GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
Math::GSL::ODEIV(3) User Contributed Perl Documentation Math::GSL::ODEIV(3)

Math::GSL::ODEIV - functions for solving ordinary differential equation (ODE) initial value problems

 use Math::GSL::ODEIV qw /:all/;

Here is a list of all the functions in this module :
  • "gsl_odeiv_step_alloc($T, $dim)" - This function returns a pointer to a newly allocated instance of a stepping function of type $T for a system of $dim dimensions.$T must be one of the step type constant above.
  • "gsl_odeiv_step_reset($s)" - This function resets the stepping function $s. It should be used whenever the next use of s will not be a continuation of a previous step.
  • "gsl_odeiv_step_free($s)" - This function frees all the memory associated with the stepping function $s.
  • "gsl_odeiv_step_name($s)" - This function returns a pointer to the name of the stepping function.
  • "gsl_odeiv_step_order($s)" - This function returns the order of the stepping function on the previous step. This order can vary if the stepping function itself is adaptive.
  • "gsl_odeiv_step_apply "
  • "gsl_odeiv_control_alloc($T)" - This function returns a pointer to a newly allocated instance of a control function of type $T. This function is only needed for defining new types of control functions. For most purposes the standard control functions described above should be sufficient. $T is a gsl_odeiv_control_type.
  • "gsl_odeiv_control_init($c, $eps_abs, $eps_rel, $a_y, $a_dydt) " - This function initializes the control function c with the parameters eps_abs (absolute error), eps_rel (relative error), a_y (scaling factor for y) and a_dydt (scaling factor for derivatives).
  • "gsl_odeiv_control_free "
  • "gsl_odeiv_control_hadjust "
  • "gsl_odeiv_control_name "
  • "gsl_odeiv_control_standard_new($eps_abs, $eps_rel, $a_y, $a_dydt)" - The standard control object is a four parameter heuristic based on absolute and relative errors $eps_abs and $eps_rel, and scaling factors $a_y and $a_dydt for the system state y(t) and derivatives y'(t) respectively. The step-size adjustment procedure for this method begins by computing the desired error level D_i for each component, D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y'_i|) and comparing it with the observed error E_i = |yerr_i|. If the observed error E exceeds the desired error level D by more than 10% for any component then the method reduces the step-size by an appropriate factor, h_new = h_old * S * (E/D)^(-1/q) where q is the consistency order of the method (e.g. q=4 for 4(5) embedded RK), and S is a safety factor of 0.9. The ratio E/D is taken to be the maximum of the ratios E_i/D_i. If the observed error E is less than 50% of the desired error level D for the maximum ratio E_i/D_i then the algorithm takes the opportunity to increase the step-size to bring the error in line with the desired level, h_new = h_old * S * (E/D)^(-1/(q+1)) This encompasses all the standard error scaling methods. To avoid uncontrolled changes in the stepsize, the overall scaling factor is limited to the range 1/5 to 5.
  • "gsl_odeiv_control_y_new($eps_abs, $eps_rel)" - This function creates a new control object which will keep the local error on each step within an absolute error of $eps_abs and relative error of $eps_rel with respect to the solution y_i(t). This is equivalent to the standard control object with a_y=1 and a_dydt=0.
  • "gsl_odeiv_control_yp_new($eps_abs, $eps_rel)" - This function creates a new control object which will keep the local error on each step within an absolute error of $eps_abs and relative error of $eps_rel with respect to the derivatives of the solution y'_i(t). This is equivalent to the standard control object with a_y=0 and a_dydt=1.
  • "gsl_odeiv_control_scaled_new($eps_abs, $eps_rel, $a_y, $a_dydt, $scale_abs, $dim) " - This function creates a new control object which uses the same algorithm as gsl_odeiv_control_standard_new but with an absolute error which is scaled for each component by the array reference $scale_abs. The formula for D_i for this control object is, D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y'_i|) where s_i is the i-th component of the array scale_abs. The same error control heuristic is used by the Matlab ode suite.
  • "gsl_odeiv_evolve_alloc($dim)" - This function returns a pointer to a newly allocated instance of an evolution function for a system of $dim dimensions.
  • "gsl_odeiv_evolve_apply($e, $c, $step, $dydt, \$t, $t1, \$h, $y)" - This function advances the system ($e, $dydt) from time $t and position $y using the stepping function $step. The new time and position are stored in $t and $y on output. The initial step-size is taken as $h, but this will be modified using the control function $c to achieve the appropriate error bound if necessary. The routine may make several calls to step in order to determine the optimum step-size. If the step-size has been changed the value of $h will be modified on output. The maximum time $t1 is guaranteed not to be exceeded by the time-step. On the final time-step the value of $t will be set to $t1 exactly.
  • "gsl_odeiv_evolve_reset($e)" - This function resets the evolution function $e. It should be used whenever the next use of $e will not be a continuation of a previous step.
  • "gsl_odeiv_evolve_free($e)" - This function frees all the memory associated with the evolution function $e.

This module also includes the following constants :

  • $GSL_ODEIV_HADJ_INC
  • $GSL_ODEIV_HADJ_NIL
  • $GSL_ODEIV_HADJ_DEC

  • $gsl_odeiv_step_rk2 - Embedded Runge-Kutta (2, 3) method.
  • $gsl_odeiv_step_rk4 - 4th order (classical) Runge-Kutta. The error estimate is obtained by halving the step-size. For more efficient estimate of the error, use the Runge-Kutta-Fehlberg method described below.
  • $gsl_odeiv_step_rkf45 - Embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator.
  • $gsl_odeiv_step_rkck - Embedded Runge-Kutta Cash-Karp (4, 5) method.
  • $gsl_odeiv_step_rk8pd - Embedded Runge-Kutta Prince-Dormand (8,9) method.
  • $gsl_odeiv_step_rk2imp - Implicit 2nd order Runge-Kutta at Gaussian points.
  • $gsl_odeiv_step_rk2simp
  • $gsl_odeiv_step_rk4imp - Implicit 4th order Runge-Kutta at Gaussian points.
  • $gsl_odeiv_step_bsimp - Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm requires the Jacobian.
  • $gsl_odeiv_step_gear1 - M=1 implicit Gear method.
  • $gsl_odeiv_step_gear2 - M=2 implicit Gear method.

For more informations on the functions, we refer you to the GSL official documentation: <http://www.gnu.org/software/gsl/manual/html_node/>

The example is taken from <https://www.math.utah.edu/software/gsl/gsl-ref_367.html>.

 use strict;
 use warnings;
 use Math::GSL::Errno qw($GSL_SUCCESS);
 use Math::GSL::ODEIV qw/ :all /;
 use Math::GSL::Matrix qw/:all/;
 use Math::GSL::IEEEUtils qw/ :all /;
 
 sub func {
     my ($t, $y, $dydt, $params) = @_;
     my $mu = $params->{mu};
     $dydt->[0] = $y->[1];
     $dydt->[1] = -$y->[0] - $mu*$y->[1]*(($y->[0])**2 - 1);
     return $GSL_SUCCESS;
 }
 
 sub jac {
     my ($t, $y, $dfdy, $dfdt, $params) = @_;

     my $mu = $params->{mu};
     my $m = gsl_matrix_view_array($dfdy, 2, 2);
     gsl_matrix_set( $m, 0, 0, 0.0 );
     gsl_matrix_set( $m, 0, 1, 1.0 );
     gsl_matrix_set( $m, 1, 0, (-2.0 * $mu * $y->[0] * $y->[1]) - 1.0 );
     gsl_matrix_set( $m, 1, 1, -$mu * (($y->[0])**2 - 1.0) );
     $dfdt->[0] = 0.0;
     $dfdt->[1] = 0.0;
     return $GSL_SUCCESS;
 }
 
 my $T = $gsl_odeiv_step_rk8pd;
 my $s = gsl_odeiv_step_alloc($T, 2);
 my $c = gsl_odeiv_control_y_new(1e-6, 0.0);
 my $e = gsl_odeiv_evolve_alloc(2);
 my $params = { mu => 10 };
 my $sys = Math::GSL::ODEIV::gsl_odeiv_system->new(\&func, \&jac, 2, $params );
 my $t = 0.0;
 my $t1 = 100.0;
 my $h = 1e-6;
 my $y = [ 1.0, 0.0 ];
 gsl_ieee_env_setup;
 while ($t < $t1) {
     my $status = gsl_odeiv_evolve_apply ($e, $c, $s, $sys, \$t, $t1, \$h, $y);
     last if $status != $GSL_SUCCESS;
     printf "%.5e %.5e %.5e\n", $t, $y->[0], $y->[1];
 }
 gsl_odeiv_evolve_free($e);
 gsl_odeiv_control_free($c);
 gsl_odeiv_step_free($s);

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

Copyright (C) 2008-2021 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

2022-04-08 perl v5.32.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.