M_Line
—
Agar-Math line segment / half-line structure
The M_Line2 structure describes a line segment, an
Euclidean vector or a half-line in R^2. An M_Line
is
defined by an origin point p, a normalized direction
vector d and a real length t
(which can be set to M_INFINITY
in order to express a
half-line). The structure is defined as:
typedef struct m_line2 {
M_Vector2 p;
M_Vector2 d;
M_Real t;
} M_Line2;
Similarly, M_Line3 describes a line segment,
an Euclidean vector or a half-line in R^3:
typedef struct m_line3 {
M_Vector3 p;
M_Vector3 d;
M_Real t;
} M_Line3;
M_Line2
M_LineFromPtDir2
(M_Vector2
p, M_Vector2 d,
M_Real t);
M_Line3
M_LineFromPtDir3
(M_Vector3
p, M_Vector3 d,
M_Real t);
M_Line2
M_LineFromPts2
(M_Vector2
p1, M_Vector2
p2);
M_Line3
M_LineFromPts3
(M_Vector3
p1, M_Vector3
p2);
M_Line2
M_LineRead2
(AG_DataSource
*ds);
M_Line3
M_LineRead3
(AG_DataSource
*ds);
void
M_LineWrite2
(AG_DataSource
*ds, M_Line2
*L);
void
M_LineWrite3
(AG_DataSource
*ds, M_Line3
*L);
M_Line2
M_LINE2_INITIALIZER
(M_Real
px, M_Real py,
M_Real nx,
M_Real ny,
M_Real t);
M_Line3
M_LINE3_INITIALIZER
(M_Real
px, M_Real py,
M_Real pz,
M_Real nx,
M_Real ny,
M_Real nz,
M_Real t);
The functions M_LineFromPtDir2
() and
M_LineFromPtDir3
() return an
M_Line2 or M_Line3 describing a
line segment a specified origin point p, direction
vector d (of unit-length) and length
t. The endpoints of the line will be
p and (p + d*t).
M_LineFromPts2
() and
M_LineFromPts3
() return a line segment from two
specified endpoints p1 and
p2.
The M_LineRead[23]
() and
M_LineWrite[23]
() functions read or write a line
structure from/to an
AG_DataSource(3).
The macros M_LINE2_INITIALIZER
() and
M_LINE3_INITIALIZER
() expand to static initializers
for M_Line2 and M_Line3,
respectively.
M_Vector2
M_LineInitPt2
(M_Line2
L);
M_Vector2
M_LineTermPt2
(M_Line2
L);
M_Vector3
M_LineInitPt3
(M_Line3
L);
M_Vector3
M_LineTermPt3
(M_Line3
L);
void
M_LineToPts2
(M_Line2
L, M_Vector2 *p1,
M_Vector2 *p2);
void
M_LineToPts3
(M_Line3
L, M_Vector3 *p1,
M_Vector3 *p2);
void
M_LineIsRay2
(M_Line2
L);
void
M_LineIsRay3
(M_Line3
L);
M_Real
M_LinePointSide2
(M_Line2
L, M_Vector2
p);
M_Real
M_LinePointDistance2
(M_Line2
L, M_Vector2
p);
M_Real
M_LinePointDistance3
(M_Line3
L, M_Vector3
p);
M_Real
M_LineLineAngle2
(M_Line2
L1, M_Line2
L2);
M_Real
M_LineLineAngle3
(M_Line3
L1, M_Line3
L2);
M_Line2
M_LineParallel2
(M_Line2
L, M_Real
offset);
M_Line3
M_LineParallel3
(M_Line3
L, M_Real
offset);
M_Line2
M_LineProject2
(M_Line3
L);
M_Line3
M_LineProject3
(M_Line2
L);
int
M_LineLineIntersect2
(M_Line2
L1, M_Line2 L2,
M_Vector2 *x);
int
M_LineLineShortest3
(M_Line3
L1, M_Line3 L2,
M_Line3 *Ls);
The M_LineInitPt[23]
() routines return the
initial point (i.e., the p vector).
M_LineTermPt[23]
() routines return the terminal
point (i.e., p + d*t). The M_LineToPts[23]
()
functions return the two endpoints of line L into
p1 and p2.
M_LineIsRay2
() and
M_LineIsRay3
() evaluate to 1 of the line is defined
as a half-line (i.e., t is
M_INFINITY
).
M_LinePointSide2
() tests whether point
p lies on the left (<0), is coincident (==0), or is
on the right (>0) of the line L. The direction is
determined by the handedness of the line.
The M_LinePointDistance2
() and
M_LinePointDistance3
() routines compute the minimal
distance between a line L and a point
p.
M_LineLineAngle2
() and
M_LineLineAngle3
() return the counterclockwise angle
(in radians) between L1 and L2.
The angle is computed as the arc cosine of the dot product of the direction
vectors of the two lines.
The M_LineParallel[23]
() functions return
a line parallel to L, with the specified offset
amount. The direction of the offset is determined by the handedness of
L.
M_LineProject2
() computes a line in R^2
from the projection onto the X-Y plane of a specified line in R^3.
M_LineProject3
() returns the projection of a line in
R^2 onto the X-Y plane in R^3.
The M_LineLineIntersect2
() function
computes the intersection point x of two lines in R^2.
If there is a solution, the function returns 1, otherwise it returns 0.
The M_LineLineShortest3
() function
computes the shortest line segment Ls connecting two
lines in R^3. Returns 1 if there is a solution, 0 if there is not.
The M_Line
structure first appeared in Agar 1.3.4.