GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
Math::Prime::Util::ZetaBigFloat(3) User Contributed Perl Documentation Math::Prime::Util::ZetaBigFloat(3)

Math::Prime::Util::ZetaBigFloat - Perl Big Float versions of Riemann Zeta and R functions

Version 0.73

Math::BigFloat versions`of the Riemann Zeta and Riemann R functions. These are kept in a separate module because they use a lot of big tables that we'd prefer to only load if needed.

Pure Perl implementations of Riemann Zeta and Riemann R using Math::BigFloat. These functions are used if:
The input is a BigInt, a BigFloat, or the bignum module has been loaded.
The Math::Prime::Util::GMP module is not available or old.

If you use these functions a lot, I highly recommend you install Math::Prime::Util::GMP, which the main Math::Prime::Util functions will find. These give much better performance, and better accuracy. You can also use Math::Pari and Math::MPFR for the Riemann Zeta function.

  my $z = RiemannZeta($s);

Given a floating point input "s" where "s >= 0.5", returns the floating point value of ζ(s)-1, where ζ(s) is the Riemann zeta function. One is subtracted to ensure maximum precision for large values of "s". The zeta function is the sum from k=1 to infinity of "1 / k^s"

Results are calculated using either Borwein (1991) algorithm 2, or the basic series. Full input accuracy is attempted, but there are defects in Math::BigFloat with high accuracy computations that make this difficult.

  my $r = RiemannR($x);

Given a positive non-zero floating point input, returns the floating point value of Riemann's R function. Riemann's R function gives a very close approximation to the prime counting function.

Accuracy should be about 35 digits.

Bugs in Math::BigFloat (RT 43692, RT 77105) cause many problems with this code. I've attempted to work around them, but it is possible there are cases they miss.

The accuracy goals (35 digits) are sometimes missed by a digit or two.

Performance is quite bad.

Math::Prime::Util

Math::Prime::Util::GMP

Math::MPFR

Math::Pari

Dana Jacobsen <dana@acm.org>

Copyright 2012 by Dana Jacobsen <dana@acm.org>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

2018-11-15 perl v5.32.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.