M_Matrix
—
Agar-Math matrix-related functions
The
M_Vector(3)
and M_Matrix
interfaces implement linear algebra
operations on (real or complex valued) n dimensional
vectors, and m by n matrices.
Optimized interfaces are provided for fixed-dimensional types (which have
entries directly accessible as x,
y, z and w).
Arbitrary-dimensional types may or may not use fixed arrays in memory. For
example, the "sparse" backend uses a sparse matrix representation,
and the "db" backend stores vector entries in a database.
Backends can be selected at run-time, or Agar-Math can be compiled
to provide inline expansions of all operations of a specific backend. Vector
extensions (such as SSE and AltiVec) are used by default, if a runtime
cpuinfo check determines that they are available (the build remains
compatible with non-vector platforms, at the cost of extra function calls).
For best performance on vector-capable platforms, all
M_Matrix
operations may be expanded inline for the
target platform (using the Agar build options "--with-sse-inline"
and "--with-altivec-inline").
The following routines operate on dynamically-allocated m
by n matrices:
- fpu
- Native scalar floating point methods.
- sparse
- Methods optimized for large, sparse matrices. Based on the excellent
Sparse 1.4 package by Kenneth Kundert at UC Berkeley
(http://sparse.sourceforge.net/).
M_Matrix *
M_New
(Uint
m, Uint n);
void
M_Free
(M_Matrix
*M);
int
M_Resize
(M_Matrix
*M, Uint m,
Uint n);
void
M_SetIdentity
(M_Matrix
*M);
void
M_SetZero
(M_Matrix
*M);
int
M_Copy
(M_Matrix
*D, const M_Matrix
*A);
M_Matrix *
M_Dup
(const
M_Matrix *M);
M_Matrix *
M_ReadMatrix
(AG_DataSource
*ds);
void
M_WriteMatrix
(AG_DataSource
*ds, const M_Matrix
*A);
The M_New
() function allocates a new
m by n matrix.
M_Free
() releases all resources allocated for the
specified matrix. M_Resize
() resizes
M to m by
n. Existing entries are preserved, but new entries are
left uninitialized. If insufficient memory is available, -1 is returned and
an error message is set. On success, the function returns 0.
M_SetIdentity
() initializes
M to the identity matrix.
M_SetZero
() initializes M to
all zeros.
M_Copy
() copies the contents of matrix
A into D, which is assumed to
have the same dimensions (otherwise, -1 is returned).
M_Dup
() returns a duplicate of
M.
The M_ReadMatrix
() and
M_WriteMatrix
() functions are used to (de)serialize
the contents of matrix A from/to the specified
AG_DataSource(3).
M_Real
M_Get
(M_Matrix
*M, Uint i,
Uint j);
void
M_Set
(M_Matrix
*M, Uint i,
Uint j,
M_Real val);
M_Real *
M_GetElement
(M_Matrix
*M, Uint i,
Uint j);
void
M_ToFloats
(float
*values, const M_Matrix
*A);
void
M_ToDoubles
(double
*values, const M_Matrix
*A);
void
M_FromFloats
(M_Matrix
*A, const float
*values);
void
M_FromDoubles
(M_Matrix
*A, const double
*values);
void
M_Print
(const
M_Matrix *A);
The M_Get
() and
M_Set
() routines respectively retrieve and set the
element i, j.
M_GetElement
() returns a pointer to the
element i, j. As long as the
entry exists, it is safe to read and write the element.
The M_ToFloats
() and
M_ToDoubles
() functions return a representation of
matrix A as an array of float or
double values in row-major order. The
M_FromFloats
() and
M_FromDoubles
() functions initialize matrix
A from an array of float or
double values in row-major order. In both cases, it is
assumed that the arrays are of the correct size for the given matrix
dimensions.
M_Print
() dumps the individual matrix
entries to the standard error output. It is only for debugging purposes.
Agar GUI applications can use the provided
M_Matview(3)
widget to display matrix contents.
M_Matrix *
M_Transpose
(M_Matrix
*M);
M_Matrix *
M_Add
(const
M_Matrix *A, const
M_Matrix *B);
int
M_Addv
(M_Matrix
*A, const M_Matrix
*B);
void
M_AddToDiag
(M_Matrix
*A, M_Real
value);
M_Matrix *
M_DirectSum
(const
M_Matrix *A, const
M_Matrix *B);
M_Matrix *
M_Mul
(const
M_Matrix *A, const
M_Matrix *B);
int
M_Mulv
(const
M_Matrix *A, const
M_Matrix *B, M_Matrix
*AB);
M_Matrix *
M_EntMul
(const
M_Matrix *A, const
M_Matrix *B);
int
M_EntMulv
(const
M_Matrix *A, const
M_Matrix *B, M_Matrix
*AB);
void
M_Compare
(const
M_Matrix *A, const
M_Matrix *B, M_Real
*diff);
int
M_Trace
(M_Real
*trace, const M_Matrix
*A);
void
M_IsSquare
(M_Matrix
*A);
M_Matrix *
M_GaussJordan
(const
M_Matrix *A, M_Matrix
*b);
int
M_GaussJordanv
(M_Matrix
*A, M_Matrix
*b);
int
M_FactorizeLU
(M_Matrix
*A);
void
M_BacksubstLU
(M_Matrix
*LU, M_Vector
*b);
void
M_MNAPreorder
(M_Matrix
*A);
The M_Transpose
() function returns the
transpose of M (i.e., all i,
j elements are swapped against
j, i elements).
M_Add
() returns the sum of the matrices
A and B. The
M_Addv
() variant returns the sum into an existing
matrix, returning -1 if the dimensions are incorrect.
The M_AddToDiag
() routine adds
value to each diagonal entry i,
i of matrix A.
M_DirectSum
() returns the direct sum of
A and B.
M_Mul
() returns the product of matrices
A and B. The
M_Mulv
() variant returns the product into an
existing matrix, returning -1 if the dimensions are incorrect.
M_EntMul
() and M_EntMulv
()
perform entrywise multiplication as opposed to matrix multiplication.
The M_Compare
() function compares each
entry of A and B, returning the
largest difference into diff.
M_Trace
() returns the trace (the sum of
elements on the diagonal) of a square matrix A into
trace.
The M_IsSquare
() function returns 1 if
A is a square (n-by-n) matrix.
The M_GaussJordan
() function solves for
x in Ax = b. The solver replaces
the contents of A by its inverse, and returns the
solution vector into b.
The M_FactorizeLU
() routine computes the
LU factorization of a square matrix
A. If successful, the original contents of
A are destroyed and replaced by the
LU factorization. On error, -1 is returned. Partial
pivoting information is recorded in the M_Matrix
structure for subsequent backsubstitution.
The M_BacksubstLU
() routine solves a
system of linear equations represented by a LU factorization
LU (previously computed by
M_FactorizeLU
()) and a right-hand side
b. The solution vector is returned into
b.
The M_MNAPreorder
() routine attempts to
remove zeros from the diagonal, by taking into account the structure of
modified node admittance matrices (found in applications such as electronic
simulators).
The following routines are optimized for 4x4 matrices, as frequently encountered
in computer graphics. Entries are directly accessible as structure members.
Available backends include:
- fpu
- Native scalar floating point methods.
- sse
- Accelerate operations using Streaming SIMD Extensions (SSE).
M_Matrix44
M_MatZero44
(void);
void
M_MatZero44v
(M_Matrix44
*Z);
M_Matrix44
M_MatIdentity44
(void);
void
M_MatIdentity44v
(M_Matrix44
*I);
void
M_MatCopy44
(M_Matrix44
*Mdst, const M_Matrix44
*Msrc);
The M_MatZero44
() and
M_MatZero44v
() functions initializes the target
matrix Z to the zero matrix.
M_MatIdentity44
() and
M_MatIdentity44v
() initializes the target matrix
I to the identity matrix.
The M_MatCopy44
() routine copies the
contents of matrix Msrc into
Mdst. The original contents of
Mdst are overwritten.
The elements of M_Matrix44 are directly accessible via the
m[4][4] member of the structure. Elements of the matrix
are stored in row-major format. The structure is defined as:
#ifdef HAVE_SSE
typedef union m_matrix44 {
struct { __m128 m1, m2, m3, m4; };
float m[4][4];
} M_Matrix44;
#else
typedef struct m_matrix44 {
M_Real m[4][4];
} M_Matrix44;
#endif
Notice that SIMD extensions force single-precision floats,
regardless of the precision for which Agar-Math was built (if a 4x4 matrix
of higher precision is required, the general M_Matrix
type may be used).
The following functions convert between
M_Matrix44 and numerical arrays:
void
M_MatToFloats44
(float
*flts, const M_Matrix44
*A);
void
M_MatToDoubles44
(double
*dbls, const M_Matrix44
*A);
void
M_MatFromFloats44
(M_Matrix44
*M, const float
*flts);
void
M_MatFromDoubles44
(M_Matrix44
*M, const double
*dbls);
M_MatToFloats44
() converts matrix
A to a 4x4 array of floats flts.
M_MatToDoubles44
() converts matrix
A to a 4x4 array of doubles
dbls. M_MatFromFloats44
()
initializes matrix M from the contents of a 4x4 array
of floats flts.
M_MatFromDoubles44
() initializes matrix
M from the contents of a 4x4 array of doubles
dbls.
M_Matrix44
M_MatTranspose44
(M_Matrix44
A);
M_Matrix44
M_MatTranspose44p
(const
M_Matrix44 *A);
void
M_MatTranspose44v
(M_Matrix44
*A);
M_Matrix44
M_MatInvert44
(M_Matrix44
A);
int
M_MatInvertElim44
(M_Matrix44
A, M_Matrix44
*Ainv);
M_Matrix44
M_MatMult44
(M_Matrix44
A, M_Matrix44
B);
void
M_MatMult44v
(M_Matrix44
*A, const M_Matrix44
*B);
void
M_MatMult44pv
(M_Matrix44
*AB, const M_Matrix44
*A, const M_Matrix44
*B);
M_Vector4
M_MatMultVector44
(M_Matrix44
A, M_Vector4
x);
M_Vector4
M_MatMultVector44p
(const
M_Matrix44 *A, const
M_Vector4 *x);
void
M_MatMultVector44v
(M_Vector4
*x, const M_Matrix44
*A);
void
M_MatRotateAxis44
(M_Matrix44
*T, M_Real theta,
M_Vector3 axis);
void
M_MatOrbitAxis44
(M_Matrix44
*T, M_Vector3
center, M_Vector3
axis, M_Real
theta);
void
M_MatRotateEul44
(M_Matrix44
*T, M_Real pitch,
M_Real roll,
M_Real yaw);
void
M_MatRotate44I
(M_Matrix44
*T, M_Real
theta);
void
M_MatRotate44J
(M_Matrix44
*T, M_Real
theta);
void
M_MatRotate44K
(M_Matrix44
*T, M_Real
theta);
void
M_MatTranslate44v
(M_Matrix44
*T, M_Vector3
v);
void
M_MatTranslate44
(M_Matrix44
*T, M_Real x,
M_Real y,
M_Real z);
void
M_MatTranslate44X
(M_Matrix44
*T, M_Real c);
void
M_MatTranslate44Y
(M_Matrix44
*T, M_Real c);
void
M_MatTranslate44Z
(M_Matrix44
*T, M_Real c);
void
M_MatScale44
(M_Matrix44
*T, M_Real x,
M_Real y,
M_Real z,
M_Real w);
void
M_MatUniScale44
(M_Matrix44
*T, M_Real c);
The M_MatTranspose44
(),
M_MatTranspose44p
() and
M_MatTranspose44v
() function compute and return the
transpose of matrix A (i.e., all elements
i,j are swapped for elements
j,i).
The function M_MatInvert44
() computes the
inverse of A using Cramer's rule and cofactors. If the
matrix is not invertible, the return value is undefined.
The M_MatInvertElim44
() function computes
the inverse of A by systematic Gaussian elimination.
If the matrix is not invertible (singular up to
M_MACHEP
precision), the function fails.
M_MatMult44
(),
M_MatMult44v
() and
M_MatMult44pv
() compute the product of matrices
A and B.
The M_MatMultVector44
(),
M_MatMultVector44p
() and
M_MatMultVector44v
() functions perform matrix-vector
multiplication Ax, and returns
x.
M_MatRotateAxis44
() multiplies matrix
T against a rotation matrix describing a rotation of
theta radians about axis
(relative to the origin). The M_MatOrbitAxis44
()
variant takes axis to be relative to the specified
center point as opposed to the origin.
M_MatRotateEul44
() multiplies
T against a matrix describing a rotation about the
origin in terms of Euler angles pitch,
roll and yaw (given in
radians).
M_MatRotate44I
(),
M_MatRotate44J
() and
M_MatRotate44K
() multiply T
with a matrix describing a rotation of theta radians
about the basis vector i, j or
k, respectively.
M_MatTranslate44v
() multiplies
T against a matrix describing a translation by vector
v. M_MatTranslate44
(),
M_MatTranslate44X
(),
M_MatTranslate44Y
() and
M_MatTranslate44Z
() accept individual coordinate
arguments.
M_MatScale44
() multiplies
T against a matrix describing uniform/non-uniform
scaling by [x,y,z,w]. M_MatUniScale44
() performs
uniform scaling by c.
The M_Matrix
interface first appeared in Agar 1.3.3.