GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
complex16OTHERsolve(3) LAPACK complex16OTHERsolve(3)

complex16OTHERsolve - complex16 Other Solve Routines


subroutine zgglse (M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK, INFO)
ZGGLSE solves overdetermined or underdetermined systems for OTHER matrices subroutine zhpsv (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
ZHPSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zhpsvx (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZHPSVX computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zpbsv (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
ZPBSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zpbsvx (FACT, UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zppsv (UPLO, N, NRHS, AP, B, LDB, INFO)
ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zppsvx (FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zspsv (UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices subroutine zspsvx (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

This is the group of complex16 Other Solve routines

ZGGLSE solves overdetermined or underdetermined systems for OTHER matrices

Purpose:

 ZGGLSE solves the linear equality-constrained least squares (LSE)
 problem:
         minimize || c - A*x ||_2   subject to   B*x = d
 where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
 M-vector, and d is a given P-vector. It is assumed that
 P <= N <= M+P, and
          rank(B) = P and  rank( (A) ) = N.
                               ( (B) )
 These conditions ensure that the LSE problem has a unique solution,
 which is obtained using a generalized RQ factorization of the
 matrices (B, A) given by
    B = (0 R)*Q,   A = Z*T*Q.

Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B. N >= 0.

P

          P is INTEGER
          The number of rows of the matrix B. 0 <= P <= N <= M+P.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix T.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is COMPLEX*16 array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
          contains the P-by-P upper triangular matrix R.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

C

          C is COMPLEX*16 array, dimension (M)
          On entry, C contains the right hand side vector for the
          least squares part of the LSE problem.
          On exit, the residual sum of squares for the solution
          is given by the sum of squares of elements N-P+1 to M of
          vector C.

D

          D is COMPLEX*16 array, dimension (P)
          On entry, D contains the right hand side vector for the
          constrained equation.
          On exit, D is destroyed.

X

          X is COMPLEX*16 array, dimension (N)
          On exit, X is the solution of the LSE problem.

WORK

          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,M+N+P).
          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
          where NB is an upper bound for the optimal blocksizes for
          ZGEQRF, CGERQF, ZUNMQR and CUNMRQ.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the upper triangular factor R associated with B in the
                generalized RQ factorization of the pair (B, A) is
                singular, so that rank(B) < P; the least squares
                solution could not be computed.
          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
                T associated with A in the generalized RQ factorization
                of the pair (B, A) is singular, so that
                rank( (A) ) < N; the least squares solution could not
                    ( (B) )
                be computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 178 of file zgglse.f.

ZHPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZHPSV computes the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian matrix stored in packed format and X
 and B are N-by-NRHS matrices.
 The diagonal pivoting method is used to factor A as
    A = U * D * U**H,  if UPLO = 'U', or
    A = L * D * L**H,  if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, D is Hermitian and block diagonal with 1-by-1
 and 2-by-2 diagonal blocks.  The factored form of A is then used to
 solve the system of equations A * X = B.

Parameters

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
          a packed triangular matrix in the same storage format as A.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D, as
          determined by ZHPTRF.  If IPIV(k) > 0, then rows and columns
          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
          then rows and columns k-1 and -IPIV(k) were interchanged and
          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
          diagonal block.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                has been completed, but the block diagonal matrix D is
                exactly singular, so the solution could not be
                computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
  Two-dimensional storage of the Hermitian matrix A:
     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = conjg(aji))
                 a44
  Packed storage of the upper triangle of A:
  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 161 of file zhpsv.f.

ZHPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or
 A = L*D*L**H to compute the solution to a complex system of linear
 equations A * X = B, where A is an N-by-N Hermitian matrix stored
 in packed format and X and B are N-by-NRHS matrices.
 Error bounds on the solution and a condition estimate are also
 provided.

Description:

 The following steps are performed:
 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
       A = U * D * U**H,  if UPLO = 'U', or
       A = L * D * L**H,  if UPLO = 'L',
    where U (or L) is a product of permutation and unit upper (lower)
    triangular matrices and D is Hermitian and block diagonal with
    1-by-1 and 2-by-2 diagonal blocks.
 2. If some D(i,i)=0, so that D is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.
 3. The system of equations is solved for X using the factored form
    of A.
 4. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.

Parameters

FACT

          FACT is CHARACTER*1
          Specifies whether or not the factored form of A has been
          supplied on entry.
          = 'F':  On entry, AFP and IPIV contain the factored form of
                  A.  AFP and IPIV will not be modified.
          = 'N':  The matrix A will be copied to AFP and factored.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          The upper or lower triangle of the Hermitian matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.

AFP

          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
          If FACT = 'F', then AFP is an input argument and on entry
          contains the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
          a packed triangular matrix in the same storage format as A.
          If FACT = 'N', then AFP is an output argument and on exit
          contains the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
          a packed triangular matrix in the same storage format as A.

IPIV

          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains details of the interchanges and the block structure
          of D, as determined by ZHPTRF.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
          If FACT = 'N', then IPIV is an output argument and on exit
          contains details of the interchanges and the block structure
          of D, as determined by ZHPTRF.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The N-by-NRHS right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

RCOND

          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A.  If RCOND is less than the machine precision (in
          particular, if RCOND = 0), the matrix is singular to working
          precision.  This condition is indicated by a return code of
          INFO > 0.

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  D(i,i) is exactly zero.  The factorization
                       has been completed but the factor D is exactly
                       singular, so the solution and error bounds could
                       not be computed. RCOND = 0 is returned.
                = N+1: D is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
  Two-dimensional storage of the Hermitian matrix A:
     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = conjg(aji))
                 a44
  Packed storage of the upper triangle of A:
  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 275 of file zhpsvx.f.

ZPBSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZPBSV computes the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian positive definite band matrix and X
 and B are N-by-NRHS matrices.
 The Cholesky decomposition is used to factor A as
    A = U**H * U,  if UPLO = 'U', or
    A = L * L**H,  if UPLO = 'L',
 where U is an upper triangular band matrix, and L is a lower
 triangular band matrix, with the same number of superdiagonals or
 subdiagonals as A.  The factored form of A is then used to solve the
 system of equations A * X = B.

Parameters

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

KD

          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
          See below for further details.
          On exit, if INFO = 0, the triangular factor U or L from the
          Cholesky factorization A = U**H *U or A = L*L**H of the band
          matrix A, in the same storage format as A.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading minor of order i of A is not
                positive definite, so the factorization could not be
                completed, and the solution has not been computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':
  On entry:                       On exit:
      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
  Similarly, if UPLO = 'L' the format of A is as follows:
  On entry:                       On exit:
     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
  Array elements marked * are not used by the routine.

Definition at line 163 of file zpbsv.f.

ZPBSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZPBSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
 compute the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian positive definite band matrix and X
 and B are N-by-NRHS matrices.
 Error bounds on the solution and a condition estimate are also
 provided.

Description:

 The following steps are performed:
 1. If FACT = 'E', real scaling factors are computed to equilibrate
    the system:
       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
    Whether or not the system will be equilibrated depends on the
    scaling of the matrix A, but if equilibration is used, A is
    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
    factor the matrix A (after equilibration if FACT = 'E') as
       A = U**H * U,  if UPLO = 'U', or
       A = L * L**H,  if UPLO = 'L',
    where U is an upper triangular band matrix, and L is a lower
    triangular band matrix.
 3. If the leading i-by-i principal minor is not positive definite,
    then the routine returns with INFO = i. Otherwise, the factored
    form of A is used to estimate the condition number of the matrix
    A.  If the reciprocal of the condition number is less than machine
    precision, INFO = N+1 is returned as a warning, but the routine
    still goes on to solve for X and compute error bounds as
    described below.
 4. The system of equations is solved for X using the factored form
    of A.
 5. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.
 6. If equilibration was used, the matrix X is premultiplied by
    diag(S) so that it solves the original system before
    equilibration.

Parameters

FACT

          FACT is CHARACTER*1
          Specifies whether or not the factored form of the matrix A is
          supplied on entry, and if not, whether the matrix A should be
          equilibrated before it is factored.
          = 'F':  On entry, AFB contains the factored form of A.
                  If EQUED = 'Y', the matrix A has been equilibrated
                  with scaling factors given by S.  AB and AFB will not
                  be modified.
          = 'N':  The matrix A will be copied to AFB and factored.
          = 'E':  The matrix A will be equilibrated if necessary, then
                  copied to AFB and factored.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

KD

          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

NRHS

          NRHS is INTEGER
          The number of right-hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array, except
          if FACT = 'F' and EQUED = 'Y', then A must contain the
          equilibrated matrix diag(S)*A*diag(S).  The j-th column of A
          is stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(N,j+KD).
          See below for further details.
          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
          diag(S)*A*diag(S).

LDAB

          LDAB is INTEGER
          The leading dimension of the array A.  LDAB >= KD+1.

AFB

          AFB is COMPLEX*16 array, dimension (LDAFB,N)
          If FACT = 'F', then AFB is an input argument and on entry
          contains the triangular factor U or L from the Cholesky
          factorization A = U**H *U or A = L*L**H of the band matrix
          A, in the same storage format as A (see AB).  If EQUED = 'Y',
          then AFB is the factored form of the equilibrated matrix A.
          If FACT = 'N', then AFB is an output argument and on exit
          returns the triangular factor U or L from the Cholesky
          factorization A = U**H *U or A = L*L**H.
          If FACT = 'E', then AFB is an output argument and on exit
          returns the triangular factor U or L from the Cholesky
          factorization A = U**H *U or A = L*L**H of the equilibrated
          matrix A (see the description of A for the form of the
          equilibrated matrix).

LDAFB

          LDAFB is INTEGER
          The leading dimension of the array AFB.  LDAFB >= KD+1.

EQUED

          EQUED is CHARACTER*1
          Specifies the form of equilibration that was done.
          = 'N':  No equilibration (always true if FACT = 'N').
          = 'Y':  Equilibration was done, i.e., A has been replaced by
                  diag(S) * A * diag(S).
          EQUED is an input argument if FACT = 'F'; otherwise, it is an
          output argument.

S

          S is DOUBLE PRECISION array, dimension (N)
          The scale factors for A; not accessed if EQUED = 'N'.  S is
          an input argument if FACT = 'F'; otherwise, S is an output
          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
          must be positive.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
          B is overwritten by diag(S) * B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
          the original system of equations.  Note that if EQUED = 'Y',
          A and B are modified on exit, and the solution to the
          equilibrated system is inv(diag(S))*X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

RCOND

          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A after equilibration (if done).  If RCOND is less than the
          machine precision (in particular, if RCOND = 0), the matrix
          is singular to working precision.  This condition is
          indicated by a return code of INFO > 0.

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, and i is
                <= N:  the leading minor of order i of A is
                       not positive definite, so the factorization
                       could not be completed, and the solution has not
                       been computed. RCOND = 0 is returned.
                = N+1: U is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The band storage scheme is illustrated by the following example, when
  N = 6, KD = 2, and UPLO = 'U':
  Two-dimensional storage of the Hermitian matrix A:
     a11  a12  a13
          a22  a23  a24
               a33  a34  a35
                    a44  a45  a46
                         a55  a56
     (aij=conjg(aji))         a66
  Band storage of the upper triangle of A:
      *    *   a13  a24  a35  a46
      *   a12  a23  a34  a45  a56
     a11  a22  a33  a44  a55  a66
  Similarly, if UPLO = 'L' the format of A is as follows:
     a11  a22  a33  a44  a55  a66
     a21  a32  a43  a54  a65   *
     a31  a42  a53  a64   *    *
  Array elements marked * are not used by the routine.

Definition at line 339 of file zpbsvx.f.

ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZPPSV computes the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian positive definite matrix stored in
 packed format and X and B are N-by-NRHS matrices.
 The Cholesky decomposition is used to factor A as
    A = U**H * U,  if UPLO = 'U', or
    A = L * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower triangular
 matrix.  The factored form of A is then used to solve the system of
 equations A * X = B.

Parameters

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**H*U or A = L*L**H, in the same storage
          format as A.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading minor of order i of A is not
                positive definite, so the factorization could not be
                completed, and the solution has not been computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
  Two-dimensional storage of the Hermitian matrix A:
     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = conjg(aji))
                 a44
  Packed storage of the upper triangle of A:
  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 143 of file zppsv.f.

ZPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZPPSVX uses the Cholesky factorization A = U**H * U or A = L * L**H to
 compute the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian positive definite matrix stored in
 packed format and X and B are N-by-NRHS matrices.
 Error bounds on the solution and a condition estimate are also
 provided.

Description:

 The following steps are performed:
 1. If FACT = 'E', real scaling factors are computed to equilibrate
    the system:
       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
    Whether or not the system will be equilibrated depends on the
    scaling of the matrix A, but if equilibration is used, A is
    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
    factor the matrix A (after equilibration if FACT = 'E') as
       A = U**H * U ,  if UPLO = 'U', or
       A = L * L**H,  if UPLO = 'L',
    where U is an upper triangular matrix, L is a lower triangular
    matrix, and **H indicates conjugate transpose.
 3. If the leading i-by-i principal minor is not positive definite,
    then the routine returns with INFO = i. Otherwise, the factored
    form of A is used to estimate the condition number of the matrix
    A.  If the reciprocal of the condition number is less than machine
    precision, INFO = N+1 is returned as a warning, but the routine
    still goes on to solve for X and compute error bounds as
    described below.
 4. The system of equations is solved for X using the factored form
    of A.
 5. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.
 6. If equilibration was used, the matrix X is premultiplied by
    diag(S) so that it solves the original system before
    equilibration.

Parameters

FACT

          FACT is CHARACTER*1
          Specifies whether or not the factored form of the matrix A is
          supplied on entry, and if not, whether the matrix A should be
          equilibrated before it is factored.
          = 'F':  On entry, AFP contains the factored form of A.
                  If EQUED = 'Y', the matrix A has been equilibrated
                  with scaling factors given by S.  AP and AFP will not
                  be modified.
          = 'N':  The matrix A will be copied to AFP and factored.
          = 'E':  The matrix A will be equilibrated if necessary, then
                  copied to AFP and factored.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array, except if FACT = 'F'
          and EQUED = 'Y', then A must contain the equilibrated matrix
          diag(S)*A*diag(S).  The j-th column of A is stored in the
          array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.  A is not modified if
          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
          diag(S)*A*diag(S).

AFP

          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
          If FACT = 'F', then AFP is an input argument and on entry
          contains the triangular factor U or L from the Cholesky
          factorization A = U**H*U or A = L*L**H, in the same storage
          format as A.  If EQUED .ne. 'N', then AFP is the factored
          form of the equilibrated matrix A.
          If FACT = 'N', then AFP is an output argument and on exit
          returns the triangular factor U or L from the Cholesky
          factorization A = U**H * U or A = L * L**H of the original
          matrix A.
          If FACT = 'E', then AFP is an output argument and on exit
          returns the triangular factor U or L from the Cholesky
          factorization A = U**H * U or A = L * L**H of the equilibrated
          matrix A (see the description of AP for the form of the
          equilibrated matrix).

EQUED

          EQUED is CHARACTER*1
          Specifies the form of equilibration that was done.
          = 'N':  No equilibration (always true if FACT = 'N').
          = 'Y':  Equilibration was done, i.e., A has been replaced by
                  diag(S) * A * diag(S).
          EQUED is an input argument if FACT = 'F'; otherwise, it is an
          output argument.

S

          S is DOUBLE PRECISION array, dimension (N)
          The scale factors for A; not accessed if EQUED = 'N'.  S is
          an input argument if FACT = 'F'; otherwise, S is an output
          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
          must be positive.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
          B is overwritten by diag(S) * B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
          the original system of equations.  Note that if EQUED = 'Y',
          A and B are modified on exit, and the solution to the
          equilibrated system is inv(diag(S))*X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

RCOND

          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A after equilibration (if done).  If RCOND is less than the
          machine precision (in particular, if RCOND = 0), the matrix
          is singular to working precision.  This condition is
          indicated by a return code of INFO > 0.

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  the leading minor of order i of A is
                       not positive definite, so the factorization
                       could not be completed, and the solution has not
                       been computed. RCOND = 0 is returned.
                = N+1: U is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
  Two-dimensional storage of the Hermitian matrix A:
     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = conjg(aji))
                 a44
  Packed storage of the upper triangle of A:
  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 309 of file zppsvx.f.

ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZSPSV computes the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N symmetric matrix stored in packed format and X
 and B are N-by-NRHS matrices.
 The diagonal pivoting method is used to factor A as
    A = U * D * U**T,  if UPLO = 'U', or
    A = L * D * L**T,  if UPLO = 'L',
 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, D is symmetric and block diagonal with 1-by-1
 and 2-by-2 diagonal blocks.  The factored form of A is then used to
 solve the system of equations A * X = B.

Parameters

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
          a packed triangular matrix in the same storage format as A.

IPIV

          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D, as
          determined by ZSPTRF.  If IPIV(k) > 0, then rows and columns
          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
          then rows and columns k-1 and -IPIV(k) were interchanged and
          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
          diagonal block.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                has been completed, but the block diagonal matrix D is
                exactly singular, so the solution could not be
                computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
  Two-dimensional storage of the symmetric matrix A:
     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = aji)
                 a44
  Packed storage of the upper triangle of A:
  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 161 of file zspsv.f.

ZSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Purpose:

 ZSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
 A = L*D*L**T to compute the solution to a complex system of linear
 equations A * X = B, where A is an N-by-N symmetric matrix stored
 in packed format and X and B are N-by-NRHS matrices.
 Error bounds on the solution and a condition estimate are also
 provided.

Description:

 The following steps are performed:
 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
       A = U * D * U**T,  if UPLO = 'U', or
       A = L * D * L**T,  if UPLO = 'L',
    where U (or L) is a product of permutation and unit upper (lower)
    triangular matrices and D is symmetric and block diagonal with
    1-by-1 and 2-by-2 diagonal blocks.
 2. If some D(i,i)=0, so that D is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.
 3. The system of equations is solved for X using the factored form
    of A.
 4. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.

Parameters

FACT

          FACT is CHARACTER*1
          Specifies whether or not the factored form of A has been
          supplied on entry.
          = 'F':  On entry, AFP and IPIV contain the factored form
                  of A.  AP, AFP and IPIV will not be modified.
          = 'N':  The matrix A will be copied to AFP and factored.

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

AP

          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          The upper or lower triangle of the symmetric matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.

AFP

          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
          If FACT = 'F', then AFP is an input argument and on entry
          contains the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
          a packed triangular matrix in the same storage format as A.
          If FACT = 'N', then AFP is an output argument and on exit
          contains the block diagonal matrix D and the multipliers used
          to obtain the factor U or L from the factorization
          A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as
          a packed triangular matrix in the same storage format as A.

IPIV

          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains details of the interchanges and the block structure
          of D, as determined by ZSPTRF.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
          If FACT = 'N', then IPIV is an output argument and on exit
          contains details of the interchanges and the block structure
          of D, as determined by ZSPTRF.

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The N-by-NRHS right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

RCOND

          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A.  If RCOND is less than the machine precision (in
          particular, if RCOND = 0), the matrix is singular to working
          precision.  This condition is indicated by a return code of
          INFO > 0.

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  D(i,i) is exactly zero.  The factorization
                       has been completed but the factor D is exactly
                       singular, so the solution and error bounds could
                       not be computed. RCOND = 0 is returned.
                = N+1: D is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':
  Two-dimensional storage of the symmetric matrix A:
     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = aji)
                 a44
  Packed storage of the upper triangle of A:
  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 275 of file zspsvx.f.

Generated automatically by Doxygen for LAPACK from the source code.
Mon Jun 28 2021 Version 3.10.0

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.