- new()
-
$x = Math::BigRat->new('1/3');
Create a new Math::BigRat object. Input can come in various
forms:
$x = Math::BigRat->new(123); # scalars
$x = Math::BigRat->new('inf'); # infinity
$x = Math::BigRat->new('123.3'); # float
$x = Math::BigRat->new('1/3'); # simple string
$x = Math::BigRat->new('1 / 3'); # spaced
$x = Math::BigRat->new('1 / 0.1'); # w/ floats
$x = Math::BigRat->new(Math::BigInt->new(3)); # BigInt
$x = Math::BigRat->new(Math::BigFloat->new('3.1')); # BigFloat
$x = Math::BigRat->new(Math::BigInt::Lite->new('2')); # BigLite
# You can also give D and N as different objects:
$x = Math::BigRat->new(
Math::BigInt->new(-123),
Math::BigInt->new(7),
); # => -123/7
- numerator()
-
$n = $x->numerator();
Returns a copy of the numerator (the part above the line) as
signed BigInt.
- denominator()
-
$d = $x->denominator();
Returns a copy of the denominator (the part under the line) as
positive BigInt.
- parts()
-
($n, $d) = $x->parts();
Return a list consisting of (signed) numerator and (unsigned)
denominator as BigInts.
- dparts()
- Returns the integer part and the fraction part.
- numify()
-
my $y = $x->numify();
Returns the object as a scalar. This will lose some data if
the object cannot be represented by a normal Perl scalar (integer or
float), so use "as_int()" or
"as_float()" instead.
This routine is automatically used whenever a scalar is
required:
my $x = Math::BigRat->new('3/1');
@array = (0, 1, 2, 3);
$y = $array[$x]; # set $y to 3
- as_int()
- as_number()
-
$x = Math::BigRat->new('13/7');
print $x->as_int(), "\n"; # '1'
Returns a copy of the object as BigInt, truncated to an
integer.
"as_number()" is an alias
for "as_int()".
- as_float()
-
$x = Math::BigRat->new('13/7');
print $x->as_float(), "\n"; # '1'
$x = Math::BigRat->new('2/3');
print $x->as_float(5), "\n"; # '0.66667'
Returns a copy of the object as BigFloat, preserving the
accuracy as wanted, or the default of 40 digits.
This method was added in v0.22 of Math::BigRat (April
2008).
- as_hex()
-
$x = Math::BigRat->new('13');
print $x->as_hex(), "\n"; # '0xd'
Returns the BigRat as hexadecimal string. Works only for
integers.
- as_bin()
-
$x = Math::BigRat->new('13');
print $x->as_bin(), "\n"; # '0x1101'
Returns the BigRat as binary string. Works only for
integers.
- as_oct()
-
$x = Math::BigRat->new('13');
print $x->as_oct(), "\n"; # '015'
Returns the BigRat as octal string. Works only for
integers.
- from_hex()
-
my $h = Math::BigRat->from_hex('0x10');
Create a BigRat from a hexadecimal number in string form.
- from_oct()
-
my $o = Math::BigRat->from_oct('020');
Create a BigRat from an octal number in string form.
- from_bin()
-
my $b = Math::BigRat->from_bin('0b10000000');
Create a BigRat from an binary number in string form.
- bnan()
-
$x = Math::BigRat->bnan();
Creates a new BigRat object representing NaN (Not A Number).
If used on an object, it will set it to NaN:
$x->bnan();
- bzero()
-
$x = Math::BigRat->bzero();
Creates a new BigRat object representing zero. If used on an
object, it will set it to zero:
$x->bzero();
- binf()
-
$x = Math::BigRat->binf($sign);
Creates a new BigRat object representing infinity. The
optional argument is either '-' or '+', indicating whether you want
infinity or minus infinity. If used on an object, it will set it to
infinity:
$x->binf();
$x->binf('-');
- bone()
-
$x = Math::BigRat->bone($sign);
Creates a new BigRat object representing one. The optional
argument is either '-' or '+', indicating whether you want one or minus
one. If used on an object, it will set it to one:
$x->bone(); # +1
$x->bone('-'); # -1
- length()
-
$len = $x->length();
Return the length of $x in digits for
integer values.
- digit()
-
print Math::BigRat->new('123/1')->digit(1); # 1
print Math::BigRat->new('123/1')->digit(-1); # 3
Return the N'ths digit from X when X is an integer value.
- bnorm()
-
$x->bnorm();
Reduce the number to the shortest form. This routine is called
automatically whenever it is needed.
- bfac()
-
$x->bfac();
Calculates the factorial of $x. For
instance:
print Math::BigRat->new('3/1')->bfac(), "\n"; # 1*2*3
print Math::BigRat->new('5/1')->bfac(), "\n"; # 1*2*3*4*5
Works currently only for integers.
- bround()/round()/bfround()
- Are not yet implemented.
- bmod()
-
$x->bmod($y);
Returns $x modulo
$y. When $x is finite,
and $y is finite and non-zero, the result is
identical to the remainder after floored division (F-division). If, in
addition, both $x and $y
are integers, the result is identical to the result from Perl's %
operator.
- bmodinv()
-
$x->bmodinv($mod); # modular multiplicative inverse
Returns the multiplicative inverse of
$x modulo $mod. If
$y = $x -> copy() -> bmodinv($mod)
then $y is the number closest to zero,
and with the same sign as $mod, satisfying
($x * $y) % $mod = 1 % $mod
If $x and $y
are non-zero, they must be relative primes, i.e.,
"bgcd($y, $mod)==1".
'"NaN"' is returned when no modular
multiplicative inverse exists.
- bmodpow()
-
$num->bmodpow($exp,$mod); # modular exponentiation
# ($num**$exp % $mod)
Returns the value of $num taken to the
power $exp in the modulus
$mod using binary exponentiation.
"bmodpow" is far superior to
writing
$num ** $exp % $mod
because it is much faster - it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
"bmodpow" also supports
negative exponents.
bmodpow($num, -1, $mod)
is exactly equivalent to
bmodinv($num, $mod)
- bneg()
-
$x->bneg();
Used to negate the object in-place.
- is_one()
-
print "$x is 1\n" if $x->is_one();
Return true if $x is exactly one,
otherwise false.
- is_zero()
-
print "$x is 0\n" if $x->is_zero();
Return true if $x is exactly zero,
otherwise false.
- is_pos()/is_positive()
-
print "$x is >= 0\n" if $x->is_positive();
Return true if $x is positive (greater
than or equal to zero), otherwise false. Please note that '+inf' is also
positive, while 'NaN' and '-inf' aren't.
"is_positive()" is an alias
for "is_pos()".
- is_neg()/is_negative()
-
print "$x is < 0\n" if $x->is_negative();
Return true if $x is negative (smaller
than zero), otherwise false. Please note that '-inf' is also negative,
while 'NaN' and '+inf' aren't.
"is_negative()" is an alias
for "is_neg()".
- is_int()
-
print "$x is an integer\n" if $x->is_int();
Return true if $x has a denominator of
1 (e.g. no fraction parts), otherwise false. Please note that '-inf',
'inf' and 'NaN' aren't integer.
- is_odd()
-
print "$x is odd\n" if $x->is_odd();
Return true if $x is odd, otherwise
false.
- is_even()
-
print "$x is even\n" if $x->is_even();
Return true if $x is even, otherwise
false.
- bceil()
-
$x->bceil();
Set $x to the next bigger integer
value (e.g. truncate the number to integer and then increment it by
one).
- bfloor()
-
$x->bfloor();
Truncate $x to an integer value.
- bint()
-
$x->bint();
Round $x towards zero.
- bsqrt()
-
$x->bsqrt();
Calculate the square root of $x.
- broot()
-
$x->broot($n);
Calculate the N'th root of $x.
- badd()
-
$x->badd($y);
Adds $y to $x
and returns the result.
- bmul()
-
$x->bmul($y);
Multiplies $y to
$x and returns the result.
- bsub()
-
$x->bsub($y);
Subtracts $y from
$x and returns the result.
- bdiv()
-
$q = $x->bdiv($y);
($q, $r) = $x->bdiv($y);
In scalar context, divides $x by
$y and returns the result. In list context, does
floored division (F-division), returning an integer
$q and a remainder $r so
that $x = $q *
$y + $r. The remainer
(modulo) is equal to what is returned by
"$x->bmod($y)".
- binv()
-
$x->binv();
Inverse of $x.
- bdec()
-
$x->bdec();
Decrements $x by 1 and returns the
result.
- binc()
-
$x->binc();
Increments $x by 1 and returns the
result.
- copy()
-
my $z = $x->copy();
Makes a deep copy of the object.
Please see the documentation in Math::BigInt for further
details.
- bstr()/bsstr()
-
my $x = Math::BigRat->new('8/4');
print $x->bstr(), "\n"; # prints 1/2
print $x->bsstr(), "\n"; # prints 1/2
Return a string representing this object.
- bcmp()
-
$x->bcmp($y);
Compares $x with
$y and takes the sign into account. Returns -1,
0, 1 or undef.
- bacmp()
-
$x->bacmp($y);
Compares $x with
$y while ignoring their sign. Returns -1, 0, 1
or undef.
- beq()
-
$x -> beq($y);
Returns true if and only if $x is
equal to $y, and false otherwise.
- bne()
-
$x -> bne($y);
Returns true if and only if $x is not
equal to $y, and false otherwise.
- blt()
-
$x -> blt($y);
Returns true if and only if $x is
equal to $y, and false otherwise.
- ble()
-
$x -> ble($y);
Returns true if and only if $x is less
than or equal to $y, and false otherwise.
- bgt()
-
$x -> bgt($y);
Returns true if and only if $x is
greater than $y, and false otherwise.
- bge()
-
$x -> bge($y);
Returns true if and only if $x is
greater than or equal to $y, and false
otherwise.
- blsft()/brsft()
- Used to shift numbers left/right.
Please see the documentation in Math::BigInt for further
details.
- band()
-
$x->band($y); # bitwise and
- bior()
-
$x->bior($y); # bitwise inclusive or
- bxor()
-
$x->bxor($y); # bitwise exclusive or
- bnot()
-
$x->bnot(); # bitwise not (two's complement)
- bpow()
-
$x->bpow($y);
Compute $x **
$y.
Please see the documentation in Math::BigInt for further
details.
- blog()
-
$x->blog($base, $accuracy); # logarithm of x to the base $base
If $base is not defined, Euler's
number (e) is used:
print $x->blog(undef, 100); # log(x) to 100 digits
- bexp()
-
$x->bexp($accuracy); # calculate e ** X
Calculates two integers A and B so that A/B is equal to
"e ** $x", where
"e" is Euler's number.
This method was added in v0.20 of Math::BigRat (May 2007).
See also "blog()".
- bnok()
-
$x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the
"choose" function. The result is equivalent to:
( n ) n!
| - | = -------
( k ) k!(n-k)!
This method was added in v0.20 of Math::BigRat (May 2007).
- config()
-
Math::BigRat->config("trap_nan" => 1); # set
$accu = Math::BigRat->config("accuracy"); # get
Set or get configuration parameter values. Read-only
parameters are marked as RO. Read-write parameters are marked as RW. The
following parameters are supported.
Parameter RO/RW Description
Example
============================================================
lib RO Name of the math backend library
Math::BigInt::Calc
lib_version RO Version of the math backend library
0.30
class RO The class of config you just called
Math::BigRat
version RO version number of the class you used
0.10
upgrade RW To which class numbers are upgraded
undef
downgrade RW To which class numbers are downgraded
undef
precision RW Global precision
undef
accuracy RW Global accuracy
undef
round_mode RW Global round mode
even
div_scale RW Fallback accuracy for div, sqrt etc.
40
trap_nan RW Trap NaNs
undef
trap_inf RW Trap +inf/-inf
undef