GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
complexGBsolve(3) LAPACK complexGBsolve(3)

complexGBsolve - complex


subroutine cgbsv (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
CGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver) subroutine cgbsvx (FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CGBSVX computes the solution to system of linear equations A * X = B for GB matrices subroutine cgbsvxx (FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
CGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

This is the group of complex solve driver functions for GB matrices

CGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Purpose:

 CGBSV computes the solution to a complex system of linear equations
 A * X = B, where A is a band matrix of order N with KL subdiagonals
 and KU superdiagonals, and X and B are N-by-NRHS matrices.
 The LU decomposition with partial pivoting and row interchanges is
 used to factor A as A = L * U, where L is a product of permutation
 and unit lower triangular matrices with KL subdiagonals, and U is
 upper triangular with KL+KU superdiagonals.  The factored form of A
 is then used to solve the system of equations A * X = B.

Parameters

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AB

          AB is COMPLEX array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows KL+1 to
          2*KL+KU+1; rows 1 to KL of the array need not be set.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
          On exit, details of the factorization: U is stored as an
          upper triangular band matrix with KL+KU superdiagonals in
          rows 1 to KL+KU+1, and the multipliers used during the
          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
          See below for further details.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices that define the permutation matrix P;
          row i of the matrix was interchanged with row IPIV(i).

B

          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
                has been completed, but the factor U is exactly
                singular, and the solution has not been computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The band storage scheme is illustrated by the following example, when
  M = N = 6, KL = 2, KU = 1:
  On entry:                       On exit:
      *    *    *    +    +    +       *    *    *   u14  u25  u36
      *    *    +    +    +    +       *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
  Array elements marked * are not used by the routine; elements marked
  + need not be set on entry, but are required by the routine to store
  elements of U because of fill-in resulting from the row interchanges.

Definition at line 161 of file cgbsv.f.

CGBSVX computes the solution to system of linear equations A * X = B for GB matrices

Purpose:

 CGBSVX uses the LU factorization to compute the solution to a complex
 system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
 where A is a band matrix of order N with KL subdiagonals and KU
 superdiagonals, and X and B are N-by-NRHS matrices.
 Error bounds on the solution and a condition estimate are also
 provided.

Description:

 The following steps are performed by this subroutine:
 1. If FACT = 'E', real scaling factors are computed to equilibrate
    the system:
       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
    Whether or not the system will be equilibrated depends on the
    scaling of the matrix A, but if equilibration is used, A is
    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
    or diag(C)*B (if TRANS = 'T' or 'C').
 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
    matrix A (after equilibration if FACT = 'E') as
       A = L * U,
    where L is a product of permutation and unit lower triangular
    matrices with KL subdiagonals, and U is upper triangular with
    KL+KU superdiagonals.
 3. If some U(i,i)=0, so that U is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.
 4. The system of equations is solved for X using the factored form
    of A.
 5. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.
 6. If equilibration was used, the matrix X is premultiplied by
    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
    that it solves the original system before equilibration.

Parameters

FACT

          FACT is CHARACTER*1
          Specifies whether or not the factored form of the matrix A is
          supplied on entry, and if not, whether the matrix A should be
          equilibrated before it is factored.
          = 'F':  On entry, AFB and IPIV contain the factored form of
                  A.  If EQUED is not 'N', the matrix A has been
                  equilibrated with scaling factors given by R and C.
                  AB, AFB, and IPIV are not modified.
          = 'N':  The matrix A will be copied to AFB and factored.
          = 'E':  The matrix A will be equilibrated if necessary, then
                  copied to AFB and factored.

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

AB

          AB is COMPLEX array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
          If FACT = 'F' and EQUED is not 'N', then A must have been
          equilibrated by the scaling factors in R and/or C.  AB is not
          modified if FACT = 'F' or 'N', or if FACT = 'E' and
          EQUED = 'N' on exit.
          On exit, if EQUED .ne. 'N', A is scaled as follows:
          EQUED = 'R':  A := diag(R) * A
          EQUED = 'C':  A := A * diag(C)
          EQUED = 'B':  A := diag(R) * A * diag(C).

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KL+KU+1.

AFB

          AFB is COMPLEX array, dimension (LDAFB,N)
          If FACT = 'F', then AFB is an input argument and on entry
          contains details of the LU factorization of the band matrix
          A, as computed by CGBTRF.  U is stored as an upper triangular
          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
          and the multipliers used during the factorization are stored
          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
          the factored form of the equilibrated matrix A.
          If FACT = 'N', then AFB is an output argument and on exit
          returns details of the LU factorization of A.
          If FACT = 'E', then AFB is an output argument and on exit
          returns details of the LU factorization of the equilibrated
          matrix A (see the description of AB for the form of the
          equilibrated matrix).

LDAFB

          LDAFB is INTEGER
          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains the pivot indices from the factorization A = L*U
          as computed by CGBTRF; row i of the matrix was interchanged
          with row IPIV(i).
          If FACT = 'N', then IPIV is an output argument and on exit
          contains the pivot indices from the factorization A = L*U
          of the original matrix A.
          If FACT = 'E', then IPIV is an output argument and on exit
          contains the pivot indices from the factorization A = L*U
          of the equilibrated matrix A.

EQUED

          EQUED is CHARACTER*1
          Specifies the form of equilibration that was done.
          = 'N':  No equilibration (always true if FACT = 'N').
          = 'R':  Row equilibration, i.e., A has been premultiplied by
                  diag(R).
          = 'C':  Column equilibration, i.e., A has been postmultiplied
                  by diag(C).
          = 'B':  Both row and column equilibration, i.e., A has been
                  replaced by diag(R) * A * diag(C).
          EQUED is an input argument if FACT = 'F'; otherwise, it is an
          output argument.

R

          R is REAL array, dimension (N)
          The row scale factors for A.  If EQUED = 'R' or 'B', A is
          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
          is not accessed.  R is an input argument if FACT = 'F';
          otherwise, R is an output argument.  If FACT = 'F' and
          EQUED = 'R' or 'B', each element of R must be positive.

C

          C is REAL array, dimension (N)
          The column scale factors for A.  If EQUED = 'C' or 'B', A is
          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
          is not accessed.  C is an input argument if FACT = 'F';
          otherwise, C is an output argument.  If FACT = 'F' and
          EQUED = 'C' or 'B', each element of C must be positive.

B

          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit,
          if EQUED = 'N', B is not modified;
          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
          diag(R)*B;
          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
          overwritten by diag(C)*B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
          to the original system of equations.  Note that A and B are
          modified on exit if EQUED .ne. 'N', and the solution to the
          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
          and EQUED = 'R' or 'B'.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

RCOND

          RCOND is REAL
          The estimate of the reciprocal condition number of the matrix
          A after equilibration (if done).  If RCOND is less than the
          machine precision (in particular, if RCOND = 0), the matrix
          is singular to working precision.  This condition is
          indicated by a return code of INFO > 0.

FERR

          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX array, dimension (2*N)

RWORK

          RWORK is REAL array, dimension (N)
          On exit, RWORK(1) contains the reciprocal pivot growth
          factor norm(A)/norm(U). The "max absolute element" norm is
          used. If RWORK(1) is much less than 1, then the stability
          of the LU factorization of the (equilibrated) matrix A
          could be poor. This also means that the solution X, condition
          estimator RCOND, and forward error bound FERR could be
          unreliable. If factorization fails with 0<INFO<=N, then
          RWORK(1) contains the reciprocal pivot growth factor for the
          leading INFO columns of A.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  U(i,i) is exactly zero.  The factorization
                       has been completed, but the factor U is exactly
                       singular, so the solution and error bounds
                       could not be computed. RCOND = 0 is returned.
                = N+1: U is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 367 of file cgbsvx.f.

CGBSVXX computes the solution to system of linear equations A * X = B for GB matrices

Purpose:

    CGBSVXX uses the LU factorization to compute the solution to a
    complex system of linear equations  A * X = B,  where A is an
    N-by-N matrix and X and B are N-by-NRHS matrices.
    If requested, both normwise and maximum componentwise error bounds
    are returned. CGBSVXX will return a solution with a tiny
    guaranteed error (O(eps) where eps is the working machine
    precision) unless the matrix is very ill-conditioned, in which
    case a warning is returned. Relevant condition numbers also are
    calculated and returned.
    CGBSVXX accepts user-provided factorizations and equilibration
    factors; see the definitions of the FACT and EQUED options.
    Solving with refinement and using a factorization from a previous
    CGBSVXX call will also produce a solution with either O(eps)
    errors or warnings, but we cannot make that claim for general
    user-provided factorizations and equilibration factors if they
    differ from what CGBSVXX would itself produce.

Description:

    The following steps are performed:
    1. If FACT = 'E', real scaling factors are computed to equilibrate
    the system:
      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
    Whether or not the system will be equilibrated depends on the
    scaling of the matrix A, but if equilibration is used, A is
    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
    or diag(C)*B (if TRANS = 'T' or 'C').
    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
    the matrix A (after equilibration if FACT = 'E') as
      A = P * L * U,
    where P is a permutation matrix, L is a unit lower triangular
    matrix, and U is upper triangular.
    3. If some U(i,i)=0, so that U is exactly singular, then the
    routine returns with INFO = i. Otherwise, the factored form of A
    is used to estimate the condition number of the matrix A (see
    argument RCOND). If the reciprocal of the condition number is less
    than machine precision, the routine still goes on to solve for X
    and compute error bounds as described below.
    4. The system of equations is solved for X using the factored form
    of A.
    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
    the routine will use iterative refinement to try to get a small
    error and error bounds.  Refinement calculates the residual to at
    least twice the working precision.
    6. If equilibration was used, the matrix X is premultiplied by
    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
    that it solves the original system before equilibration.

     Some optional parameters are bundled in the PARAMS array.  These
     settings determine how refinement is performed, but often the
     defaults are acceptable.  If the defaults are acceptable, users
     can pass NPARAMS = 0 which prevents the source code from accessing
     the PARAMS argument.

Parameters

FACT

          FACT is CHARACTER*1
     Specifies whether or not the factored form of the matrix A is
     supplied on entry, and if not, whether the matrix A should be
     equilibrated before it is factored.
       = 'F':  On entry, AF and IPIV contain the factored form of A.
               If EQUED is not 'N', the matrix A has been
               equilibrated with scaling factors given by R and C.
               A, AF, and IPIV are not modified.
       = 'N':  The matrix A will be copied to AF and factored.
       = 'E':  The matrix A will be equilibrated if necessary, then
               copied to AF and factored.

TRANS

          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

KL

          KL is INTEGER
     The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
     The number of superdiagonals within the band of A.  KU >= 0.

NRHS

          NRHS is INTEGER
     The number of right hand sides, i.e., the number of columns
     of the matrices B and X.  NRHS >= 0.

AB

          AB is COMPLEX array, dimension (LDAB,N)
     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
     The j-th column of A is stored in the j-th column of the
     array AB as follows:
     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
     If FACT = 'F' and EQUED is not 'N', then AB must have been
     equilibrated by the scaling factors in R and/or C.  AB is not
     modified if FACT = 'F' or 'N', or if FACT = 'E' and
     EQUED = 'N' on exit.
     On exit, if EQUED .ne. 'N', A is scaled as follows:
     EQUED = 'R':  A := diag(R) * A
     EQUED = 'C':  A := A * diag(C)
     EQUED = 'B':  A := diag(R) * A * diag(C).

LDAB

          LDAB is INTEGER
     The leading dimension of the array AB.  LDAB >= KL+KU+1.

AFB

          AFB is COMPLEX array, dimension (LDAFB,N)
     If FACT = 'F', then AFB is an input argument and on entry
     contains details of the LU factorization of the band matrix
     A, as computed by CGBTRF.  U is stored as an upper triangular
     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
     and the multipliers used during the factorization are stored
     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
     the factored form of the equilibrated matrix A.
     If FACT = 'N', then AF is an output argument and on exit
     returns the factors L and U from the factorization A = P*L*U
     of the original matrix A.
     If FACT = 'E', then AF is an output argument and on exit
     returns the factors L and U from the factorization A = P*L*U
     of the equilibrated matrix A (see the description of A for
     the form of the equilibrated matrix).

LDAFB

          LDAFB is INTEGER
     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.

IPIV

          IPIV is INTEGER array, dimension (N)
     If FACT = 'F', then IPIV is an input argument and on entry
     contains the pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i).
     If FACT = 'N', then IPIV is an output argument and on exit
     contains the pivot indices from the factorization A = P*L*U
     of the original matrix A.
     If FACT = 'E', then IPIV is an output argument and on exit
     contains the pivot indices from the factorization A = P*L*U
     of the equilibrated matrix A.

EQUED

          EQUED is CHARACTER*1
     Specifies the form of equilibration that was done.
       = 'N':  No equilibration (always true if FACT = 'N').
       = 'R':  Row equilibration, i.e., A has been premultiplied by
               diag(R).
       = 'C':  Column equilibration, i.e., A has been postmultiplied
               by diag(C).
       = 'B':  Both row and column equilibration, i.e., A has been
               replaced by diag(R) * A * diag(C).
     EQUED is an input argument if FACT = 'F'; otherwise, it is an
     output argument.

R

          R is REAL array, dimension (N)
     The row scale factors for A.  If EQUED = 'R' or 'B', A is
     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
     is not accessed.  R is an input argument if FACT = 'F';
     otherwise, R is an output argument.  If FACT = 'F' and
     EQUED = 'R' or 'B', each element of R must be positive.
     If R is output, each element of R is a power of the radix.
     If R is input, each element of R should be a power of the radix
     to ensure a reliable solution and error estimates. Scaling by
     powers of the radix does not cause rounding errors unless the
     result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.

C

          C is REAL array, dimension (N)
     The column scale factors for A.  If EQUED = 'C' or 'B', A is
     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
     is not accessed.  C is an input argument if FACT = 'F';
     otherwise, C is an output argument.  If FACT = 'F' and
     EQUED = 'C' or 'B', each element of C must be positive.
     If C is output, each element of C is a power of the radix.
     If C is input, each element of C should be a power of the radix
     to ensure a reliable solution and error estimates. Scaling by
     powers of the radix does not cause rounding errors unless the
     result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.

B

          B is COMPLEX array, dimension (LDB,NRHS)
     On entry, the N-by-NRHS right hand side matrix B.
     On exit,
     if EQUED = 'N', B is not modified;
     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
        diag(R)*B;
     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
        overwritten by diag(C)*B.

LDB

          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX array, dimension (LDX,NRHS)
     If INFO = 0, the N-by-NRHS solution matrix X to the original
     system of equations.  Note that A and B are modified on exit
     if EQUED .ne. 'N', and the solution to the equilibrated system is
     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.

LDX

          LDX is INTEGER
     The leading dimension of the array X.  LDX >= max(1,N).

RCOND

          RCOND is REAL
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.

RPVGRW

          RPVGRW is REAL
     Reciprocal pivot growth.  On exit, this contains the reciprocal
     pivot growth factor norm(A)/norm(U). The "max absolute element"
     norm is used.  If this is much less than 1, then the stability of
     the LU factorization of the (equilibrated) matrix A could be poor.
     This also means that the solution X, estimated condition numbers,
     and error bounds could be unreliable. If factorization fails with
     0<INFO<=N, then this contains the reciprocal pivot growth factor
     for the leading INFO columns of A.  In CGESVX, this quantity is
     returned in RWORK(1).

BERR

          BERR is REAL array, dimension (NRHS)
     Componentwise relative backward error.  This is the
     componentwise relative backward error of each solution vector X(j)
     (i.e., the smallest relative change in any element of A or B that
     makes X(j) an exact solution).

N_ERR_BNDS

          N_ERR_BNDS is INTEGER
     Number of error bounds to return for each right hand side
     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
     ERR_BNDS_COMP below.

ERR_BNDS_NORM

          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:
     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))
     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.
     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.
     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').
     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.
     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.
     See Lapack Working Note 165 for further details and extra
     cautions.

ERR_BNDS_COMP

          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:
     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))
     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.
     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.
     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').
     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.
     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.
     See Lapack Working Note 165 for further details and extra
     cautions.

NPARAMS

          NPARAMS is INTEGER
     Specifies the number of parameters set in PARAMS.  If <= 0, the
     PARAMS array is never referenced and default values are used.

PARAMS

          PARAMS is REAL array, dimension NPARAMS
     Specifies algorithm parameters.  If an entry is < 0.0, then
     that entry will be filled with default value used for that
     parameter.  Only positions up to NPARAMS are accessed; defaults
     are used for higher-numbered parameters.
       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
            refinement or not.
         Default: 1.0
            = 0.0:  No refinement is performed, and no error bounds are
                    computed.
            = 1.0:  Use the double-precision refinement algorithm,
                    possibly with doubled-single computations if the
                    compilation environment does not support DOUBLE
                    PRECISION.
              (other values are reserved for future use)
       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
            computations allowed for refinement.
         Default: 10
         Aggressive: Set to 100 to permit convergence using approximate
                     factorizations or factorizations other than LU. If
                     the factorization uses a technique other than
                     Gaussian elimination, the guarantees in
                     err_bnds_norm and err_bnds_comp may no longer be
                     trustworthy.
       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
            will attempt to find a solution with small componentwise
            relative error in the double-precision algorithm.  Positive
            is true, 0.0 is false.
         Default: 1.0 (attempt componentwise convergence)

WORK

          WORK is COMPLEX array, dimension (2*N)

RWORK

          RWORK is REAL array, dimension (2*N)

INFO

          INFO is INTEGER
       = 0:  Successful exit. The solution to every right-hand side is
         guaranteed.
       < 0:  If INFO = -i, the i-th argument had an illegal value
       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
         has been completed, but the factor U is exactly singular, so
         the solution and error bounds could not be computed. RCOND = 0
         is returned.
       = N+J: The solution corresponding to the Jth right-hand side is
         not guaranteed. The solutions corresponding to other right-
         hand sides K with K > J may not be guaranteed as well, but
         only the first such right-hand side is reported. If a small
         componentwise error is not requested (PARAMS(3) = 0.0) then
         the Jth right-hand side is the first with a normwise error
         bound that is not guaranteed (the smallest J such
         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
         the Jth right-hand side is the first with either a normwise or
         componentwise error bound that is not guaranteed (the smallest
         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
         about all of the right-hand sides check ERR_BNDS_NORM or
         ERR_BNDS_COMP.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 558 of file cgbsvxx.f.

Generated automatically by Doxygen for LAPACK from the source code.
Mon Jun 28 2021 Version 3.10.0

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.