|
NAMEcomplex16GTcomputational - complex16SYNOPSISFunctionssubroutine zgtcon (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, INFO) ZGTCON subroutine zgtrfs (TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO) ZGTRFS subroutine zgttrf (N, DL, D, DU, DU2, IPIV, INFO) ZGTTRF subroutine zgttrs (TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, INFO) ZGTTRS subroutine zgtts2 (ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf. Detailed DescriptionThis is the group of complex16 computational functions for GT matricesFunction Documentationsubroutine zgtcon (character NORM, integer N, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( * ) DU2, integer, dimension( * ) IPIV, double precision ANORM, double precision RCOND, complex*16, dimension( * ) WORK, integer INFO)ZGTCONPurpose: ZGTCON estimates the reciprocal of the condition number of a complex tridiagonal matrix A using the LU factorization as computed by ZGTTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Parameters NORM
NORM is CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. N N is INTEGER The order of the matrix A. N >= 0. DL DL is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A as computed by ZGTTRF. D D is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU DU is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first superdiagonal of U. DU2 DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second superdiagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. ANORM ANORM is DOUBLE PRECISION If NORM = '1' or 'O', the 1-norm of the original matrix A. If NORM = 'I', the infinity-norm of the original matrix A. RCOND RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. WORK WORK is COMPLEX*16 array, dimension (2*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 139 of file zgtcon.f. subroutine zgtrfs (character TRANS, integer N, integer NRHS, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( * ) DLF, complex*16, dimension( * ) DF, complex*16, dimension( * ) DUF, complex*16, dimension( * ) DU2, integer, dimension( * ) IPIV, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldx, * ) X, integer LDX, double precision, dimension( * ) FERR, double precision, dimension( * ) BERR, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer INFO)ZGTRFSPurpose: ZGTRFS improves the computed solution to a system of linear equations when the coefficient matrix is tridiagonal, and provides error bounds and backward error estimates for the solution. Parameters TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. DL DL is COMPLEX*16 array, dimension (N-1) The (n-1) subdiagonal elements of A. D D is COMPLEX*16 array, dimension (N) The diagonal elements of A. DU DU is COMPLEX*16 array, dimension (N-1) The (n-1) superdiagonal elements of A. DLF DLF is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A as computed by ZGTTRF. DF DF is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DUF DUF is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first superdiagonal of U. DU2 DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second superdiagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. B B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZGTTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. BERR BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is COMPLEX*16 array, dimension (2*N) RWORK RWORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 207 of file zgtrfs.f. subroutine zgttrf (integer N, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( * ) DU2, integer, dimension( * ) IPIV, integer INFO)ZGTTRFPurpose: ZGTTRF computes an LU factorization of a complex tridiagonal matrix A using elimination with partial pivoting and row interchanges. The factorization has the form A = L * U where L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with nonzeros in only the main diagonal and first two superdiagonals. Parameters N
N is INTEGER The order of the matrix A. DL DL is COMPLEX*16 array, dimension (N-1) On entry, DL must contain the (n-1) sub-diagonal elements of A. On exit, DL is overwritten by the (n-1) multipliers that define the matrix L from the LU factorization of A. D D is COMPLEX*16 array, dimension (N) On entry, D must contain the diagonal elements of A. On exit, D is overwritten by the n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU DU is COMPLEX*16 array, dimension (N-1) On entry, DU must contain the (n-1) super-diagonal elements of A. On exit, DU is overwritten by the (n-1) elements of the first super-diagonal of U. DU2 DU2 is COMPLEX*16 array, dimension (N-2) On exit, DU2 is overwritten by the (n-2) elements of the second super-diagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value > 0: if INFO = k, U(k,k) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 123 of file zgttrf.f. subroutine zgttrs (character TRANS, integer N, integer NRHS, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( * ) DU2, integer, dimension( * ) IPIV, complex*16, dimension( ldb, * ) B, integer LDB, integer INFO)ZGTTRSPurpose: ZGTTRS solves one of the systems of equations A * X = B, A**T * X = B, or A**H * X = B, with a tridiagonal matrix A using the LU factorization computed by ZGTTRF. Parameters TRANS
TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) N N is INTEGER The order of the matrix A. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. DL DL is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A. D D is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU DU is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first super-diagonal of U. DU2 DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second super-diagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the matrix of right hand side vectors B. On exit, B is overwritten by the solution vectors X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 136 of file zgttrs.f. subroutine zgtts2 (integer ITRANS, integer N, integer NRHS, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( * ) DU2, integer, dimension( * ) IPIV, complex*16, dimension( ldb, * ) B, integer LDB)ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.Purpose: ZGTTS2 solves one of the systems of equations A * X = B, A**T * X = B, or A**H * X = B, with a tridiagonal matrix A using the LU factorization computed by ZGTTRF. Parameters ITRANS
ITRANS is INTEGER Specifies the form of the system of equations. = 0: A * X = B (No transpose) = 1: A**T * X = B (Transpose) = 2: A**H * X = B (Conjugate transpose) N N is INTEGER The order of the matrix A. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. DL DL is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A. D D is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU DU is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first super-diagonal of U. DU2 DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second super-diagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the matrix of right hand side vectors B. On exit, B is overwritten by the solution vectors X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 127 of file zgtts2.f. AuthorGenerated automatically by Doxygen for LAPACK from the source code.
Visit the GSP FreeBSD Man Page Interface. |