);
We just delegate this to the underlying filer()
object.
- evil_filename NAME
- Instance method, DEPRECATED. Identical to the preferred form:
$parser->filer->evil_filename(...args...);
We just delegate this to the underlying filer()
object.
- max_parts NUM
- Instance method. Limits the number of MIME parts we will parse.
Normally, instances of this class parse a message to the
bitter end. Messages with many MIME parts can cause excessive memory
consumption. If you invoke this method, parsing will abort with a
die() if a message contains more than NUM parts.
If NUM is set to -1 (the default), then no maximum limit is
enforced.
With no argument, returns the current setting as an
integer
- output_to_core YESNO
- Instance method. Normally, instances of this class output all their
decoded body data to disk files (via MIME::Body::File). However, you can
change this behaviour by invoking this method before parsing:
If YESNO is false (the default), then all body data goes to
disk files.
If YESNO is true, then all body data goes to in-core data
structures This is a little risky (what if someone emails you an MPEG or
a tar file, hmmm?) but people seem to want this bit of noose-shaped
rope, so I'm providing it. Note that setting this attribute true does
not mean that parser-internal temporary files are avoided! Use
tmp_to_core() for that.
With no argument, returns the current setting as a
boolean.
- tmp_recycling
- Instance method, DEPRECATED.
This method is a no-op to preserve the pre-5.421 API.
The tmp_recycling() feature was removed in 5.421
because it had never actually worked. Please update your code to stop
using it.
- tmp_to_core [YESNO]
- Instance method. Should new_tmpfile() create real temp
files, or use fake in-core ones? Normally we allow the creation of
temporary disk files, since this allows us to handle huge attachments even
when core is limited.
If YESNO is true, we implement new_tmpfile() via
in-core handles. If YESNO is false (the default), we use real tmpfiles.
With no argument, just returns the current setting.
- use_inner_files [YESNO]
- REMOVED.
Instance method.
MIME::Parser no longer supports IO::InnerFile, but this method
is retained for backwards compatibility. It does nothing.
The original reasoning for IO::InnerFile was that inner files
were faster than "in-core" temp files. At the time, the
"in-core" tempfile support was implemented with IO::Scalar
from the IO-Stringy distribution, which used the tie() interface
to wrap a scalar with the appropriate IO::Handle operations. The penalty
for this was fairly hefty, and IO::InnerFile actually was faster.
Nowadays, MIME::Parser uses Perl's built in ability to open a
filehandle on an in-memory scalar variable via PerlIO. Benchmarking
shows that IO::InnerFile is slightly slower than using in-memory
temporary files, and is slightly faster than on-disk temporary files.
Both measurements are within a few percent of each other. Since there's
no real benefit, and since the IO::InnerFile abuse was fairly hairy and
evil ("writes" to it were faked by extending the size of the
inner file with the assumption that the only data you'd ever
->print() to it would be the line from the "outer"
file, for example) it's been removed.
- interface ROLE,[VALUE]
- Instance method. During parsing, the parser normally creates
instances of certain classes, like MIME::Entity. However, you may want to
create a parser subclass that uses your own experimental head, entity,
etc. classes (for example, your "head" class may provide some
additional MIME-field-oriented methods).
If so, then this is the method that your subclass should
invoke during init. Use it like this:
package MyParser;
@ISA = qw(MIME::Parser);
...
sub init {
my $self = shift;
$self->SUPER::init(@_); ### do my parent's init
$self->interface(ENTITY_CLASS => 'MIME::MyEntity');
$self->interface(HEAD_CLASS => 'MIME::MyHead');
$self; ### return
}
With no VALUE, returns the VALUE currently associated with
that ROLE.
- new_body_for HEAD
- Instance method. Based on the HEAD of a part we are parsing, return
a new body object (any desirable subclass of MIME::Body) for receiving
that part's data.
If you set the
"output_to_core" option to false
before parsing (the default), then we call
"output_path()" and create a new
MIME::Body::File on that filename.
If you set the
"output_to_core" option to true before
parsing, then you get a MIME::Body::InCore instead.
If you want the parser to do something else entirely, you can
override this method in a subclass.
- tmp_dir DIRECTORY
- Instance method. Causes any temporary files created by this parser
to be created in the given DIRECTORY.
If called without arguments, returns current value.
The default value is undef, which will cause
new_tmpfile() to use the system default temporary directory.
- new_tmpfile
- Instance method. Return an IO handle to be used to hold temporary
data during a parse.
The default uses MIME::Tools::tmpopen() to create a new
temporary file, unless tmp_to_core() dictates otherwise, but you
can override this. You shouldn't need to.
The location for temporary files can be changed on a
per-parser basis with tmp_dir().
If you do override this, make certain that the object you
return is set for binmode(), and is able to handle the following
methods:
read(BUF, NBYTES)
getline()
getlines()
print(@ARGS)
flush()
seek(0, 0)
Fatal exception if the stream could not be established.
- last_error
- Instance method. Return the error (if any) that we ignored in the
last parse.
- last_head
- Instance method. Return the top-level MIME header of the last
stream we attempted to parse. This is useful for replying to people who
sent us bad MIME messages.
### Parse an input stream:
eval { $entity = $parser->parse(\*STDIN) };
if (!$entity) { ### parse failed!
my $decapitated = $parser->last_head;
...
}
- results
- Instance method. Return an object containing lots of info from the
last entity parsed. This will be an instance of class
MIME::Parser::Results.
Optimum input mechanisms:
parse() YES (if you give it a globref or a
subclass of IO::File)
parse_open() YES
parse_data() NO (see below)
parse_two() NO (see below)
Optimum settings:
decode_headers() *** (no real difference; 0 is slightly faster)
extract_nested_messages() 0 (may be slightly faster, but in
general you want it set to 1)
output_to_core() 0 (will be MUCH faster)
tmp_to_core() 0 (will be MUCH faster)
Native I/O is much faster than object-oriented I/O. It's
much faster to use <$foo> than
$foo->getline. For backwards compatibility, this
module must continue to use object-oriented I/O in most places, but if you
use parse() with a "real" filehandle (string, globref, or
subclass of IO::File) then MIME::Parser is able to perform some crucial
optimizations.
The parse_two() call is very inefficient.
Currently this is just a front-end onto parse_data(). If your OS
supports it, you're far better off doing something like:
$parser->parse_open("/bin/cat msg.head msg.body |");
Optimum input mechanisms:
parse() YES
parse_open() YES
parse_data() NO (in-core I/O will burn core)
parse_two() NO (in-core I/O will burn core)
Optimum settings:
decode_headers() *** (no real difference)
extract_nested_messages() *** (no real difference)
output_to_core() 0 (will use MUCH less memory)
tmp_to_core is 1)
tmp_to_core() 0 (will use MUCH less memory)
Optimum input mechanisms:
parse() *** (doesn't matter)
parse_open() *** (doesn't matter)
parse_data() *** (doesn't matter)
parse_two() *** (doesn't matter)
Optimum settings:
decode_headers() 0 (sidesteps problem of bad hdr encodings)
extract_nested_messages() 0 (sidesteps problems of bad nested messages,
but often you want it set to 1 anyway).
output_to_core() *** (doesn't matter)
tmp_to_core() *** (doesn't matter)
Optimum input mechanisms:
parse() YES (if you give it a seekable handle)
parse_open() YES (becomes a seekable handle)
parse_data() NO (unless you set tmp_to_core(1))
parse_two() NO (unless you set tmp_to_core(1))
Optimum settings:
decode_headers() *** (doesn't matter)
extract_nested_messages() *** (doesn't matter)
output_to_core() *** (doesn't matter)
tmp_to_core() 1
You can veto tmpfiles entirely. You can set
tmp_to_core() true: this will always use in-core I/O for the
buffering (warning: this will slow down the parsing of messages with
large attachments).
Final resort. You can always override new_tmpfile()
in a subclass.
- Multipart messages are always read line-by-line
- Multipart document parts are read line-by-line, so that the encapsulation
boundaries may easily be detected. However, bad MIME composition agents
(for example, naive CGI scripts) might return multipart documents where
the parts are, say, unencoded bitmap files... and, consequently, where
such "lines" might be veeeeeeeeery long indeed.
A better solution for this case would be to set up some form
of state machine for input processing. This will be left for future
versions.
- Multipart parts read into temp files before decoding
- In my original implementation, the MIME::Decoder classes had to be aware
of encapsulation boundaries in multipart MIME documents. While this
decode-while-parsing approach obviated the need for temporary files, it
resulted in inflexible and complex decoder implementations.
The revised implementation uses a temporary file (a la
"tmpfile()") during parsing to hold
the encoded portion of the current MIME document or part. This
file is deleted automatically after the current part is decoded and the
data is written to the "body stream" object; you'll never see
it, and should never need to worry about it.
Some folks have asked for the ability to bypass this temp-file
mechanism, I suppose because they assume it would slow down their
application. I considered accommodating this wish, but the temp-file
approach solves a lot of thorny problems in parsing, and it also
protects against hidden bugs in user applications (what if you've
directed the encoded part into a scalar, and someone unexpectedly sends
you a 6 MB tar file?). Finally, I'm just not convinced that the
temp-file use adds significant overhead.
- Fuzzing of CRLF and newline on input
- RFC 2045 dictates that MIME streams have lines terminated by CRLF
("\r\n"). However, it is extremely
likely that folks will want to parse MIME streams where each line ends in
the local newline character "\n"
instead.
An attempt has been made to allow the parser to handle both
CRLF and newline-terminated input.
- Fuzzing of CRLF and newline on output
- The "7bit" and
"8bit" decoders will decode both a
"\n" and a
"\r\n" end-of-line sequence into a
"\n".
The "binary" decoder
(default if no encoding specified) still outputs stuff verbatim... so a
MIME message with CRLFs and no explicit encoding will be output as a
text file that, on many systems, will have an annoying ^M at the end of
each line... but this is as it should be.
- Inability to handle multipart boundaries that contain newlines
- First, let's get something straight: this is an evil, EVIL
practice, and is incompatible with RFC 2046... hence, it's not valid
MIME.
If your mailer creates multipart boundary strings that contain
newlines when they appear in the message body, give it two weeks
notice and find another one. If your mail robot receives MIME mail like
this, regard it as syntactically incorrect MIME, which it is.
Why do I say that? Well, in RFC 2046, the syntax of a boundary
is given quite clearly:
boundary := 0*69<bchars> bcharsnospace
bchars := bcharsnospace / " "
bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" / "+" /"_"
/ "," / "-" / "." / "/" / ":" / "=" / "?"
All of which means that a valid boundary string cannot
have newlines in it, and any newlines in such a string in the message
header are expected to be solely the result of folding the string
(i.e., inserting to-be-removed newlines for readability and
line-shortening only).
Yet, there is at least one brain-damaged user agent out there
that composes mail like this:
MIME-Version: 1.0
Content-type: multipart/mixed; boundary="----ABC-
123----"
Subject: Hi... I'm a dork!
This is a multipart MIME message (yeah, right...)
----ABC-
123----
Hi there!
We have got to discourage practices like this (and the
recent file upload idiocy where binary files that are part of a
multipart MIME message aren't base64-encoded) if we want MIME to stay
relatively simple, and MIME parsers to be relatively robust.
Thanks to Andreas Koenig for bringing a baaaaaaaaad user
agent to my attention.
MIME::Tools, MIME::Head, MIME::Body, MIME::Entity, MIME::Decoder
Eryq (eryq@zeegee.com), ZeeGee Software Inc
(http://www.zeegee.com). Dianne Skoll (dfs@roaringpenguin.com)
http://www.roaringpenguin.com
All rights reserved. This program is free software; you can
redistribute it and/or modify it under the same terms as Perl itself.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |