GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
MPI_Win_attach(3) MPI MPI_Win_attach(3)

MPI_Win_attach - Attach memory to a dynamic window.

int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

Attaches a local memory region beginning at base for remote access within the given window. The memory region specified must not contain any part that is already attached to the window win, that is, attaching overlapping memory concurrently within the same window is erroneous. The argument win must be a window that was created with MPI_Win_create_dynamic . Multiple (but non-overlapping) memory regions may be attached to the same window.

size
- size of memory to be attached in bytes
base
- initial address of memory to be attached
win
- window object used for communication (handle)

This routine is thread-safe. This means that this routine may be safely used by multiple threads without the need for any user-provided thread locks. However, the routine is not interrupt safe. Typically, this is due to the use of memory allocation routines such as malloc or other non-MPICH runtime routines that are themselves not interrupt-safe.

All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK ) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.

All MPI objects (e.g., MPI_Datatype , MPI_Comm ) are of type INTEGER in Fortran.

All MPI routines (except MPI_Wtime and MPI_Wtick ) return an error value; C routines as the value of the function and Fortran routines in the last argument. Before the value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Comm_set_errhandler (for communicators), MPI_File_set_errhandler (for files), and MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine MPI_Errhandler_set may be used but its use is deprecated. The predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarantee that an MPI program can continue past an error; however, MPI implementations will attempt to continue whenever possible.

MPI_SUCCESS
- No error; MPI routine completed successfully.
MPI_ERR_ARG
- Invalid argument. Some argument is invalid and is not identified by a specific error class (e.g., MPI_ERR_RANK ).
MPI_ERR_COUNT
- Invalid count argument. Count arguments must be non-negative; a count of zero is often valid.
MPI_ERR_RANK
- Invalid source or destination rank. Ranks must be between zero and the size of the communicator minus one; ranks in a receive ( MPI_Recv , MPI_Irecv , MPI_Sendrecv , etc.) may also be MPI_ANY_SOURCE .

MPI_ERR_TYPE
- Invalid datatype argument. Additionally, this error can occur if an uncommitted MPI_Datatype (see MPI_Type_commit ) is used in a communication call.
MPI_ERR_WIN
- Invalid MPI window object

MPI_Win_create_dynamic MPI_Win_detach
12/16/2021

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.