|
|
| |
libev::ev(3) |
User Contributed Perl Documentation |
libev::ev(3) |
libev - a high performance full-featured event loop written in C
#include <ev.h>
// a single header file is required
#include <ev.h>
#include <stdio.h> // for puts
// every watcher type has its own typedef'd struct
// with the name ev_TYPE
ev_io stdin_watcher;
ev_timer timeout_watcher;
// all watcher callbacks have a similar signature
// this callback is called when data is readable on stdin
static void
stdin_cb (EV_P_ ev_io *w, int revents)
{
puts ("stdin ready");
// for one-shot events, one must manually stop the watcher
// with its corresponding stop function.
ev_io_stop (EV_A_ w);
// this causes all nested ev_run's to stop iterating
ev_break (EV_A_ EVBREAK_ALL);
}
// another callback, this time for a time-out
static void
timeout_cb (EV_P_ ev_timer *w, int revents)
{
puts ("timeout");
// this causes the innermost ev_run to stop iterating
ev_break (EV_A_ EVBREAK_ONE);
}
int
main (void)
{
// use the default event loop unless you have special needs
struct ev_loop *loop = EV_DEFAULT;
// initialise an io watcher, then start it
// this one will watch for stdin to become readable
ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
ev_io_start (loop, &stdin_watcher);
// initialise a timer watcher, then start it
// simple non-repeating 5.5 second timeout
ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
ev_timer_start (loop, &timeout_watcher);
// now wait for events to arrive
ev_run (loop, 0);
// break was called, so exit
return 0;
}
This document documents the libev software package.
The newest version of this document is also available as an
html-formatted web page you might find easier to navigate when reading it
for the first time:
<http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod>.
While this document tries to be as complete as possible in
documenting libev, its usage and the rationale behind its design, it is not
a tutorial on event-based programming, nor will it introduce event-based
programming with libev.
Familiarity with event based programming techniques in general is
assumed throughout this document.
This manual tries to be very detailed, but unfortunately, this also makes it
very long. If you just want to know the basics of libev, I suggest reading
"ANATOMY OF A WATCHER", then the "EXAMPLE PROGRAM" above
and look up the missing functions in "GLOBAL FUNCTIONS" and the
"ev_io" and
"ev_timer" sections in "WATCHER
TYPES".
Libev is an event loop: you register interest in certain events (such as a file
descriptor being readable or a timeout occurring), and it will manage these
event sources and provide your program with events.
To do this, it must take more or less complete control over your
process (or thread) by executing the event loop handler, and will
then communicate events via a callback mechanism.
You register interest in certain events by registering so-called
event watchers, which are relatively small C structures you
initialise with the details of the event, and then hand it over to libev by
starting the watcher.
Libev supports "select",
"poll", the Linux-specific aio and
"epoll" interfaces, the BSD-specific
"kqueue" and the Solaris-specific event port
mechanisms for file descriptor events
("ev_io"), the Linux
"inotify" interface (for
"ev_stat"), Linux eventfd/signalfd (for
faster and cleaner inter-thread wakeup
("ev_async")/signal handling
("ev_signal")) relative timers
("ev_timer"), absolute timers with
customised rescheduling ("ev_periodic"),
synchronous signals ("ev_signal"), process
status change events ("ev_child"), and event
watchers dealing with the event loop mechanism itself
("ev_idle",
"ev_embed",
"ev_prepare" and
"ev_check" watchers) as well as file
watchers ("ev_stat") and even limited
support for fork events ("ev_fork").
It also is quite fast (see this benchmark
<http://libev.schmorp.de/bench.html> comparing it to libevent for
example).
Libev is very configurable. In this manual the default (and most common)
configuration will be described, which supports multiple event loops. For more
info about various configuration options please have a look at EMBED
section in this manual. If libev was configured without support for multiple
event loops, then all functions taking an initial argument of name
"loop" (which is always of type
"struct ev_loop *") will not have this
argument.
Libev represents time as a single floating point number, representing the
(fractional) number of seconds since the (POSIX) epoch (in practice somewhere
near the beginning of 1970, details are complicated, don't ask). This type is
called "ev_tstamp", which is what you should
use too. It usually aliases to the "double"
type in C. When you need to do any calculations on it, you should treat it as
some floating point value.
Unlike the name component
"stamp" might indicate, it is also used
for time differences (e.g. delays) throughout libev.
Libev knows three classes of errors: operating system errors, usage errors and
internal errors (bugs).
When libev catches an operating system error it cannot handle (for
example a system call indicating a condition libev cannot fix), it calls the
callback set via "ev_set_syserr_cb", which
is supposed to fix the problem or abort. The default is to print a
diagnostic message and to call "abort
()".
When libev detects a usage error such as a negative timer
interval, then it will print a diagnostic message and abort (via the
"assert" mechanism, so
"NDEBUG" will disable this checking):
these are programming errors in the libev caller and need to be fixed
there.
Via the "EV_FREQUENT" macro you
can compile in and/or enable extensive consistency checking code inside
libev that can be used to check for internal inconsistencies, suually caused
by application bugs.
Libev also has a few internal error-checking
"assert"ions. These do not trigger under
normal circumstances, as they indicate either a bug in libev or worse.
These functions can be called anytime, even before initialising the library in
any way.
- ev_tstamp ev_time ()
- Returns the current time as libev would use it. Please note that the
"ev_now" function is usually faster and
also often returns the timestamp you actually want to know. Also
interesting is the combination of
"ev_now_update" and
"ev_now".
- ev_sleep (ev_tstamp interval)
- Sleep for the given interval: The current thread will be blocked until
either it is interrupted or the given time interval has passed
(approximately - it might return a bit earlier even if not interrupted).
Returns immediately if "interval <=
0".
Basically this is a sub-second-resolution
"sleep ()".
The range of the "interval"
is limited - libev only guarantees to work with sleep times of up to one
day ("interval <= 86400").
- int ev_version_major ()
- int ev_version_minor ()
- You can find out the major and minor ABI version numbers of the library
you linked against by calling the functions
"ev_version_major" and
"ev_version_minor". If you want, you can
compare against the global symbols
"EV_VERSION_MAJOR" and
"EV_VERSION_MINOR", which specify the
version of the library your program was compiled against.
These version numbers refer to the ABI version of the library,
not the release version.
Usually, it's a good idea to terminate if the major versions
mismatch, as this indicates an incompatible change. Minor versions are
usually compatible to older versions, so a larger minor version alone is
usually not a problem.
Example: Make sure we haven't accidentally been linked against
the wrong version (note, however, that this will not detect other ABI
mismatches, such as LFS or reentrancy).
assert (("libev version mismatch",
ev_version_major () == EV_VERSION_MAJOR
&& ev_version_minor () >= EV_VERSION_MINOR));
- unsigned int ev_supported_backends ()
- Return the set of all backends (i.e. their corresponding
"EV_BACKEND_*" value) compiled into this
binary of libev (independent of their availability on the system you are
running on). See "ev_default_loop" for a
description of the set values.
Example: make sure we have the epoll method, because yeah this
is cool and a must have and can we have a torrent of it please!!!11
assert (("sorry, no epoll, no sex",
ev_supported_backends () & EVBACKEND_EPOLL));
- unsigned int ev_recommended_backends ()
- Return the set of all backends compiled into this binary of libev and also
recommended for this platform, meaning it will work for most file
descriptor types. This set is often smaller than the one returned by
"ev_supported_backends", as for example
kqueue is broken on most BSDs and will not be auto-detected unless you
explicitly request it (assuming you know what you are doing). This is the
set of backends that libev will probe for if you specify no backends
explicitly.
- unsigned int ev_embeddable_backends ()
- Returns the set of backends that are embeddable in other event loops. This
value is platform-specific but can include backends not available on the
current system. To find which embeddable backends might be supported on
the current system, you would need to look at
"ev_embeddable_backends ()
& ev_supported_backends ()", likewise for
recommended ones.
See the description of
"ev_embed" watchers for more info.
- ev_set_allocator (void *(*cb)(void *ptr, long size) throw ())
- Sets the allocation function to use (the prototype is similar - the
semantics are identical to the "realloc"
C89/SuS/POSIX function). It is used to allocate and free memory (no
surprises here). If it returns zero when memory needs to be allocated
("size != 0"), the library might abort
or take some potentially destructive action.
Since some systems (at least OpenBSD and Darwin) fail to
implement correct "realloc" semantics,
libev will use a wrapper around the system
"realloc" and
"free" functions by default.
You could override this function in high-availability programs
to, say, free some memory if it cannot allocate memory, to use a special
allocator, or even to sleep a while and retry until some memory is
available.
Example: The following is the
"realloc" function that libev itself
uses which should work with "realloc"
and "free" functions of all kinds and
is probably a good basis for your own implementation.
static void *
ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
{
if (size)
return realloc (ptr, size);
free (ptr);
return 0;
}
Example: Replace the libev allocator with one that waits a bit
and then retries.
static void *
persistent_realloc (void *ptr, size_t size)
{
if (!size)
{
free (ptr);
return 0;
}
for (;;)
{
void *newptr = realloc (ptr, size);
if (newptr)
return newptr;
sleep (60);
}
}
...
ev_set_allocator (persistent_realloc);
- ev_set_syserr_cb (void (*cb)(const char *msg) throw ())
- Set the callback function to call on a retryable system call error (such
as failed select, poll, epoll_wait). The message is a printable string
indicating the system call or subsystem causing the problem. If this
callback is set, then libev will expect it to remedy the situation, no
matter what, when it returns. That is, libev will generally retry the
requested operation, or, if the condition doesn't go away, do bad stuff
(such as abort).
Example: This is basically the same thing that libev does
internally, too.
static void
fatal_error (const char *msg)
{
perror (msg);
abort ();
}
...
ev_set_syserr_cb (fatal_error);
- ev_feed_signal (int signum)
- This function can be used to "simulate" a signal receive. It is
completely safe to call this function at any time, from any context,
including signal handlers or random threads.
Its main use is to customise signal handling in your process,
especially in the presence of threads. For example, you could block
signals by default in all threads (and specifying
"EVFLAG_NOSIGMASK" when creating any
loops), and in one thread, use
"sigwait" or any other mechanism to
wait for signals, then "deliver" them to libev by calling
"ev_feed_signal".
An event loop is described by a "struct ev_loop
*" (the "struct" is not
optional in this case unless libev 3 compatibility is disabled, as libev 3 had
an "ev_loop" function colliding with the
struct name).
The library knows two types of such loops, the default
loop, which supports child process events, and dynamically created event
loops which do not.
- struct ev_loop *ev_default_loop (unsigned int flags)
- This returns the "default" event loop object, which is what you
should normally use when you just need "the event loop". Event
loop objects and the "flags" parameter
are described in more detail in the entry for
"ev_loop_new".
If the default loop is already initialised then this function
simply returns it (and ignores the flags. If that is troubling you,
check "ev_backend ()" afterwards).
Otherwise it will create it with the given flags, which should almost
always be 0, unless the caller is also the one
calling "ev_run" or otherwise
qualifies as "the main program".
If you don't know what event loop to use, use the one returned
from this function (or via the
"EV_DEFAULT" macro).
Note that this function is not thread-safe, so if you
want to use it from multiple threads, you have to employ some kind of
mutex (note also that this case is unlikely, as loops cannot be shared
easily between threads anyway).
The default loop is the only loop that can handle
"ev_child" watchers, and to do this,
it always registers a handler for
"SIGCHLD". If this is a problem for
your application you can either create a dynamic loop with
"ev_loop_new" which doesn't do that,
or you can simply overwrite the
"SIGCHLD" signal handler after
calling "ev_default_init".
Example: This is the most typical usage.
if (!ev_default_loop (0))
fatal ("could not initialise libev, bad $LIBEV_FLAGS in environment?");
Example: Restrict libev to the select and poll backends, and
do not allow environment settings to be taken into account:
ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
- struct ev_loop *ev_loop_new (unsigned int flags)
- This will create and initialise a new event loop object. If the loop could
not be initialised, returns false.
This function is thread-safe, and one common way to use libev
with threads is indeed to create one loop per thread, and using the
default loop in the "main" or "initial" thread.
The flags argument can be used to specify special behaviour or
specific backends to use, and is usually specified as
0 (or
"EVFLAG_AUTO").
The following flags are supported:
- "EVFLAG_AUTO"
- The default flags value. Use this if you have no clue (it's the right
thing, believe me).
- "EVFLAG_NOENV"
- If this flag bit is or'ed into the flag value (or the program runs setuid
or setgid) then libev will not look at the environment variable
"LIBEV_FLAGS". Otherwise (the default),
this environment variable will override the flags completely if it is
found in the environment. This is useful to try out specific backends to
test their performance, to work around bugs, or to make libev threadsafe
(accessing environment variables cannot be done in a threadsafe way, but
usually it works if no other thread modifies them).
- "EVFLAG_FORKCHECK"
- Instead of calling "ev_loop_fork"
manually after a fork, you can also make libev check for a fork in each
iteration by enabling this flag.
This works by calling "getpid
()" on every iteration of the loop, and thus this might slow
down your event loop if you do a lot of loop iterations and little real
work, but is usually not noticeable (on my GNU/Linux system for example,
"getpid" is actually a simple 5-insn
sequence without a system call and thus very fast, but my
GNU/Linux system also has
"pthread_atfork" which is even
faster). (Update: glibc versions 2.25 apparently removed the
"getpid" optimisation again).
The big advantage of this flag is that you can forget about
fork (and forget about forgetting to tell libev about forking, although
you still have to ignore "SIGPIPE")
when you use this flag.
This flag setting cannot be overridden or specified in the
"LIBEV_FLAGS" environment
variable.
- "EVFLAG_NOINOTIFY"
- When this flag is specified, then libev will not attempt to use the
inotify API for its "ev_stat"
watchers. Apart from debugging and testing, this flag can be useful to
conserve inotify file descriptors, as otherwise each loop using
"ev_stat" watchers consumes one inotify
handle.
- "EVFLAG_SIGNALFD"
- When this flag is specified, then libev will attempt to use the
signalfd API for its "ev_signal"
(and "ev_child") watchers. This API
delivers signals synchronously, which makes it both faster and might make
it possible to get the queued signal data. It can also simplify signal
handling with threads, as long as you properly block signals in your
threads that are not interested in handling them.
Signalfd will not be used by default as this changes your
signal mask, and there are a lot of shoddy libraries and programs
(glib's threadpool for example) that can't properly initialise their
signal masks.
- "EVFLAG_NOSIGMASK"
- When this flag is specified, then libev will avoid to modify the signal
mask. Specifically, this means you have to make sure signals are unblocked
when you want to receive them.
This behaviour is useful when you want to do your own signal
handling, or want to handle signals only in specific threads and want to
avoid libev unblocking the signals.
It's also required by POSIX in a threaded program, as libev
calls "sigprocmask", whose behaviour
is officially unspecified.
- "EVFLAG_NOTIMERFD"
- When this flag is specified, the libev will avoid using a
"timerfd" to detect time jumps. It will
still be able to detect time jumps, but takes longer and has a lower
accuracy in doing so, but saves a file descriptor per loop.
The current implementation only tries to use a
"timerfd" when the first
"ev_periodic" watcher is started and
falls back on other methods if it cannot be created, but this behaviour
might change in the future.
- "EVBACKEND_SELECT" (value 1, portable select backend)
- This is your standard select(2) backend. Not completely
standard, as libev tries to roll its own fd_set with no limits on the
number of fds, but if that fails, expect a fairly low limit on the number
of fds when using this backend. It doesn't scale too well (O(highest_fd)),
but its usually the fastest backend for a low number of (low-numbered :)
fds.
To get good performance out of this backend you need a high
amount of parallelism (most of the file descriptors should be busy). If
you are writing a server, you should "accept
()" in a loop to accept as many connections as possible
during one iteration. You might also want to have a look at
"ev_set_io_collect_interval ()" to
increase the amount of readiness notifications you get per
iteration.
This backend maps "EV_READ"
to the "readfds" set and
"EV_WRITE" to the
"writefds" set (and to work around
Microsoft Windows bugs, also onto the
"exceptfds" set on that platform).
- "EVBACKEND_POLL" (value 2, poll backend, available everywhere
except on windows)
- And this is your standard poll(2) backend. It's more complicated
than select, but handles sparse fds better and has no artificial limit on
the number of fds you can use (except it will slow down considerably with
a lot of inactive fds). It scales similarly to select, i.e. O(total_fds).
See the entry for "EVBACKEND_SELECT",
above, for performance tips.
This backend maps "EV_READ"
to "POLLIN | POLLERR | POLLHUP", and
"EV_WRITE" to
"POLLOUT | POLLERR | POLLHUP".
- "EVBACKEND_EPOLL" (value 4, Linux)
- Use the Linux-specific epoll(7) interface (for both pre- and
post-2.6.9 kernels).
For few fds, this backend is a bit little slower than poll and
select, but it scales phenomenally better. While poll and select usually
scale like O(total_fds) where total_fds is the total number of fds (or
the highest fd), epoll scales either O(1) or O(active_fds).
The epoll mechanism deserves honorable mention as the most
misdesigned of the more advanced event mechanisms: mere annoyances
include silently dropping file descriptors, requiring a system call per
change per file descriptor (and unnecessary guessing of parameters),
problems with dup, returning before the timeout value, resulting in
additional iterations (and only giving 5ms accuracy while select on the
same platform gives 0.1ms) and so on. The biggest issue is fork races,
however - if a program forks then both parent and child process
have to recreate the epoll set, which can take considerable time (one
syscall per file descriptor) and is of course hard to detect.
Epoll is also notoriously buggy - embedding epoll fds
should work, but of course doesn't, and epoll just loves
to report events for totally different file descriptors (even
already closed ones, so one cannot even remove them from the set) than
registered in the set (especially on SMP systems). Libev tries to
counter these spurious notifications by employing an additional
generation counter and comparing that against the events to filter out
spurious ones, recreating the set when required. Epoll also erroneously
rounds down timeouts, but gives you no way to know when and by how much,
so sometimes you have to busy-wait because epoll returns immediately
despite a nonzero timeout. And last not least, it also refuses to work
with some file descriptors which work perfectly fine with
"select" (files, many character
devices...).
Epoll is truly the train wreck among event poll mechanisms, a
frankenpoll, cobbled together in a hurry, no thought to design or
interaction with others. Oh, the pain, will it ever stop...
While stopping, setting and starting an I/O watcher in the
same iteration will result in some caching, there is still a system call
per such incident (because the same file descriptor could point
to a different file description now), so its best to avoid that.
Also, "dup ()"'ed file descriptors
might not work very well if you register events for both file
descriptors.
Best performance from this backend is achieved by not
unregistering all watchers for a file descriptor until it has been
closed, if possible, i.e. keep at least one watcher active per fd at all
times. Stopping and starting a watcher (without re-setting it) also
usually doesn't cause extra overhead. A fork can both result in spurious
notifications as well as in libev having to destroy and recreate the
epoll object, which can take considerable time and thus should be
avoided.
All this means that, in practice,
"EVBACKEND_SELECT" can be as fast or
faster than epoll for maybe up to a hundred file descriptors, depending
on the usage. So sad.
While nominally embeddable in other event loops, this feature
is broken in a lot of kernel revisions, but probably(!) works in current
versions.
This backend maps "EV_READ"
and "EV_WRITE" in the same way as
"EVBACKEND_POLL".
- "EVBACKEND_LINUXAIO" (value 64, Linux)
- Use the Linux-specific Linux AIO (not
aio(7) but io_submit(2))
event interface available in post-4.18 kernels (but libev only tries to
use it in 4.19+).
This is another Linux train wreck of an event interface.
If this backend works for you (as of this writing, it was very
experimental), it is the best event interface available on Linux and
might be well worth enabling it - if it isn't available in your kernel
this will be detected and this backend will be skipped.
This backend can batch oneshot requests and supports a
user-space ring buffer to receive events. It also doesn't suffer from
most of the design problems of epoll (such as not being able to remove
event sources from the epoll set), and generally sounds too good to be
true. Because, this being the Linux kernel, of course it suffers from a
whole new set of limitations, forcing you to fall back to epoll,
inheriting all its design issues.
For one, it is not easily embeddable (but probably could be
done using an event fd at some extra overhead). It also is subject to a
system wide limit that can be configured in
/proc/sys/fs/aio-max-nr. If no AIO requests are left, this
backend will be skipped during initialisation, and will switch to epoll
when the loop is active.
Most problematic in practice, however, is that not all file
descriptors work with it. For example, in Linux 5.1, TCP sockets, pipes,
event fds, files, /dev/null and many others are supported, but
ttys do not work properly (a known bug that the kernel developers don't
care about, see
<https://lore.kernel.org/patchwork/patch/1047453/>), so this is
not (yet?) a generic event polling interface.
Overall, it seems the Linux developers just don't want it to
have a generic event handling mechanism other than
"select" or
"poll".
To work around all these problem, the current version of libev
uses its epoll backend as a fallback for file descriptor types that do
not work. Or falls back completely to epoll if the kernel acts up.
This backend maps "EV_READ"
and "EV_WRITE" in the same way as
"EVBACKEND_POLL".
- "EVBACKEND_KQUEUE" (value 8, most BSD clones)
- Kqueue deserves special mention, as at the time this backend was
implemented, it was broken on all BSDs except NetBSD (usually it doesn't
work reliably with anything but sockets and pipes, except on Darwin, where
of course it's completely useless). Unlike epoll, however, whose
brokenness is by design, these kqueue bugs can be (and mostly have been)
fixed without API changes to existing programs. For this reason it's not
being "auto-detected" on all platforms unless you explicitly
specify it in the flags (i.e. using
"EVBACKEND_KQUEUE") or libev was
compiled on a known-to-be-good (-enough) system like NetBSD.
You still can embed kqueue into a normal poll or select
backend and use it only for sockets (after having made sure that sockets
work with kqueue on the target platform). See
"ev_embed" watchers for more info.
It scales in the same way as the epoll backend, but the
interface to the kernel is more efficient (which says nothing about its
actual speed, of course). While stopping, setting and starting an I/O
watcher does never cause an extra system call as with
"EVBACKEND_EPOLL", it still adds up to
two event changes per incident. Support for "fork
()" is very bad (you might have to leak fds on fork, but
it's more sane than epoll) and it drops fds silently in similarly
hard-to-detect cases.
This backend usually performs well under most conditions.
While nominally embeddable in other event loops, this doesn't
work everywhere, so you might need to test for this. And since it is
broken almost everywhere, you should only use it when you have a lot of
sockets (for which it usually works), by embedding it into another event
loop (e.g. "EVBACKEND_SELECT" or
"EVBACKEND_POLL" (but
"poll" is of course also broken on OS
X)) and, did I mention it, using it only for sockets.
This backend maps "EV_READ"
into an "EVFILT_READ" kevent with
"NOTE_EOF", and
"EV_WRITE" into an
"EVFILT_WRITE" kevent with
"NOTE_EOF".
- "EVBACKEND_DEVPOLL" (value 16, Solaris 8)
- This is not implemented yet (and might never be, unless you send me an
implementation). According to reports,
"/dev/poll" only supports sockets and is
not embeddable, which would limit the usefulness of this backend
immensely.
- "EVBACKEND_PORT" (value 32, Solaris 10)
- This uses the Solaris 10 event port mechanism. As with everything on
Solaris, it's really slow, but it still scales very well (O(active_fds)).
While this backend scales well, it requires one system call
per active file descriptor per loop iteration. For small and medium
numbers of file descriptors a "slow"
"EVBACKEND_SELECT" or
"EVBACKEND_POLL" backend might perform
better.
On the positive side, this backend actually performed fully to
specification in all tests and is fully embeddable, which is a rare feat
among the OS-specific backends (I vastly prefer correctness over speed
hacks).
On the negative side, the interface is bizarre - so
bizarre that even sun itself gets it wrong in their code examples: The
event polling function sometimes returns events to the caller even
though an error occurred, but with no indication whether it has done so
or not (yes, it's even documented that way) - deadly for edge-triggered
interfaces where you absolutely have to know whether an event occurred
or not because you have to re-arm the watcher.
Fortunately libev seems to be able to work around these
idiocies.
This backend maps "EV_READ"
and "EV_WRITE" in the same way as
"EVBACKEND_POLL".
- "EVBACKEND_ALL"
- Try all backends (even potentially broken ones that wouldn't be tried with
"EVFLAG_AUTO"). Since this is a mask,
you can do stuff such as "EVBACKEND_ALL &
~EVBACKEND_KQUEUE".
It is definitely not recommended to use this flag, use
whatever "ev_recommended_backends ()"
returns, or simply do not specify a backend at all.
- "EVBACKEND_MASK"
- Not a backend at all, but a mask to select all backend bits from a
"flags" value, in case you want to mask
out any backends from a flags value (e.g. when modifying the
"LIBEV_FLAGS" environment
variable).
If one or more of the backend flags are or'ed into the flags
value, then only these backends will be tried (in the reverse order as
listed here). If none are specified, all backends in
"ev_recommended_backends
()" will be tried.
Example: Try to create a event loop that uses epoll and nothing
else.
struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
if (!epoller)
fatal ("no epoll found here, maybe it hides under your chair");
Example: Use whatever libev has to offer, but make sure that
kqueue is used if available.
struct ev_loop *loop = ev_loop_new (ev_recommended_backends () | EVBACKEND_KQUEUE);
Example: Similarly, on linux, you mgiht want to take advantage of
the linux aio backend if possible, but fall back to something else if that
isn't available.
struct ev_loop *loop = ev_loop_new (ev_recommended_backends () | EVBACKEND_LINUXAIO);
- ev_loop_destroy (loop)
- Destroys an event loop object (frees all memory and kernel state etc.).
None of the active event watchers will be stopped in the normal sense, so
e.g. "ev_is_active" might still return
true. It is your responsibility to either stop all watchers cleanly
yourself before calling this function, or cope with the fact
afterwards (which is usually the easiest thing, you can just ignore the
watchers and/or "free ()" them for
example).
Note that certain global state, such as signal state (and
installed signal handlers), will not be freed by this function, and
related watchers (such as signal and child watchers) would need to be
stopped manually.
This function is normally used on loop objects allocated by
"ev_loop_new", but it can also be used
on the default loop returned by
"ev_default_loop", in which case it is
not thread-safe.
Note that it is not advisable to call this function on the
default loop except in the rare occasion where you really need to free
its resources. If you need dynamically allocated loops it is better to
use "ev_loop_new" and
"ev_loop_destroy".
- ev_loop_fork (loop)
- This function sets a flag that causes subsequent
"ev_run" iterations to reinitialise the
kernel state for backends that have one. Despite the name, you can call it
anytime you are allowed to start or stop watchers (except inside an
"ev_prepare" callback), but it makes
most sense after forking, in the child process. You must call it
(or use "EVFLAG_FORKCHECK") in the child
before resuming or calling "ev_run".
In addition, if you want to reuse a loop (via this function or
"EVFLAG_FORKCHECK"), you also
have to ignore "SIGPIPE".
Again, you have to call it on any loop that you
want to re-use after a fork, even if you do not plan to use the loop
in the parent. This is because some kernel interfaces *cough*
kqueue *cough* do funny things during fork.
On the other hand, you only need to call this function in the
child process if and only if you want to use the event loop in the
child. If you just fork+exec or create a new loop in the child, you
don't have to call it at all (in fact,
"epoll" is so badly broken that it
makes a difference, but libev will usually detect this case on its own
and do a costly reset of the backend).
The function itself is quite fast and it's usually not a
problem to call it just in case after a fork.
Example: Automate calling
"ev_loop_fork" on the default loop
when using pthreads.
static void
post_fork_child (void)
{
ev_loop_fork (EV_DEFAULT);
}
...
pthread_atfork (0, 0, post_fork_child);
- int ev_is_default_loop (loop)
- Returns true when the given loop is, in fact, the default loop, and false
otherwise.
- unsigned int ev_iteration (loop)
- Returns the current iteration count for the event loop, which is identical
to the number of times libev did poll for new events. It starts at
0 and happily wraps around with enough iterations.
This value can sometimes be useful as a generation counter of
sorts (it "ticks" the number of loop iterations), as it
roughly corresponds with "ev_prepare"
and "ev_check" calls - and is
incremented between the prepare and check phases.
- unsigned int ev_depth (loop)
- Returns the number of times "ev_run" was
entered minus the number of times
"ev_run" was exited normally, in other
words, the recursion depth.
Outside "ev_run", this
number is zero. In a callback, this number is 1,
unless "ev_run" was invoked
recursively (or from another thread), in which case it is higher.
Leaving "ev_run" abnormally
(setjmp/longjmp, cancelling the thread, throwing an exception etc.),
doesn't count as "exit" - consider this as a hint to avoid
such ungentleman-like behaviour unless it's really convenient, in which
case it is fully supported.
- unsigned int ev_backend (loop)
- Returns one of the "EVBACKEND_*" flags
indicating the event backend in use.
- ev_tstamp ev_now (loop)
- Returns the current "event loop time", which is the time the
event loop received events and started processing them. This timestamp
does not change as long as callbacks are being processed, and this is also
the base time used for relative timers. You can treat it as the timestamp
of the event occurring (or more correctly, libev finding out about
it).
- ev_now_update (loop)
- Establishes the current time by querying the kernel, updating the time
returned by "ev_now ()" in the progress.
This is a costly operation and is usually done automatically within
"ev_run ()".
This function is rarely useful, but when some event callback
runs for a very long time without entering the event loop, updating
libev's idea of the current time is a good idea.
See also "The special problem of time updates" in
the "ev_timer" section.
- ev_suspend (loop)
- ev_resume (loop)
- These two functions suspend and resume an event loop, for use when the
loop is not used for a while and timeouts should not be processed.
A typical use case would be an interactive program such as a
game: When the user presses "^Z" to
suspend the game and resumes it an hour later it would be best to handle
timeouts as if no time had actually passed while the program was
suspended. This can be achieved by calling
"ev_suspend" in your
"SIGTSTP" handler, sending yourself a
"SIGSTOP" and calling
"ev_resume" directly afterwards to
resume timer processing.
Effectively, all "ev_timer"
watchers will be delayed by the time spend between
"ev_suspend" and
"ev_resume", and all
"ev_periodic" watchers will be
rescheduled (that is, they will lose any events that would have occurred
while suspended).
After calling "ev_suspend"
you must not call any function on the given loop other
than "ev_resume", and you must
not call "ev_resume" without a
previous call to "ev_suspend".
Calling
"ev_suspend"/"ev_resume"
has the side effect of updating the event loop time (see
"ev_now_update").
- bool ev_run (loop, int flags)
- Finally, this is it, the event handler. This function usually is called
after you have initialised all your watchers and you want to start
handling events. It will ask the operating system for any new events, call
the watcher callbacks, and then repeat the whole process indefinitely:
This is why event loops are called loops.
If the flags argument is specified as
0, it will keep handling events until either no
event watchers are active anymore or
"ev_break" was called.
The return value is false if there are no more active watchers
(which usually means "all jobs done" or "deadlock"),
and true in all other cases (which usually means " you should call
"ev_run" again").
Please note that an explicit
"ev_break" is usually better than
relying on all watchers to be stopped when deciding when a program has
finished (especially in interactive programs), but having a program that
automatically loops as long as it has to and no longer by virtue of
relying on its watchers stopping correctly, that is truly a thing of
beauty.
This function is mostly exception-safe - you can break
out of a "ev_run" call by calling
"longjmp" in a callback, throwing a
C++ exception and so on. This does not decrement the
"ev_depth" value, nor will it clear
any outstanding "EVBREAK_ONE"
breaks.
A flags value of
"EVRUN_NOWAIT" will look for new
events, will handle those events and any already outstanding ones, but
will not wait and block your process in case there are no events and
will return after one iteration of the loop. This is sometimes useful to
poll and handle new events while doing lengthy calculations, to keep the
program responsive.
A flags value of
"EVRUN_ONCE" will look for new events
(waiting if necessary) and will handle those and any already outstanding
ones. It will block your process until at least one new event arrives
(which could be an event internal to libev itself, so there is no
guarantee that a user-registered callback will be called), and will
return after one iteration of the loop.
This is useful if you are waiting for some external event in
conjunction with something not expressible using other libev watchers
(i.e. "roll your own
"ev_run""). However, a pair of
"ev_prepare"/"ev_check"
watchers is usually a better approach for this kind of thing.
Here are the gory details of what
"ev_run" does (this is for your
understanding, not a guarantee that things will work exactly like this
in future versions):
- Increment loop depth.
- Reset the ev_break status.
- Before the first iteration, call any pending watchers.
LOOP:
- If EVFLAG_FORKCHECK was used, check for a fork.
- If a fork was detected (by any means), queue and call all fork watchers.
- Queue and call all prepare watchers.
- If ev_break was called, goto FINISH.
- If we have been forked, detach and recreate the kernel state
as to not disturb the other process.
- Update the kernel state with all outstanding changes.
- Update the "event loop time" (ev_now ()).
- Calculate for how long to sleep or block, if at all
(active idle watchers, EVRUN_NOWAIT or not having
any active watchers at all will result in not sleeping).
- Sleep if the I/O and timer collect interval say so.
- Increment loop iteration counter.
- Block the process, waiting for any events.
- Queue all outstanding I/O (fd) events.
- Update the "event loop time" (ev_now ()), and do time jump adjustments.
- Queue all expired timers.
- Queue all expired periodics.
- Queue all idle watchers with priority higher than that of pending events.
- Queue all check watchers.
- Call all queued watchers in reverse order (i.e. check watchers first).
Signals and child watchers are implemented as I/O watchers, and will
be handled here by queueing them when their watcher gets executed.
- If ev_break has been called, or EVRUN_ONCE or EVRUN_NOWAIT
were used, or there are no active watchers, goto FINISH, otherwise
continue with step LOOP.
FINISH:
- Reset the ev_break status iff it was EVBREAK_ONE.
- Decrement the loop depth.
- Return.
Example: Queue some jobs and then loop until no events are
outstanding anymore.
... queue jobs here, make sure they register event watchers as long
... as they still have work to do (even an idle watcher will do..)
ev_run (my_loop, 0);
... jobs done or somebody called break. yeah!
- ev_break (loop, how)
- Can be used to make a call to "ev_run"
return early (but only after it has processed all outstanding events). The
"how" argument must be either
"EVBREAK_ONE", which will make the
innermost "ev_run" call return, or
"EVBREAK_ALL", which will make all
nested "ev_run" calls return.
This "break state" will be cleared on the next call
to "ev_run".
It is safe to call
"ev_break" from outside any
"ev_run" calls, too, in which case it
will have no effect.
- ev_ref (loop)
- ev_unref (loop)
- Ref/unref can be used to add or remove a reference count on the event
loop: Every watcher keeps one reference, and as long as the reference
count is nonzero, "ev_run" will not
return on its own.
This is useful when you have a watcher that you never intend
to unregister, but that nevertheless should not keep
"ev_run" from returning. In such a
case, call "ev_unref" after starting,
and "ev_ref" before stopping it.
As an example, libev itself uses this for its internal signal
pipe: It is not visible to the libev user and should not keep
"ev_run" from exiting if no event
watchers registered by it are active. It is also an excellent way to do
this for generic recurring timers or from within third-party libraries.
Just remember to unref after start and ref before
stop (but only if the watcher wasn't active before, or was active
before, respectively. Note also that libev might stop watchers itself
(e.g. non-repeating timers) in which case you have to
"ev_ref" in the callback).
Example: Create a signal watcher, but keep it from keeping
"ev_run" running when nothing else is
active.
ev_signal exitsig;
ev_signal_init (&exitsig, sig_cb, SIGINT);
ev_signal_start (loop, &exitsig);
ev_unref (loop);
Example: For some weird reason, unregister the above signal
handler again.
ev_ref (loop);
ev_signal_stop (loop, &exitsig);
- ev_set_io_collect_interval (loop, ev_tstamp interval)
- ev_set_timeout_collect_interval (loop, ev_tstamp interval)
- These advanced functions influence the time that libev will spend waiting
for events. Both time intervals are by default 0,
meaning that libev will try to invoke timer/periodic callbacks and I/O
callbacks with minimum latency.
Setting these to a higher value (the
"interval" must be >=
0) allows libev to delay invocation of I/O and
timer/periodic callbacks to increase efficiency of loop iterations (or
to increase power-saving opportunities).
The idea is that sometimes your program runs just fast enough
to handle one (or very few) event(s) per loop iteration. While this
makes the program responsive, it also wastes a lot of CPU time to poll
for new events, especially with backends like
"select ()" which have a high overhead
for the actual polling but can deliver many events at once.
By setting a higher io collect interval you allow libev
to spend more time collecting I/O events, so you can handle more events
per iteration, at the cost of increasing latency. Timeouts (both
"ev_periodic" and
"ev_timer") will not be affected.
Setting this to a non-null value will introduce an additional
"ev_sleep ()" call into most loop
iterations. The sleep time ensures that libev will not poll for I/O
events more often then once per this interval, on average (as long as
the host time resolution is good enough).
Likewise, by setting a higher timeout collect interval
you allow libev to spend more time collecting timeouts, at the expense
of increased latency/jitter/inexactness (the watcher callback will be
called later). "ev_io" watchers will
not be affected. Setting this to a non-null value will not introduce any
overhead in libev.
Many (busy) programs can usually benefit by setting the I/O
collect interval to a value near 0.1 or so,
which is often enough for interactive servers (of course not for games),
likewise for timeouts. It usually doesn't make much sense to set it to a
lower value than 0.01, as this approaches the
timing granularity of most systems. Note that if you do transactions
with the outside world and you can't increase the parallelity, then this
setting will limit your transaction rate (if you need to poll once per
transaction and the I/O collect interval is 0.01, then you can't do more
than 100 transactions per second).
Setting the timeout collect interval can improve the
opportunity for saving power, as the program will "bundle"
timer callback invocations that are "near" in time together,
by delaying some, thus reducing the number of times the process sleeps
and wakes up again. Another useful technique to reduce
iterations/wake-ups is to use
"ev_periodic" watchers and make sure
they fire on, say, one-second boundaries only.
Example: we only need 0.1s timeout granularity, and we wish
not to poll more often than 100 times per second:
ev_set_timeout_collect_interval (EV_DEFAULT_UC_ 0.1);
ev_set_io_collect_interval (EV_DEFAULT_UC_ 0.01);
- ev_invoke_pending (loop)
- This call will simply invoke all pending watchers while resetting their
pending state. Normally, "ev_run" does
this automatically when required, but when overriding the invoke callback
this call comes handy. This function can be invoked from a watcher - this
can be useful for example when you want to do some lengthy calculation and
want to pass further event handling to another thread (you still have to
make sure only one thread executes within
"ev_invoke_pending" or
"ev_run" of course).
- int ev_pending_count (loop)
- Returns the number of pending watchers - zero indicates that no watchers
are pending.
- ev_set_invoke_pending_cb (loop, void (*invoke_pending_cb)(EV_P))
- This overrides the invoke pending functionality of the loop: Instead of
invoking all pending watchers when there are any,
"ev_run" will call this callback
instead. This is useful, for example, when you want to invoke the actual
watchers inside another context (another thread etc.).
If you want to reset the callback, use
"ev_invoke_pending" as new
callback.
- ev_set_loop_release_cb (loop, void (*release)(EV_P) throw (), void
(*acquire)(EV_P) throw ())
- Sometimes you want to share the same loop between multiple threads. This
can be done relatively simply by putting mutex_lock/unlock calls around
each call to a libev function.
However, "ev_run" can run an
indefinite time, so it is not feasible to wait for it to return. One way
around this is to wake up the event loop via
"ev_break" and
"ev_async_send", another way is to set
these release and acquire callbacks on the loop.
When set, then "release"
will be called just before the thread is suspended waiting for new
events, and "acquire" is called just
afterwards.
Ideally, "release" will just
call your mutex_unlock function, and
"acquire" will just call the
mutex_lock function again.
While event loop modifications are allowed between invocations
of "release" and
"acquire" (that's their only purpose
after all), no modifications done will affect the event loop, i.e.
adding watchers will have no effect on the set of file descriptors being
watched, or the time waited. Use an
"ev_async" watcher to wake up
"ev_run" when you want it to take note
of any changes you made.
In theory, threads executing
"ev_run" will be async-cancel safe
between invocations of "release" and
"acquire".
See also the locking example in the
"THREADS" section later in this
document.
- ev_set_userdata (loop, void *data)
- void *ev_userdata (loop)
- Set and retrieve a single "void *"
associated with a loop. When
"ev_set_userdata" has never been called,
then "ev_userdata" returns
0.
These two functions can be used to associate arbitrary data
with a loop, and are intended solely for the
"invoke_pending_cb",
"release" and
"acquire" callbacks described above,
but of course can be (ab-)used for any other purpose as well.
- ev_verify (loop)
- This function only does something when
"EV_VERIFY" support has been compiled
in, which is the default for non-minimal builds. It tries to go through
all internal structures and checks them for validity. If anything is found
to be inconsistent, it will print an error message to standard error and
call "abort ()".
This can be used to catch bugs inside libev itself: under
normal circumstances, this function will never abort as of course libev
keeps its data structures consistent.
In the following description, uppercase "TYPE"
in names stands for the watcher type, e.g.
"ev_TYPE_start" can mean
"ev_timer_start" for timer watchers and
"ev_io_start" for I/O watchers.
A watcher is an opaque structure that you allocate and register to
record your interest in some event. To make a concrete example, imagine you
want to wait for STDIN to become readable, you would create an
"ev_io" watcher for that:
static void my_cb (struct ev_loop *loop, ev_io *w, int revents)
{
ev_io_stop (w);
ev_break (loop, EVBREAK_ALL);
}
struct ev_loop *loop = ev_default_loop (0);
ev_io stdin_watcher;
ev_init (&stdin_watcher, my_cb);
ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ);
ev_io_start (loop, &stdin_watcher);
ev_run (loop, 0);
As you can see, you are responsible for allocating the memory for
your watcher structures (and it is usually a bad idea to do this on
the stack).
Each watcher has an associated watcher structure (called
"struct ev_TYPE" or simply
"ev_TYPE", as typedefs are provided for
all watcher structs).
Each watcher structure must be initialised by a call to
"ev_init (watcher *,
callback)", which expects a callback to be provided. This
callback is invoked each time the event occurs (or, in the case of I/O
watchers, each time the event loop detects that the file descriptor given is
readable and/or writable).
Each watcher type further has its own
"ev_TYPE_set (watcher *, ...)" macro to
configure it, with arguments specific to the watcher type. There is also a
macro to combine initialisation and setting in one call:
"ev_TYPE_init (watcher *, callback,
...)".
To make the watcher actually watch out for events, you have to
start it with a watcher-specific start function
("ev_TYPE_start (loop, watcher
*)"), and you can stop watching for events at
any time by calling the corresponding stop function
("ev_TYPE_stop (loop, watcher *)".
As long as your watcher is active (has been started but not
stopped) you must not touch the values stored in it except when explicitly
documented otherwise. Most specifically you must never reinitialise it or
call its "ev_TYPE_set" macro.
Each and every callback receives the event loop pointer as first,
the registered watcher structure as second, and a bitset of received events
as third argument.
The received events usually include a single bit per event type
received (you can receive multiple events at the same time). The possible
bit masks are:
- "EV_READ"
- "EV_WRITE"
- The file descriptor in the "ev_io"
watcher has become readable and/or writable.
- "EV_TIMER"
- The "ev_timer" watcher has timed
out.
- "EV_PERIODIC"
- The "ev_periodic" watcher has timed
out.
- "EV_SIGNAL"
- The signal specified in the "ev_signal"
watcher has been received by a thread.
- "EV_CHILD"
- The pid specified in the "ev_child"
watcher has received a status change.
- "EV_STAT"
- The path specified in the "ev_stat"
watcher changed its attributes somehow.
- "EV_IDLE"
- The "ev_idle" watcher has determined
that you have nothing better to do.
- "EV_PREPARE"
- "EV_CHECK"
- All "ev_prepare" watchers are invoked
just before "ev_run" starts to
gather new events, and all "ev_check"
watchers are queued (not invoked) just after
"ev_run" has gathered them, but before
it queues any callbacks for any received events. That means
"ev_prepare" watchers are the last
watchers invoked before the event loop sleeps or polls for new events, and
"ev_check" watchers will be invoked
before any other watchers of the same or lower priority within an event
loop iteration.
Callbacks of both watcher types can start and stop as many
watchers as they want, and all of them will be taken into account (for
example, a "ev_prepare" watcher might
start an idle watcher to keep "ev_run"
from blocking).
- "EV_EMBED"
- The embedded event loop specified in the
"ev_embed" watcher needs attention.
- "EV_FORK"
- The event loop has been resumed in the child process after fork (see
"ev_fork").
- "EV_CLEANUP"
- The event loop is about to be destroyed (see
"ev_cleanup").
- "EV_ASYNC"
- The given async watcher has been asynchronously notified (see
"ev_async").
- "EV_CUSTOM"
- Not ever sent (or otherwise used) by libev itself, but can be freely used
by libev users to signal watchers (e.g. via
"ev_feed_event").
- "EV_ERROR"
- An unspecified error has occurred, the watcher has been stopped. This
might happen because the watcher could not be properly started because
libev ran out of memory, a file descriptor was found to be closed or any
other problem. Libev considers these application bugs.
You best act on it by reporting the problem and somehow coping
with the watcher being stopped. Note that well-written programs should
not receive an error ever, so when your watcher receives it, this
usually indicates a bug in your program.
Libev will usually signal a few "dummy" events
together with an error, for example it might indicate that a fd is
readable or writable, and if your callbacks is well-written it can just
attempt the operation and cope with the error from read() or
write(). This will not work in multi-threaded programs, though,
as the fd could already be closed and reused for another thing, so
beware.
- "ev_init" (ev_TYPE *watcher, callback)
- This macro initialises the generic portion of a watcher. The contents of
the watcher object can be arbitrary (so
"malloc" will do). Only the generic
parts of the watcher are initialised, you need to call the
type-specific "ev_TYPE_set" macro
afterwards to initialise the type-specific parts. For each type there is
also a "ev_TYPE_init" macro which rolls
both calls into one.
You can reinitialise a watcher at any time as long as it has
been stopped (or never started) and there are no pending events
outstanding.
The callback is always of type "void
(*)(struct ev_loop *loop, ev_TYPE *watcher, int
revents)".
Example: Initialise an
"ev_io" watcher in two steps.
ev_io w;
ev_init (&w, my_cb);
ev_io_set (&w, STDIN_FILENO, EV_READ);
- "ev_TYPE_set" (ev_TYPE *watcher, [args])
- This macro initialises the type-specific parts of a watcher. You need to
call "ev_init" at least once before you
call this macro, but you can call
"ev_TYPE_set" any number of times. You
must not, however, call this macro on a watcher that is active (it can be
pending, however, which is a difference to the
"ev_init" macro).
Although some watcher types do not have type-specific
arguments (e.g. "ev_prepare") you
still need to call its "set"
macro.
See "ev_init", above, for an
example.
- "ev_TYPE_init" (ev_TYPE *watcher, callback, [args])
- This convenience macro rolls both
"ev_init" and
"ev_TYPE_set" macro calls into a single
call. This is the most convenient method to initialise a watcher. The same
limitations apply, of course.
Example: Initialise and set an
"ev_io" watcher in one step.
ev_io_init (&w, my_cb, STDIN_FILENO, EV_READ);
- "ev_TYPE_start" (loop, ev_TYPE *watcher)
- Starts (activates) the given watcher. Only active watchers will receive
events. If the watcher is already active nothing will happen.
Example: Start the "ev_io"
watcher that is being abused as example in this whole section.
ev_io_start (EV_DEFAULT_UC, &w);
- "ev_TYPE_stop" (loop, ev_TYPE *watcher)
- Stops the given watcher if active, and clears the pending status (whether
the watcher was active or not).
It is possible that stopped watchers are pending - for
example, non-repeating timers are being stopped when they become pending
- but calling "ev_TYPE_stop" ensures
that the watcher is neither active nor pending. If you want to free or
reuse the memory used by the watcher it is therefore a good idea to
always call its "ev_TYPE_stop"
function.
- bool ev_is_active (ev_TYPE *watcher)
- Returns a true value iff the watcher is active (i.e. it has been started
and not yet been stopped). As long as a watcher is active you must not
modify it.
- bool ev_is_pending (ev_TYPE *watcher)
- Returns a true value iff the watcher is pending, (i.e. it has outstanding
events but its callback has not yet been invoked). As long as a watcher is
pending (but not active) you must not call an init function on it (but
"ev_TYPE_set" is safe), you must not
change its priority, and you must make sure the watcher is available to
libev (e.g. you cannot "free ()"
it).
- callback ev_cb (ev_TYPE *watcher)
- Returns the callback currently set on the watcher.
- ev_set_cb (ev_TYPE *watcher, callback)
- Change the callback. You can change the callback at virtually any time
(modulo threads).
- ev_set_priority (ev_TYPE *watcher, int priority)
- int ev_priority (ev_TYPE *watcher)
- Set and query the priority of the watcher. The priority is a small integer
between "EV_MAXPRI" (default:
2) and
"EV_MINPRI" (default:
"-2"). Pending watchers with higher
priority will be invoked before watchers with lower priority, but priority
will not keep watchers from being executed (except for
"ev_idle" watchers).
If you need to suppress invocation when higher priority events
are pending you need to look at
"ev_idle" watchers, which provide this
functionality.
You must not change the priority of a watcher as long
as it is active or pending.
Setting a priority outside the range of
"EV_MINPRI" to
"EV_MAXPRI" is fine, as long as you do
not mind that the priority value you query might or might not have been
clamped to the valid range.
The default priority used by watchers when no priority has
been set is always 0, which is supposed to not
be too high and not be too low :).
See "WATCHER PRIORITY MODELS", below, for a more
thorough treatment of priorities.
- ev_invoke (loop, ev_TYPE *watcher, int revents)
- Invoke the "watcher" with the given
"loop" and
"revents". Neither
"loop" nor
"revents" need to be valid as long as
the watcher callback can deal with that fact, as both are simply passed
through to the callback.
- int ev_clear_pending (loop, ev_TYPE *watcher)
- If the watcher is pending, this function clears its pending status and
returns its "revents" bitset (as if its
callback was invoked). If the watcher isn't pending it does nothing and
returns 0.
Sometimes it can be useful to "poll" a watcher
instead of waiting for its callback to be invoked, which can be
accomplished with this function.
- ev_feed_event (loop, ev_TYPE *watcher, int revents)
- Feeds the given event set into the event loop, as if the specified event
had happened for the specified watcher (which must be a pointer to an
initialised but not necessarily started event watcher). Obviously you must
not free the watcher as long as it has pending events.
Stopping the watcher, letting libev invoke it, or calling
"ev_clear_pending" will clear the
pending event, even if the watcher was not started in the first
place.
See also "ev_feed_fd_event"
and "ev_feed_signal_event" for related
functions that do not need a watcher.
See also the "ASSOCIATING CUSTOM DATA WITH A WATCHER"
and "BUILDING YOUR OWN COMPOSITE WATCHERS" idioms.
There are various watcher states mentioned throughout this manual - active,
pending and so on. In this section these states and the rules to transition
between them will be described in more detail - and while these rules might
look complicated, they usually do "the right thing".
- initialised
- Before a watcher can be registered with the event loop it has to be
initialised. This can be done with a call to
"ev_TYPE_init", or calls to
"ev_init" followed by the
watcher-specific "ev_TYPE_set" function.
In this state it is simply some block of memory that is
suitable for use in an event loop. It can be moved around, freed, reused
etc. at will - as long as you either keep the memory contents intact, or
call "ev_TYPE_init" again.
- started/running/active
- Once a watcher has been started with a call to
"ev_TYPE_start" it becomes property of
the event loop, and is actively waiting for events. While in this state it
cannot be accessed (except in a few documented ways), moved, freed or
anything else - the only legal thing is to keep a pointer to it, and call
libev functions on it that are documented to work on active watchers.
- pending
- If a watcher is active and libev determines that an event it is interested
in has occurred (such as a timer expiring), it will become pending. It
will stay in this pending state until either it is stopped or its callback
is about to be invoked, so it is not normally pending inside the watcher
callback.
The watcher might or might not be active while it is pending
(for example, an expired non-repeating timer can be pending but no
longer active). If it is stopped, it can be freely accessed (e.g. by
calling "ev_TYPE_set"), but it is
still property of the event loop at this time, so cannot be moved, freed
or reused. And if it is active the rules described in the previous item
still apply.
It is also possible to feed an event on a watcher that is not
active (e.g. via "ev_feed_event"), in
which case it becomes pending without being active.
- stopped
- A watcher can be stopped implicitly by libev (in which case it might still
be pending), or explicitly by calling its
"ev_TYPE_stop" function. The latter will
clear any pending state the watcher might be in, regardless of whether it
was active or not, so stopping a watcher explicitly before freeing it is
often a good idea.
While stopped (and not pending) the watcher is essentially in
the initialised state, that is, it can be reused, moved, modified in any
way you wish (but when you trash the memory block, you need to
"ev_TYPE_init" it again).
Many event loops support watcher priorities, which are usually small
integers that influence the ordering of event callback invocation between
watchers in some way, all else being equal.
In libev, watcher priorities can be set using
"ev_set_priority". See its description for
the more technical details such as the actual priority range.
There are two common ways how these these priorities are being
interpreted by event loops:
In the more common lock-out model, higher priorities "lock
out" invocation of lower priority watchers, which means as long as
higher priority watchers receive events, lower priority watchers are not
being invoked.
The less common only-for-ordering model uses priorities solely to
order callback invocation within a single event loop iteration: Higher
priority watchers are invoked before lower priority ones, but they all get
invoked before polling for new events.
Libev uses the second (only-for-ordering) model for all its
watchers except for idle watchers (which use the lock-out model).
The rationale behind this is that implementing the lock-out model
for watchers is not well supported by most kernel interfaces, and most event
libraries will just poll for the same events again and again as long as
their callbacks have not been executed, which is very inefficient in the
common case of one high-priority watcher locking out a mass of lower
priority ones.
Static (ordering) priorities are most useful when you have two or
more watchers handling the same resource: a typical usage example is having
an "ev_io" watcher to receive data, and an
associated "ev_timer" to handle timeouts.
Under load, data might be received while the program handles other jobs, but
since timers normally get invoked first, the timeout handler will be
executed before checking for data. In that case, giving the timer a lower
priority than the I/O watcher ensures that I/O will be handled first even
under adverse conditions (which is usually, but not always, what you
want).
Since idle watchers use the "lock-out" model, meaning
that idle watchers will only be executed when no same or higher priority
watchers have received events, they can be used to implement the
"lock-out" model when required.
For example, to emulate how many other event libraries handle
priorities, you can associate an "ev_idle"
watcher to each such watcher, and in the normal watcher callback, you just
start the idle watcher. The real processing is done in the idle watcher
callback. This causes libev to continuously poll and process kernel event
data for the watcher, but when the lock-out case is known to be rare (which
in turn is rare :), this is workable.
Usually, however, the lock-out model implemented that way will
perform miserably under the type of load it was designed to handle. In that
case, it might be preferable to stop the real watcher before starting the
idle watcher, so the kernel will not have to process the event in case the
actual processing will be delayed for considerable time.
Here is an example of an I/O watcher that should run at a strictly
lower priority than the default, and which should only process data when no
other events are pending:
ev_idle idle; // actual processing watcher
ev_io io; // actual event watcher
static void
io_cb (EV_P_ ev_io *w, int revents)
{
// stop the I/O watcher, we received the event, but
// are not yet ready to handle it.
ev_io_stop (EV_A_ w);
// start the idle watcher to handle the actual event.
// it will not be executed as long as other watchers
// with the default priority are receiving events.
ev_idle_start (EV_A_ &idle);
}
static void
idle_cb (EV_P_ ev_idle *w, int revents)
{
// actual processing
read (STDIN_FILENO, ...);
// have to start the I/O watcher again, as
// we have handled the event
ev_io_start (EV_P_ &io);
}
// initialisation
ev_idle_init (&idle, idle_cb);
ev_io_init (&io, io_cb, STDIN_FILENO, EV_READ);
ev_io_start (EV_DEFAULT_ &io);
In the "real" world, it might also be beneficial to
start a timer, so that low-priority connections can not be locked out
forever under load. This enables your program to keep a lower latency for
important connections during short periods of high load, while not
completely locking out less important ones.
This section describes each watcher in detail, but will not repeat information
given in the last section. Any initialisation/set macros, functions and
members specific to the watcher type are explained.
Most members are additionally marked with either
[read-only], meaning that, while the watcher is active, you can look
at the member and expect some sensible content, but you must not modify it
(you can modify it while the watcher is stopped to your hearts content), or
[read-write], which means you can expect it to have some sensible
content while the watcher is active, but you can also modify it (within the
same thread as the event loop, i.e. without creating data races). Modifying
it may not do something sensible or take immediate effect (or do anything at
all), but libev will not crash or malfunction in any way.
In any case, the documentation for each member will explain what
the effects are, and if there are any additional access restrictions.
I/O watchers check whether a file descriptor is readable or writable in each
iteration of the event loop, or, more precisely, when reading would not block
the process and writing would at least be able to write some data. This
behaviour is called level-triggering because you keep receiving events as long
as the condition persists. Remember you can stop the watcher if you don't want
to act on the event and neither want to receive future events.
In general you can register as many read and/or write event
watchers per fd as you want (as long as you don't confuse yourself). Setting
all file descriptors to non-blocking mode is also usually a good idea (but
not required if you know what you are doing).
Another thing you have to watch out for is that it is quite easy
to receive "spurious" readiness notifications, that is, your
callback might be called with "EV_READ"
but a subsequent "read"(2) will actually
block because there is no data. It is very easy to get into this situation
even with a relatively standard program structure. Thus it is best to always
use non-blocking I/O: An extra "read"(2)
returning "EAGAIN" is far preferable to a
program hanging until some data arrives.
If you cannot run the fd in non-blocking mode (for example you
should not play around with an Xlib connection), then you have to separately
re-test whether a file descriptor is really ready with a known-to-be good
interface such as poll (fortunately in the case of Xlib, it already does
this on its own, so its quite safe to use). Some people additionally use
"SIGALRM" and an interval timer, just to
be sure you won't block indefinitely.
But really, best use non-blocking mode.
The special problem of disappearing file descriptors
Some backends (e.g. kqueue, epoll, linuxaio) need to be told about
closing a file descriptor (either due to calling
"close" explicitly or any other means,
such as "dup2"). The reason is that you
register interest in some file descriptor, but when it goes away, the
operating system will silently drop this interest. If another file
descriptor with the same number then is registered with libev, there is no
efficient way to see that this is, in fact, a different file descriptor.
To avoid having to explicitly tell libev about such cases, libev
follows the following policy: Each time
"ev_io_set" is being called, libev will
assume that this is potentially a new file descriptor, otherwise it is
assumed that the file descriptor stays the same. That means that you
have to call "ev_io_set" (or
"ev_io_init") when you change the
descriptor even if the file descriptor number itself did not change.
This is how one would do it normally anyway, the important point
is that the libev application should not optimise around libev but should
leave optimisations to libev.
The special problem of dup'ed file descriptors
Some backends (e.g. epoll), cannot register events for file
descriptors, but only events for the underlying file descriptions. That
means when you have "dup ()"'ed file
descriptors or weirder constellations, and register events for them, only
one file descriptor might actually receive events.
There is no workaround possible except not registering events for
potentially "dup ()"'ed file descriptors,
or to resort to "EVBACKEND_SELECT" or
"EVBACKEND_POLL".
The special problem of files
Many people try to use "select"
(or libev) on file descriptors representing files, and expect it to become
ready when their program doesn't block on disk accesses (which can take a
long time on their own).
However, this cannot ever work in the "expected" way -
you get a readiness notification as soon as the kernel knows whether and how
much data is there, and in the case of open files, that's always the case,
so you always get a readiness notification instantly, and your read (or
possibly write) will still block on the disk I/O.
Another way to view it is that in the case of sockets, pipes,
character devices and so on, there is another party (the sender) that
delivers data on its own, but in the case of files, there is no such thing:
the disk will not send data on its own, simply because it doesn't know what
you wish to read - you would first have to request some data.
Since files are typically not-so-well supported by advanced
notification mechanism, libev tries hard to emulate POSIX behaviour with
respect to files, even though you should not use it. The reason for this is
convenience: sometimes you want to watch STDIN or STDOUT, which is usually a
tty, often a pipe, but also sometimes files or special devices (for example,
"epoll" on Linux works with
/dev/random but not with /dev/urandom), and even though the
file might better be served with asynchronous I/O instead of with
non-blocking I/O, it is still useful when it "just works" instead
of freezing.
So avoid file descriptors pointing to files when you know it (e.g.
use libeio), but use them when it is convenient, e.g. for STDIN/STDOUT, or
when you rarely read from a file instead of from a socket, and want to reuse
the same code path.
The special problem of fork
Some backends (epoll, kqueue, linuxaio, iouring) do not support
"fork ()" at all or exhibit useless
behaviour. Libev fully supports fork, but needs to be told about it in the
child if you want to continue to use it in the child.
To support fork in your child processes, you have to call
"ev_loop_fork ()"
after a fork in the child, enable
"EVFLAG_FORKCHECK", or resort to
"EVBACKEND_SELECT" or
"EVBACKEND_POLL".
The special problem of SIGPIPE
While not really specific to libev, it is easy to forget about
"SIGPIPE": when writing to a pipe whose
other end has been closed, your program gets sent a SIGPIPE, which, by
default, aborts your program. For most programs this is sensible behaviour,
for daemons, this is usually undesirable.
So when you encounter spurious, unexplained daemon exits, make
sure you ignore SIGPIPE (and maybe make sure you log the exit status of your
daemon somewhere, as that would have given you a big clue).
The special problem of accept()ing when
you can't
Many implementations of the POSIX
"accept" function (for example, found in
post-2004 Linux) have the peculiar behaviour of not removing a connection
from the pending queue in all error cases.
For example, larger servers often run out of file descriptors
(because of resource limits), causing
"accept" to fail with
"ENFILE" but not rejecting the connection,
leading to libev signalling readiness on the next iteration again (the
connection still exists after all), and typically causing the program to
loop at 100% CPU usage.
Unfortunately, the set of errors that cause this issue differs
between operating systems, there is usually little the app can do to remedy
the situation, and no known thread-safe method of removing the connection to
cope with overload is known (to me).
One of the easiest ways to handle this situation is to just ignore
it - when the program encounters an overload, it will just loop until the
situation is over. While this is a form of busy waiting, no OS offers an
event-based way to handle this situation, so it's the best one can do.
A better way to handle the situation is to log any errors other
than "EAGAIN" and
"EWOULDBLOCK", making sure not to flood
the log with such messages, and continue as usual, which at least gives the
user an idea of what could be wrong ("raise the ulimit!"). For
extra points one could stop the "ev_io"
watcher on the listening fd "for a while", which reduces CPU
usage.
If your program is single-threaded, then you could also keep a
dummy file descriptor for overload situations (e.g. by opening
/dev/null), and when you run into
"ENFILE" or
"EMFILE", close it, run
"accept", close that fd, and create a new
dummy fd. This will gracefully refuse clients under typical overload
conditions.
The last way to handle it is to simply log the error and
"exit", as is often done with
"malloc" failures, but this results in an
easy opportunity for a DoS attack.
Watcher-Specific Functions
- ev_io_init (ev_io *, callback, int fd, int events)
- ev_io_set (ev_io *, int fd, int events)
- Configures an "ev_io" watcher. The
"fd" is the file descriptor to receive
events for and "events" is either
"EV_READ",
"EV_WRITE", both
"EV_READ | EV_WRITE" or
0, to express the desire to receive the given
events.
Note that setting the
"events" to 0
and starting the watcher is supported, but not specially optimized - if
your program sometimes happens to generate this combination this is
fine, but if it is easy to avoid starting an io watcher watching for no
events you should do so.
- ev_io_modify (ev_io *, int events)
- Similar to "ev_io_set", but only changes
the requested events. Using this might be faster with some backends, as
libev can assume that the "fd" still
refers to the same underlying file description, something it cannot do
when using "ev_io_set".
- int fd [no-modify]
- The file descriptor being watched. While it can be read at any time, you
must not modify this member even when the watcher is stopped - always use
"ev_io_set" for that.
- int events [no-modify]
- The set of events the fd is being watched for, among other flags. Remember
that this is a bit set - to test for
"EV_READ", use
"w->events &
EV_READ", and similarly for
"EV_WRITE".
As with "fd", you must not
modify this member even when the watcher is stopped, always use
"ev_io_set" or
"ev_io_modify" for that.
Examples
Example: Call
"stdin_readable_cb" when STDIN_FILENO has
become, well readable, but only once. Since it is likely line-buffered, you
could attempt to read a whole line in the callback.
static void
stdin_readable_cb (struct ev_loop *loop, ev_io *w, int revents)
{
ev_io_stop (loop, w);
.. read from stdin here (or from w->fd) and handle any I/O errors
}
...
struct ev_loop *loop = ev_default_init (0);
ev_io stdin_readable;
ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
ev_io_start (loop, &stdin_readable);
ev_run (loop, 0);
Timer watchers are simple relative timers that generate an event after a given
time, and optionally repeating in regular intervals after that.
The timers are based on real time, that is, if you register an
event that times out after an hour and you reset your system clock to
January last year, it will still time out after (roughly) one hour.
"Roughly" because detecting time jumps is hard, and some
inaccuracies are unavoidable (the monotonic clock option helps a lot
here).
The callback is guaranteed to be invoked only after its
timeout has passed (not at, so on systems with very low-resolution
clocks this might introduce a small delay, see "the special problem of
being too early", below). If multiple timers become ready during the
same loop iteration then the ones with earlier time-out values are invoked
before ones of the same priority with later time-out values (but this is no
longer true when a callback calls "ev_run"
recursively).
Be smart about timeouts
Many real-world problems involve some kind of timeout, usually for
error recovery. A typical example is an HTTP request - if the other side
hangs, you want to raise some error after a while.
What follows are some ways to handle this problem, from obvious
and inefficient to smart and efficient.
In the following, a 60 second activity timeout is assumed - a
timeout that gets reset to 60 seconds each time there is activity (e.g. each
time some data or other life sign was received).
- 1. Use a timer and stop, reinitialise and start it on activity.
- This is the most obvious, but not the most simple way: In the beginning,
start the watcher:
ev_timer_init (timer, callback, 60., 0.);
ev_timer_start (loop, timer);
Then, each time there is some activity,
"ev_timer_stop" it, initialise it and
start it again:
ev_timer_stop (loop, timer);
ev_timer_set (timer, 60., 0.);
ev_timer_start (loop, timer);
This is relatively simple to implement, but means that each
time there is some activity, libev will first have to remove the timer
from its internal data structure and then add it again. Libev tries to
be fast, but it's still not a constant-time operation.
- 2. Use a timer and re-start it with "ev_timer_again"
inactivity.
- This is the easiest way, and involves using
"ev_timer_again" instead of
"ev_timer_start".
To implement this, configure an
"ev_timer" with a
"repeat" value of
60 and then call
"ev_timer_again" at start and each
time you successfully read or write some data. If you go into an idle
state where you do not expect data to travel on the socket, you can
"ev_timer_stop" the timer, and
"ev_timer_again" will automatically
restart it if need be.
That means you can ignore both the
"ev_timer_start" function and the
"after" argument to
"ev_timer_set", and only ever use the
"repeat" member and
"ev_timer_again".
At start:
ev_init (timer, callback);
timer->repeat = 60.;
ev_timer_again (loop, timer);
Each time there is some activity:
ev_timer_again (loop, timer);
It is even possible to change the time-out on the fly,
regardless of whether the watcher is active or not:
timer->repeat = 30.;
ev_timer_again (loop, timer);
This is slightly more efficient then stopping/starting the
timer each time you want to modify its timeout value, as libev does not
have to completely remove and re-insert the timer from/into its internal
data structure.
It is, however, even simpler than the "obvious" way
to do it.
- 3. Let the timer time out, but then re-arm it as required.
- This method is more tricky, but usually most efficient: Most timeouts are
relatively long compared to the intervals between other activity - in our
example, within 60 seconds, there are usually many I/O events with
associated activity resets.
In this case, it would be more efficient to leave the
"ev_timer" alone, but remember the
time of last activity, and check for a real timeout only within the
callback:
ev_tstamp timeout = 60.;
ev_tstamp last_activity; // time of last activity
ev_timer timer;
static void
callback (EV_P_ ev_timer *w, int revents)
{
// calculate when the timeout would happen
ev_tstamp after = last_activity - ev_now (EV_A) + timeout;
// if negative, it means we the timeout already occurred
if (after < 0.)
{
// timeout occurred, take action
}
else
{
// callback was invoked, but there was some recent
// activity. simply restart the timer to time out
// after "after" seconds, which is the earliest time
// the timeout can occur.
ev_timer_set (w, after, 0.);
ev_timer_start (EV_A_ w);
}
}
To summarise the callback: first calculate in how many seconds
the timeout will occur (by calculating the absolute time when it would
occur, "last_activity + timeout", and
subtracting the current time, "ev_now
(EV_A)" from that).
If this value is negative, then we are already past the
timeout, i.e. we timed out, and need to do whatever is needed in this
case.
Otherwise, we now the earliest time at which the timeout would
trigger, and simply start the timer with this timeout value.
In other words, each time the callback is invoked it will
check whether the timeout occurred. If not, it will simply reschedule
itself to check again at the earliest time it could time out. Rinse.
Repeat.
This scheme causes more callback invocations (about one every
60 seconds minus half the average time between activity), but virtually
no calls to libev to change the timeout.
To start the machinery, simply initialise the watcher and set
"last_activity" to the current time
(meaning there was some activity just now), then call the callback,
which will "do the right thing" and start the timer:
last_activity = ev_now (EV_A);
ev_init (&timer, callback);
callback (EV_A_ &timer, 0);
When there is some activity, simply store the current time in
"last_activity", no libev calls at
all:
if (activity detected)
last_activity = ev_now (EV_A);
When your timeout value changes, then the timeout can be
changed by simply providing a new value, stopping the timer and calling
the callback, which will again do the right thing (for example, time out
immediately :).
timeout = new_value;
ev_timer_stop (EV_A_ &timer);
callback (EV_A_ &timer, 0);
This technique is slightly more complex, but in most cases
where the time-out is unlikely to be triggered, much more efficient.
- 4. Wee, just use a double-linked list for your timeouts.
- If there is not one request, but many thousands (millions...), all
employing some kind of timeout with the same timeout value, then one can
do even better:
When starting the timeout, calculate the timeout value and put
the timeout at the end of the list.
Then use an "ev_timer" to
fire when the timeout at the beginning of the list is expected to
fire (for example, using the technique #3).
When there is some activity, remove the timer from the list,
recalculate the timeout, append it to the end of the list again, and
make sure to update the "ev_timer" if
it was taken from the beginning of the list.
This way, one can manage an unlimited number of timeouts in
O(1) time for starting, stopping and updating the timers, at the expense
of a major complication, and having to use a constant timeout. The
constant timeout ensures that the list stays sorted.
So which method the best?
Method #2 is a simple no-brain-required solution that is adequate
in most situations. Method #3 requires a bit more thinking, but handles many
cases better, and isn't very complicated either. In most case, choosing
either one is fine, with #3 being better in typical situations.
Method #1 is almost always a bad idea, and buys you nothing.
Method #4 is rather complicated, but extremely efficient, something that
really pays off after the first million or so of active timers, i.e. it's
usually overkill :)
The special problem of being too early
If you ask a timer to call your callback after three seconds, then
you expect it to be invoked after three seconds - but of course, this cannot
be guaranteed to infinite precision. Less obviously, it cannot be guaranteed
to any precision by libev - imagine somebody suspending the process with a
STOP signal for a few hours for example.
So, libev tries to invoke your callback as soon as possible
after the delay has occurred, but cannot guarantee this.
A less obvious failure mode is calling your callback too early:
many event loops compare timestamps with a "elapsed delay >=
requested delay", but this can cause your callback to be invoked much
earlier than you would expect.
To see why, imagine a system with a clock that only offers full
second resolution (think windows if you can't come up with a broken enough
OS yourself). If you schedule a one-second timer at the time 500.9, then the
event loop will schedule your timeout to elapse at a system time of 500
(500.9 truncated to the resolution) + 1, or 501.
If an event library looks at the timeout 0.1s later, it will see
"501 >= 501" and invoke the callback 0.1s after it was started,
even though a one-second delay was requested - this is being "too
early", despite best intentions.
This is the reason why libev will never invoke the callback if the
elapsed delay equals the requested delay, but only when the elapsed delay is
larger than the requested delay. In the example above, libev would only
invoke the callback at system time 502, or 1.1s after the timer was
started.
So, while libev cannot guarantee that your callback will be
invoked exactly when requested, it can and does guarantee that
the requested delay has actually elapsed, or in other words, it always errs
on the "too late" side of things.
The special problem of time updates
Establishing the current time is a costly operation (it usually
takes at least one system call): EV therefore updates its idea of the
current time only before and after
"ev_run" collects new events, which causes
a growing difference between "ev_now ()"
and "ev_time ()" when handling lots of
events in one iteration.
The relative timeouts are calculated relative to the
"ev_now ()" time. This is usually the
right thing as this timestamp refers to the time of the event triggering
whatever timeout you are modifying/starting. If you suspect event processing
to be delayed and you need to base the timeout on the current time,
use something like the following to adjust for it:
ev_timer_set (&timer, after + (ev_time () - ev_now ()), 0.);
If the event loop is suspended for a long time, you can also force
an update of the time returned by "ev_now
()" by calling "ev_now_update
()", although that will push the event time of
all outstanding events further into the future.
The special problem of unsynchronised clocks
Modern systems have a variety of clocks - libev itself uses the
normal "wall clock" clock and, if available, the monotonic clock
(to avoid time jumps).
Neither of these clocks is synchronised with each other or any
other clock on the system, so "ev_time ()"
might return a considerably different time than
"gettimeofday ()" or
"time ()". On a GNU/Linux system, for
example, a call to "gettimeofday" might
return a second count that is one higher than a directly following call to
"time".
The moral of this is to only compare libev-related timestamps with
"ev_time ()" and
"ev_now ()", at least if you want better
precision than a second or so.
One more problem arises due to this lack of synchronisation: if
libev uses the system monotonic clock and you compare timestamps from
"ev_time" or
"ev_now" from when you started your timer
and when your callback is invoked, you will find that sometimes the callback
is a bit "early".
This is because "ev_timer"s work
in real time, not wall clock time, so libev makes sure your callback is not
invoked before the delay happened, measured according to the real
time, not the system clock.
If your timeouts are based on a physical timescale (e.g.
"time out this connection after 100 seconds") then this shouldn't
bother you as it is exactly the right behaviour.
If you want to compare wall clock/system timestamps to your
timers, then you need to use
"ev_periodic"s, as these are based on the
wall clock time, where your comparisons will always generate correct
results.
The special problems of suspended animation
When you leave the server world it is quite customary to hit
machines that can suspend/hibernate - what happens to the clocks during such
a suspend?
Some quick tests made with a Linux 2.6.28 indicate that a suspend
freezes all processes, while the clocks
("times",
"CLOCK_MONOTONIC") continue to run until
the system is suspended, but they will not advance while the system is
suspended. That means, on resume, it will be as if the program was frozen
for a few seconds, but the suspend time will not be counted towards
"ev_timer" when a monotonic clock source
is used. The real time clock advanced as expected, but if it is used as sole
clocksource, then a long suspend would be detected as a time jump by libev,
and timers would be adjusted accordingly.
I would not be surprised to see different behaviour in different
between operating systems, OS versions or even different hardware.
The other form of suspend (job control, or sending a SIGSTOP) will
see a time jump in the monotonic clocks and the realtime clock. If the
program is suspended for a very long time, and monotonic clock sources are
in use, then you can expect "ev_timer"s to
expire as the full suspension time will be counted towards the timers. When
no monotonic clock source is in use, then libev will again assume a timejump
and adjust accordingly.
It might be beneficial for this latter case to call
"ev_suspend" and
"ev_resume" in code that handles
"SIGTSTP", to at least get deterministic
behaviour in this case (you can do nothing against
"SIGSTOP").
Watcher-Specific Functions and Data Members
- ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp
repeat)
- ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)
- Configure the timer to trigger after
"after" seconds (fractional and negative
values are supported). If "repeat" is
0., then it will automatically be stopped once the
timeout is reached. If it is positive, then the timer will automatically
be configured to trigger again "repeat"
seconds later, again, and again, until stopped manually.
The timer itself will do a best-effort at avoiding drift, that
is, if you configure a timer to trigger every 10 seconds, then it will
normally trigger at exactly 10 second intervals. If, however, your
program cannot keep up with the timer (because it takes longer than
those 10 seconds to do stuff) the timer will not fire more than once per
event loop iteration.
- ev_timer_again (loop, ev_timer *)
- This will act as if the timer timed out, and restarts it again if it is
repeating. It basically works like calling
"ev_timer_stop", updating the timeout to
the "repeat" value and calling
"ev_timer_start".
The exact semantics are as in the following rules, all of
which will be applied to the watcher:
- If the timer is pending, the pending status is always cleared.
- If the timer is started but non-repeating, stop it (as if it timed out,
without invoking it).
- If the timer is repeating, make the "repeat" value the new
timeout and start the timer, if necessary.
This sounds a bit complicated, see "Be smart about
timeouts", above, for a usage example.
- ev_tstamp ev_timer_remaining (loop, ev_timer *)
- Returns the remaining time until a timer fires. If the timer is active,
then this time is relative to the current event loop time, otherwise it's
the timeout value currently configured.
That is, after an "ev_timer_set (w, 5,
7)", "ev_timer_remaining"
returns 5. When the timer is started and one
second passes, "ev_timer_remaining"
will return 4. When the timer expires and is
restarted, it will return roughly 7 (likely
slightly less as callback invocation takes some time, too), and so
on.
- ev_tstamp repeat [read-write]
- The current "repeat" value. Will be used
each time the watcher times out or
"ev_timer_again" is called, and
determines the next timeout (if any), which is also when any modifications
are taken into account.
Examples
Example: Create a timer that fires after 60 seconds.
static void
one_minute_cb (struct ev_loop *loop, ev_timer *w, int revents)
{
.. one minute over, w is actually stopped right here
}
ev_timer mytimer;
ev_timer_init (&mytimer, one_minute_cb, 60., 0.);
ev_timer_start (loop, &mytimer);
Example: Create a timeout timer that times out after 10 seconds of
inactivity.
static void
timeout_cb (struct ev_loop *loop, ev_timer *w, int revents)
{
.. ten seconds without any activity
}
ev_timer mytimer;
ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
ev_timer_again (&mytimer); /* start timer */
ev_run (loop, 0);
// and in some piece of code that gets executed on any "activity":
// reset the timeout to start ticking again at 10 seconds
ev_timer_again (&mytimer);
Periodic watchers are also timers of a kind, but they are very versatile (and
unfortunately a bit complex).
Unlike "ev_timer", periodic
watchers are not based on real time (or relative time, the physical time
that passes) but on wall clock time (absolute time, the thing you can read
on your calendar or clock). The difference is that wall clock time can run
faster or slower than real time, and time jumps are not uncommon (e.g. when
you adjust your wrist-watch).
You can tell a periodic watcher to trigger after some specific
point in time: for example, if you tell a periodic watcher to trigger
"in 10 seconds" (by specifying e.g. "ev_now
() + 10.", that is, an absolute time not a delay) and then reset
your system clock to January of the previous year, then it will take a year
or more to trigger the event (unlike an
"ev_timer", which would still trigger
roughly 10 seconds after starting it, as it uses a relative timeout).
"ev_periodic" watchers can also
be used to implement vastly more complex timers, such as triggering an event
on each "midnight, local time", or other complicated rules. This
cannot easily be done with "ev_timer"
watchers, as those cannot react to time jumps.
As with timers, the callback is guaranteed to be invoked only when
the point in time where it is supposed to trigger has passed. If multiple
timers become ready during the same loop iteration then the ones with
earlier time-out values are invoked before ones with later time-out values
(but this is no longer true when a callback calls
"ev_run" recursively).
Watcher-Specific Functions and Data Members
- ev_periodic_init (ev_periodic *, callback, ev_tstamp offset, ev_tstamp
interval, reschedule_cb)
- ev_periodic_set (ev_periodic *, ev_tstamp offset, ev_tstamp interval,
reschedule_cb)
- Lots of arguments, let's sort it out... There are basically three modes of
operation, and we will explain them from simplest to most complex:
- absolute timer (offset = absolute time, interval = 0, reschedule_cb = 0)
In this configuration the watcher triggers an event after the
wall clock time "offset" has passed.
It will not repeat and will not adjust when a time jump occurs, that is,
if it is to be run at January 1st 2011 then it will be stopped and
invoked when the system clock reaches or surpasses this point in
time.
- repeating interval timer (offset = offset within interval, interval >
0, reschedule_cb = 0)
In this mode the watcher will always be scheduled to time out
at the next "offset + N * interval"
time (for some integer N, which can also be negative) and then repeat,
regardless of any time jumps. The
"offset" argument is merely an offset
into the "interval" periods.
This can be used to create timers that do not drift with
respect to the system clock, for example, here is an
"ev_periodic" that triggers each hour,
on the hour (with respect to UTC):
ev_periodic_set (&periodic, 0., 3600., 0);
This doesn't mean there will always be 3600 seconds in between
triggers, but only that the callback will be called when the system time
shows a full hour (UTC), or more correctly, when the system time is
evenly divisible by 3600.
Another way to think about it (for the mathematically
inclined) is that "ev_periodic" will
try to run the callback in this mode at the next possible time where
"time = offset (mod interval)",
regardless of any time jumps.
The "interval" MUST
be positive, and for numerical stability, the interval value should be
higher than "1/8192" (which is around
100 microseconds) and "offset" should
be higher than 0 and should have at most a
similar magnitude as the current time (say, within a factor of ten).
Typical values for offset are, in fact, 0 or
something between 0 and
"interval", which is also the
recommended range.
Note also that there is an upper limit to how often a timer
can fire (CPU speed for example), so if
"interval" is very small then timing
stability will of course deteriorate. Libev itself tries to be exact to
be about one millisecond (if the OS supports it and the machine is fast
enough).
- manual reschedule mode (offset ignored, interval ignored, reschedule_cb =
callback)
In this mode the values for
"interval" and
"offset" are both being ignored.
Instead, each time the periodic watcher gets scheduled, the reschedule
callback will be called with the watcher as first, and the current time
as second argument.
NOTE: This callback MUST NOT stop or destroy any periodic
watcher, ever, or make ANY other event loop modifications
whatsoever, unless explicitly allowed by documentation
here.
If you need to stop it, return "now +
1e30" (or so, fudge fudge) and stop it afterwards (e.g. by
starting an "ev_prepare" watcher,
which is the only event loop modification you are allowed to do).
The callback prototype is "ev_tstamp
(*reschedule_cb)(ev_periodic *w, ev_tstamp
now)", e.g.:
static ev_tstamp
my_rescheduler (ev_periodic *w, ev_tstamp now)
{
return now + 60.;
}
It must return the next time to trigger, based on the passed
time value (that is, the lowest time value larger than to the second
argument). It will usually be called just before the callback will be
triggered, but might be called at other times, too.
NOTE: This callback must always return a time that is
higher than or equal to the passed "now"
value.
This can be used to create very complex timers, such as a
timer that triggers on "next midnight, local time". To do
this, you would calculate the next midnight after
"now" and return the timestamp value
for this. Here is a (completely untested, no error checking) example on
how to do this:
#include <time.h>
static ev_tstamp
my_rescheduler (ev_periodic *w, ev_tstamp now)
{
time_t tnow = (time_t)now;
struct tm tm;
localtime_r (&tnow, &tm);
tm.tm_sec = tm.tm_min = tm.tm_hour = 0; // midnight current day
++tm.tm_mday; // midnight next day
return mktime (&tm);
}
Note: this code might run into trouble on days that have more
then two midnights (beginning and end).
- ev_periodic_again (loop, ev_periodic *)
- Simply stops and restarts the periodic watcher again. This is only useful
when you changed some parameters or the reschedule callback would return a
different time than the last time it was called (e.g. in a crond like
program when the crontabs have changed).
- ev_tstamp ev_periodic_at (ev_periodic *)
- When active, returns the absolute time that the watcher is supposed to
trigger next. This is not the same as the
"offset" argument to
"ev_periodic_set", but indeed works even
in interval and manual rescheduling modes.
- ev_tstamp offset [read-write]
- When repeating, this contains the offset value, otherwise this is the
absolute point in time (the "offset"
value passed to "ev_periodic_set",
although libev might modify this value for better numerical stability).
Can be modified any time, but changes only take effect when
the periodic timer fires or
"ev_periodic_again" is being
called.
- ev_tstamp interval [read-write]
- The current interval value. Can be modified any time, but changes only
take effect when the periodic timer fires or
"ev_periodic_again" is being
called.
- ev_tstamp (*reschedule_cb)(ev_periodic *w, ev_tstamp now)
[read-write]
- The current reschedule callback, or 0, if this
functionality is switched off. Can be changed any time, but changes only
take effect when the periodic timer fires or
"ev_periodic_again" is being
called.
Examples
Example: Call a callback every hour, or, more precisely, whenever
the system time is divisible by 3600. The callback invocation times have
potentially a lot of jitter, but good long-term stability.
static void
clock_cb (struct ev_loop *loop, ev_periodic *w, int revents)
{
... its now a full hour (UTC, or TAI or whatever your clock follows)
}
ev_periodic hourly_tick;
ev_periodic_init (&hourly_tick, clock_cb, 0., 3600., 0);
ev_periodic_start (loop, &hourly_tick);
Example: The same as above, but use a reschedule callback to do
it:
#include <math.h>
static ev_tstamp
my_scheduler_cb (ev_periodic *w, ev_tstamp now)
{
return now + (3600. - fmod (now, 3600.));
}
ev_periodic_init (&hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
Example: Call a callback every hour, starting now:
ev_periodic hourly_tick;
ev_periodic_init (&hourly_tick, clock_cb,
fmod (ev_now (loop), 3600.), 3600., 0);
ev_periodic_start (loop, &hourly_tick);
Signal watchers will trigger an event when the process receives a specific
signal one or more times. Even though signals are very asynchronous, libev
will try its best to deliver signals synchronously, i.e. as part of the normal
event processing, like any other event.
If you want signals to be delivered truly asynchronously, just use
"sigaction" as you would do without libev
and forget about sharing the signal. You can even use
"ev_async" from a signal handler to
synchronously wake up an event loop.
You can configure as many watchers as you like for the same
signal, but only within the same loop, i.e. you can watch for
"SIGINT" in your default loop and for
"SIGIO" in another loop, but you cannot
watch for "SIGINT" in both the default
loop and another loop at the same time. At the moment,
"SIGCHLD" is permanently tied to the
default loop.
Only after the first watcher for a signal is started will libev
actually register something with the kernel. It thus coexists with your own
signal handlers as long as you don't register any with libev for the same
signal.
If possible and supported, libev will install its handlers with
"SA_RESTART" (or equivalent) behaviour
enabled, so system calls should not be unduly interrupted. If you have a
problem with system calls getting interrupted by signals you can block all
signals in an "ev_check" watcher and
unblock them in an "ev_prepare"
watcher.
The special problem of inheritance over
fork/execve/pthread_create
Both the signal mask
("sigprocmask") and the signal disposition
("sigaction") are unspecified after
starting a signal watcher (and after stopping it again), that is, libev
might or might not block the signal, and might or might not set or restore
the installed signal handler (but see
"EVFLAG_NOSIGMASK").
While this does not matter for the signal disposition (libev never
sets signals to "SIG_IGN", so handlers
will be reset to "SIG_DFL" on
"execve"), this matters for the signal
mask: many programs do not expect certain signals to be blocked.
This means that before calling
"exec" (from the child) you should reset
the signal mask to whatever "default" you expect (all clear is a
good choice usually).
The simplest way to ensure that the signal mask is reset in the
child is to install a fork handler with
"pthread_atfork" that resets it. That will
catch fork calls done by libraries (such as the libc) as well.
In current versions of libev, the signal will not be blocked
indefinitely unless you use the "signalfd"
API ("EV_SIGNALFD"). While this reduces
the window of opportunity for problems, it will not go away, as libev
has to modify the signal mask, at least temporarily.
So I can't stress this enough: If you do not reset your signal
mask when you expect it to be empty, you have a race condition in
your code. This is not a libev-specific thing, this is true for most
event libraries.
The special problem of threads signal handling
POSIX threads has problematic signal handling semantics,
specifically, a lot of functionality (sigfd, sigwait etc.) only really works
if all threads in a process block signals, which is hard to achieve.
When you want to use sigwait (or mix libev signal handling with
your own for the same signals), you can tackle this problem by globally
blocking all signals before creating any threads (or creating them with a
fully set sigprocmask) and also specifying the
"EVFLAG_NOSIGMASK" when creating loops.
Then designate one thread as "signal receiver thread" which
handles these signals. You can pass on any signals that libev might be
interested in by calling
"ev_feed_signal".
Watcher-Specific Functions and Data Members
- ev_signal_init (ev_signal *, callback, int signum)
- ev_signal_set (ev_signal *, int signum)
- Configures the watcher to trigger on the given signal number (usually one
of the "SIGxxx" constants).
- int signum [read-only]
- The signal the watcher watches out for.
Examples
Example: Try to exit cleanly on SIGINT.
static void
sigint_cb (struct ev_loop *loop, ev_signal *w, int revents)
{
ev_break (loop, EVBREAK_ALL);
}
ev_signal signal_watcher;
ev_signal_init (&signal_watcher, sigint_cb, SIGINT);
ev_signal_start (loop, &signal_watcher);
Child watchers trigger when your process receives a SIGCHLD in response to some
child status changes (most typically when a child of yours dies or exits). It
is permissible to install a child watcher after the child has been
forked (which implies it might have already exited), as long as the event loop
isn't entered (or is continued from a watcher), i.e., forking and then
immediately registering a watcher for the child is fine, but forking and
registering a watcher a few event loop iterations later or in the next
callback invocation is not.
Only the default event loop is capable of handling signals, and
therefore you can only register child watchers in the default event
loop.
Due to some design glitches inside libev, child watchers will
always be handled at maximum priority (their priority is set to
"EV_MAXPRI" by libev)
Process Interaction
Libev grabs "SIGCHLD" as soon as
the default event loop is initialised. This is necessary to guarantee proper
behaviour even if the first child watcher is started after the child exits.
The occurrence of "SIGCHLD" is recorded
asynchronously, but child reaping is done synchronously as part of the event
loop processing. Libev always reaps all children, even ones not watched.
Overriding the Built-In Processing
Libev offers no special support for overriding the built-in child
processing, but if your application collides with libev's default child
handler, you can override it easily by installing your own handler for
"SIGCHLD" after initialising the default
loop, and making sure the default loop never gets destroyed. You are
encouraged, however, to use an event-based approach to child reaping and
thus use libev's support for that, so other libev users can use
"ev_child" watchers freely.
Stopping the Child Watcher
Currently, the child watcher never gets stopped, even when the
child terminates, so normally one needs to stop the watcher in the callback.
Future versions of libev might stop the watcher automatically when a child
exit is detected (calling "ev_child_stop"
twice is not a problem).
Watcher-Specific Functions and Data Members
- ev_child_init (ev_child *, callback, int pid, int trace)
- ev_child_set (ev_child *, int pid, int trace)
- Configures the watcher to wait for status changes of process
"pid" (or any process if
"pid" is specified as
0). The callback can look at the
"rstatus" member of the
"ev_child" watcher structure to see the
status word (use the macros from
"sys/wait.h" and see your systems
"waitpid" documentation). The
"rpid" member contains the pid of the
process causing the status change.
"trace" must be either
0 (only activate the watcher when the process
terminates) or 1 (additionally activate the
watcher when the process is stopped or continued).
- int pid [read-only]
- The process id this watcher watches out for, or 0,
meaning any process id.
- int rpid [read-write]
- The process id that detected a status change.
- int rstatus [read-write]
- The process exit/trace status caused by
"rpid" (see your systems
"waitpid" and
"sys/wait.h" documentation for
details).
Examples
Example: "fork()" a new process
and install a child handler to wait for its completion.
ev_child cw;
static void
child_cb (EV_P_ ev_child *w, int revents)
{
ev_child_stop (EV_A_ w);
printf ("process %d exited with status %x\n", w->rpid, w->rstatus);
}
pid_t pid = fork ();
if (pid < 0)
// error
else if (pid == 0)
{
// the forked child executes here
exit (1);
}
else
{
ev_child_init (&cw, child_cb, pid, 0);
ev_child_start (EV_DEFAULT_ &cw);
}
This watches a file system path for attribute changes. That is, it calls
"stat" on that path in regular intervals (or
when the OS says it changed) and sees if it changed compared to the last time,
invoking the callback if it did. Starting the watcher
"stat"'s the file, so only changes that
happen after the watcher has been started will be reported.
The path does not need to exist: changing from "path
exists" to "path does not exist" is a status change like any
other. The condition "path does not exist" (or more correctly
"path cannot be stat'ed") is signified by the
"st_nlink" field being zero (which is
otherwise always forced to be at least one) and all the other fields of the
stat buffer having unspecified contents.
The path must not end in a slash or contain special
components such as "." or
"..". The path should be absolute:
If it is relative and your working directory changes, then the behaviour is
undefined.
Since there is no portable change notification interface
available, the portable implementation simply calls
stat(2) regularly on the path to see if it changed
somehow. You can specify a recommended polling interval for this case. If
you specify a polling interval of 0 (highly
recommended!) then a suitable, unspecified default value will be used
(which you can expect to be around five seconds, although this might change
dynamically). Libev will also impose a minimum interval which is currently
around 0.1, but that's usually overkill.
This watcher type is not meant for massive numbers of stat
watchers, as even with OS-supported change notifications, this can be
resource-intensive.
At the time of this writing, the only OS-specific interface
implemented is the Linux inotify interface (implementing kqueue support is
left as an exercise for the reader. Note, however, that the author sees no
way of implementing "ev_stat" semantics
with kqueue, except as a hint).
ABI Issues (Largefile Support)
Libev by default (unless the user overrides this) uses the default
compilation environment, which means that on systems with large file support
disabled by default, you get the 32 bit version of the stat structure. When
using the library from programs that change the ABI to use 64 bit file
offsets the programs will fail. In that case you have to compile libev with
the same flags to get binary compatibility. This is obviously the case with
any flags that change the ABI, but the problem is most noticeably displayed
with ev_stat and large file support.
The solution for this is to lobby your distribution maker to make
large file interfaces available by default (as e.g. FreeBSD does) and not
optional. Libev cannot simply switch on large file support because it has to
exchange stat structures with application programs compiled using the
default compilation environment.
Inotify and Kqueue
When "inotify (7)" support has
been compiled into libev and present at runtime, it will be used to speed up
change detection where possible. The inotify descriptor will be created
lazily when the first "ev_stat" watcher is
being started.
Inotify presence does not change the semantics of
"ev_stat" watchers except that changes
might be detected earlier, and in some cases, to avoid making regular
"stat" calls. Even in the presence of
inotify support there are many cases where libev has to resort to regular
"stat" polling, but as long as kernel
2.6.25 or newer is used (2.6.24 and older have too many bugs), the path
exists (i.e. stat succeeds), and the path resides on a local filesystem
(libev currently assumes only ext2/3, jfs, reiserfs and xfs are fully
working) libev usually gets away without polling.
There is no support for kqueue, as apparently it cannot be used to
implement this functionality, due to the requirement of having a file
descriptor open on the object at all times, and detecting renames, unlinks
etc. is difficult.
"stat ()" is a synchronous
operation
Libev doesn't normally do any kind of I/O itself, and so is not
blocking the process. The exception are
"ev_stat" watchers - those call
"stat ()", which
is a synchronous operation.
For local paths, this usually doesn't matter: unless the system is
very busy or the intervals between stat's are large, a stat call will be
fast, as the path data is usually in memory already (except when starting
the watcher).
For networked file systems, calling "stat
()" can block an indefinite time due to network issues, and even
under good conditions, a stat call often takes multiple milliseconds.
Therefore, it is best to avoid using
"ev_stat" watchers on networked paths,
although this is fully supported by libev.
The special problem of stat time resolution
The "stat ()" system call only
supports full-second resolution portably, and even on systems where the
resolution is higher, most file systems still only support whole
seconds.
That means that, if the time is the only thing that changes, you
can easily miss updates: on the first update,
"ev_stat" detects a change and calls your
callback, which does something. When there is another update within the same
second, "ev_stat" will be unable to detect
unless the stat data does change in other ways (e.g. file size).
The solution to this is to delay acting on a change for slightly
more than a second (or till slightly after the next full second boundary),
using a roughly one-second-delay
"ev_timer" (e.g.
"ev_timer_set (w, 0., 1.02);
ev_timer_again (loop, w)").
The .02 offset is added to work around
small timing inconsistencies of some operating systems (where the second
counter of the current time might be be delayed. One such system is the
Linux kernel, where a call to
"gettimeofday" might return a timestamp
with a full second later than a subsequent
"time" call - if the equivalent of
"time ()" is used to update file times
then there will be a small window where the kernel uses the previous second
to update file times but libev might already execute the timer
callback).
Watcher-Specific Functions and Data Members
- ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp
interval)
- ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)
- Configures the watcher to wait for status changes of the given
"path". The
"interval" is a hint on how quickly a
change is expected to be detected and should normally be specified as
0 to let libev choose a suitable value. The memory
pointed to by "path" must point to the
same path for as long as the watcher is active.
The callback will receive an
"EV_STAT" event when a change was
detected, relative to the attributes at the time the watcher was started
(or the last change was detected).
- ev_stat_stat (loop, ev_stat *)
- Updates the stat buffer immediately with new values. If you change the
watched path in your callback, you could call this function to avoid
detecting this change (while introducing a race condition if you are not
the only one changing the path). Can also be useful simply to find out the
new values.
- ev_statdata attr [read-only]
- The most-recently detected attributes of the file. Although the type is
"ev_statdata", this is usually the (or
one of the) "struct stat" types suitable
for your system, but you can only rely on the POSIX-standardised members
to be present. If the "st_nlink" member
is 0, then there was some error while
"stat"ing the file.
- ev_statdata prev [read-only]
- The previous attributes of the file. The callback gets invoked whenever
"prev" !=
"attr", or, more precisely, one or more
of these members differ: "st_dev",
"st_ino",
"st_mode",
"st_nlink",
"st_uid",
"st_gid",
"st_rdev",
"st_size",
"st_atime",
"st_mtime",
"st_ctime".
- ev_tstamp interval [read-only]
- The specified interval.
- const char *path [read-only]
- The file system path that is being watched.
Examples
Example: Watch "/etc/passwd" for
attribute changes.
static void
passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
{
/* /etc/passwd changed in some way */
if (w->attr.st_nlink)
{
printf ("passwd current size %ld\n", (long)w->attr.st_size);
printf ("passwd current atime %ld\n", (long)w->attr.st_mtime);
printf ("passwd current mtime %ld\n", (long)w->attr.st_mtime);
}
else
/* you shalt not abuse printf for puts */
puts ("wow, /etc/passwd is not there, expect problems. "
"if this is windows, they already arrived\n");
}
...
ev_stat passwd;
ev_stat_init (&passwd, passwd_cb, "/etc/passwd", 0.);
ev_stat_start (loop, &passwd);
Example: Like above, but additionally use a one-second delay so we
do not miss updates (however, frequent updates will delay processing, too,
so one might do the work both on "ev_stat"
callback invocation and on
"ev_timer" callback invocation).
static ev_stat passwd;
static ev_timer timer;
static void
timer_cb (EV_P_ ev_timer *w, int revents)
{
ev_timer_stop (EV_A_ w);
/* now it's one second after the most recent passwd change */
}
static void
stat_cb (EV_P_ ev_stat *w, int revents)
{
/* reset the one-second timer */
ev_timer_again (EV_A_ &timer);
}
...
ev_stat_init (&passwd, stat_cb, "/etc/passwd", 0.);
ev_stat_start (loop, &passwd);
ev_timer_init (&timer, timer_cb, 0., 1.02);
Idle watchers trigger events when no other events of the same or higher priority
are pending (prepare, check and other idle watchers do not count as receiving
"events").
That is, as long as your process is busy handling sockets or
timeouts (or even signals, imagine) of the same or higher priority it will
not be triggered. But when your process is idle (or only lower-priority
watchers are pending), the idle watchers are being called once per event
loop iteration - until stopped, that is, or your process receives more
events and becomes busy again with higher priority stuff.
The most noteworthy effect is that as long as any idle watchers
are active, the process will not block when waiting for new events.
Apart from keeping your process non-blocking (which is a useful
effect on its own sometimes), idle watchers are a good place to do
"pseudo-background processing", or delay processing stuff to after
the event loop has handled all outstanding events.
Abusing an "ev_idle" watcher for its
side-effect
As long as there is at least one active idle watcher, libev will
never sleep unnecessarily. Or in other words, it will loop as fast as
possible. For this to work, the idle watcher doesn't need to be invoked at
all - the lowest priority will do.
This mode of operation can be useful together with an
"ev_check" watcher, to do something on
each event loop iteration - for example to balance load between different
connections.
See "Abusing an ev_check watcher for its side-effect"
for a longer example.
Watcher-Specific Functions and Data Members
- ev_idle_init (ev_idle *, callback)
- Initialises and configures the idle watcher - it has no parameters of any
kind. There is a "ev_idle_set" macro,
but using it is utterly pointless, believe me.
Examples
Example: Dynamically allocate an
"ev_idle" watcher, start it, and in the
callback, free it. Also, use no error checking, as usual.
static void
idle_cb (struct ev_loop *loop, ev_idle *w, int revents)
{
// stop the watcher
ev_idle_stop (loop, w);
// now we can free it
free (w);
// now do something you wanted to do when the program has
// no longer anything immediate to do.
}
ev_idle *idle_watcher = malloc (sizeof (ev_idle));
ev_idle_init (idle_watcher, idle_cb);
ev_idle_start (loop, idle_watcher);
Prepare and check watchers are often (but not always) used in pairs: prepare
watchers get invoked before the process blocks and check watchers afterwards.
You must not call
"ev_run" (or similar functions that enter
the current event loop) or "ev_loop_fork"
from either "ev_prepare" or
"ev_check" watchers. Other loops than the
current one are fine, however. The rationale behind this is that you do not
need to check for recursion in those watchers, i.e. the sequence will always
be "ev_prepare", blocking,
"ev_check" so if you have one watcher of
each kind they will always be called in pairs bracketing the blocking
call.
Their main purpose is to integrate other event mechanisms into
libev and their use is somewhat advanced. They could be used, for example,
to track variable changes, implement your own watchers, integrate net-snmp
or a coroutine library and lots more. They are also occasionally useful if
you cache some data and want to flush it before blocking (for example, in X
programs you might want to do an "XFlush
()" in an "ev_prepare"
watcher).
This is done by examining in each prepare call which file
descriptors need to be watched by the other library, registering
"ev_io" watchers for them and starting an
"ev_timer" watcher for any timeouts (many
libraries provide exactly this functionality). Then, in the check watcher,
you check for any events that occurred (by checking the pending status of
all watchers and stopping them) and call back into the library. The I/O and
timer callbacks will never actually be called (but must be valid
nevertheless, because you never know, you know?).
As another example, the Perl Coro module uses these hooks to
integrate coroutines into libev programs, by yielding to other active
coroutines during each prepare and only letting the process block if no
coroutines are ready to run (it's actually more complicated: it only runs
coroutines with priority higher than or equal to the event loop and one
coroutine of lower priority, but only once, using idle watchers to keep the
event loop from blocking if lower-priority coroutines are active, thus
mapping low-priority coroutines to idle/background tasks).
When used for this purpose, it is recommended to give
"ev_check" watchers highest
("EV_MAXPRI") priority, to ensure that
they are being run before any other watchers after the poll (this doesn't
matter for "ev_prepare" watchers).
Also, "ev_check" watchers (and
"ev_prepare" watchers, too) should not
activate ("feed") events into libev. While libev fully supports
this, they might get executed before other
"ev_check" watchers did their job. As
"ev_check" watchers are often used to
embed other (non-libev) event loops those other event loops might be in an
unusable state until their "ev_check"
watcher ran (always remind yourself to coexist peacefully with others).
Abusing an "ev_check" watcher for its
side-effect
"ev_check" (and less often also
"ev_prepare") watchers can also be useful
because they are called once per event loop iteration. For example, if you
want to handle a large number of connections fairly, you normally only do a
bit of work for each active connection, and if there is more work to do, you
wait for the next event loop iteration, so other connections have a chance
of making progress.
Using an "ev_check" watcher is
almost enough: it will be called on the next event loop iteration. However,
that isn't as soon as possible - without external events, your
"ev_check" watcher will not be
invoked.
This is where "ev_idle" watchers
come in handy - all you need is a single global idle watcher that is active
as long as you have one active "ev_check"
watcher. The "ev_idle" watcher makes sure
the event loop will not sleep, and the
"ev_check" watcher makes sure a callback
gets invoked. Neither watcher alone can do that.
Watcher-Specific Functions and Data Members
- ev_prepare_init (ev_prepare *, callback)
- ev_check_init (ev_check *, callback)
- Initialises and configures the prepare or check watcher - they have no
parameters of any kind. There are
"ev_prepare_set" and
"ev_check_set" macros, but using them is
utterly, utterly, utterly and completely pointless.
Examples
There are a number of principal ways to embed other event loops or
modules into libev. Here are some ideas on how to include libadns into libev
(there is a Perl module named "EV::ADNS"
that does this, which you could use as a working example. Another Perl
module named "EV::Glib" embeds a Glib main
context into libev, and finally,
"Glib::EV" embeds EV into the Glib event
loop).
Method 1: Add IO watchers and a timeout watcher in a prepare
handler, and in a check watcher, destroy them and call into libadns. What
follows is pseudo-code only of course. This requires you to either use a low
priority for the check watcher or use
"ev_clear_pending" explicitly, as the
callbacks for the IO/timeout watchers might not have been called yet.
static ev_io iow [nfd];
static ev_timer tw;
static void
io_cb (struct ev_loop *loop, ev_io *w, int revents)
{
}
// create io watchers for each fd and a timer before blocking
static void
adns_prepare_cb (struct ev_loop *loop, ev_prepare *w, int revents)
{
int timeout = 3600000;
struct pollfd fds [nfd];
// actual code will need to loop here and realloc etc.
adns_beforepoll (ads, fds, &nfd, &timeout, timeval_from (ev_time ()));
/* the callback is illegal, but won't be called as we stop during check */
ev_timer_init (&tw, 0, timeout * 1e-3, 0.);
ev_timer_start (loop, &tw);
// create one ev_io per pollfd
for (int i = 0; i < nfd; ++i)
{
ev_io_init (iow + i, io_cb, fds [i].fd,
((fds [i].events & POLLIN ? EV_READ : 0)
| (fds [i].events & POLLOUT ? EV_WRITE : 0)));
fds [i].revents = 0;
ev_io_start (loop, iow + i);
}
}
// stop all watchers after blocking
static void
adns_check_cb (struct ev_loop *loop, ev_check *w, int revents)
{
ev_timer_stop (loop, &tw);
for (int i = 0; i < nfd; ++i)
{
// set the relevant poll flags
// could also call adns_processreadable etc. here
struct pollfd *fd = fds + i;
int revents = ev_clear_pending (iow + i);
if (revents & EV_READ ) fd->revents |= fd->events & POLLIN;
if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT;
// now stop the watcher
ev_io_stop (loop, iow + i);
}
adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
}
Method 2: This would be just like method 1, but you run
"adns_afterpoll" in the prepare watcher
and would dispose of the check watcher.
Method 3: If the module to be embedded supports explicit event
notification (libadns does), you can also make use of the actual watcher
callbacks, and only destroy/create the watchers in the prepare watcher.
static void
timer_cb (EV_P_ ev_timer *w, int revents)
{
adns_state ads = (adns_state)w->data;
update_now (EV_A);
adns_processtimeouts (ads, &tv_now);
}
static void
io_cb (EV_P_ ev_io *w, int revents)
{
adns_state ads = (adns_state)w->data;
update_now (EV_A);
if (revents & EV_READ ) adns_processreadable (ads, w->fd, &tv_now);
if (revents & EV_WRITE) adns_processwriteable (ads, w->fd, &tv_now);
}
// do not ever call adns_afterpoll
Method 4: Do not use a prepare or check watcher because the module
you want to embed is not flexible enough to support it. Instead, you can
override their poll function. The drawback with this solution is that the
main loop is now no longer controllable by EV. The
"Glib::EV" module uses this approach,
effectively embedding EV as a client into the horrible libglib event
loop.
static gint
event_poll_func (GPollFD *fds, guint nfds, gint timeout)
{
int got_events = 0;
for (n = 0; n < nfds; ++n)
// create/start io watcher that sets the relevant bits in fds[n] and increment got_events
if (timeout >= 0)
// create/start timer
// poll
ev_run (EV_A_ 0);
// stop timer again
if (timeout >= 0)
ev_timer_stop (EV_A_ &to);
// stop io watchers again - their callbacks should have set
for (n = 0; n < nfds; ++n)
ev_io_stop (EV_A_ iow [n]);
return got_events;
}
This is a rather advanced watcher type that lets you embed one event loop into
another (currently only "ev_io" events are
supported in the embedded loop, other types of watchers might be handled in a
delayed or incorrect fashion and must not be used).
There are primarily two reasons you would want that: work around
bugs and prioritise I/O.
As an example for a bug workaround, the kqueue backend might only
support sockets on some platform, so it is unusable as generic backend, but
you still want to make use of it because you have many sockets and it scales
so nicely. In this case, you would create a kqueue-based loop and embed it
into your default loop (which might use e.g. poll). Overall operation will
be a bit slower because first libev has to call
"poll" and then
"kevent", but at least you can use both
mechanisms for what they are best:
"kqueue" for scalable sockets and
"poll" if you want it to work :)
As for prioritising I/O: under rare circumstances you have the
case where some fds have to be watched and handled very quickly (with low
latency), and even priorities and idle watchers might have too much
overhead. In this case you would put all the high priority stuff in one loop
and all the rest in a second one, and embed the second one in the first.
As long as the watcher is active, the callback will be invoked
every time there might be events pending in the embedded loop. The callback
must then call "ev_embed_sweep (mainloop,
watcher)" to make a single sweep and invoke their callbacks (the
callback doesn't need to invoke the
"ev_embed_sweep" function directly, it
could also start an idle watcher to give the embedded loop strictly lower
priority for example).
You can also set the callback to 0, in
which case the embed watcher will automatically execute the embedded loop
sweep whenever necessary.
Fork detection will be handled transparently while the
"ev_embed" watcher is active, i.e., the
embedded loop will automatically be forked when the embedding loop forks. In
other cases, the user is responsible for calling
"ev_loop_fork" on the embedded loop.
Unfortunately, not all backends are embeddable: only the ones
returned by "ev_embeddable_backends" are,
which, unfortunately, does not include any portable one.
So when you want to use this feature you will always have to be
prepared that you cannot get an embeddable loop. The recommended way to get
around this is to have a separate variables for your embeddable loop, try to
create it, and if that fails, use the normal loop for everything.
"ev_embed" and fork
While the "ev_embed" watcher is
running, forks in the embedding loop will automatically be applied to the
embedded loop as well, so no special fork handling is required in that case.
When the watcher is not running, however, it is still the task of the libev
user to call "ev_loop_fork ()" as
applicable.
Watcher-Specific Functions and Data Members
- ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)
- ev_embed_set (ev_embed *, struct ev_loop *embedded_loop)
- Configures the watcher to embed the given loop, which must be embeddable.
If the callback is 0, then
"ev_embed_sweep" will be invoked
automatically, otherwise it is the responsibility of the callback to
invoke it (it will continue to be called until the sweep has been done, if
you do not want that, you need to temporarily stop the embed
watcher).
- ev_embed_sweep (loop, ev_embed *)
- Make a single, non-blocking sweep over the embedded loop. This works
similarly to "ev_run (embedded_loop,
EVRUN_NOWAIT)", but in the most appropriate way for embedded
loops.
- struct ev_loop *other [read-only]
- The embedded event loop.
Examples
Example: Try to get an embeddable event loop and embed it into the
default event loop. If that is not possible, use the default loop. The
default loop is stored in "loop_hi", while
the embeddable loop is stored in "loop_lo"
(which is "loop_hi" in the case no
embeddable loop can be used).
struct ev_loop *loop_hi = ev_default_init (0);
struct ev_loop *loop_lo = 0;
ev_embed embed;
// see if there is a chance of getting one that works
// (remember that a flags value of 0 means autodetection)
loop_lo = ev_embeddable_backends () & ev_recommended_backends ()
? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ())
: 0;
// if we got one, then embed it, otherwise default to loop_hi
if (loop_lo)
{
ev_embed_init (&embed, 0, loop_lo);
ev_embed_start (loop_hi, &embed);
}
else
loop_lo = loop_hi;
Example: Check if kqueue is available but not recommended and
create a kqueue backend for use with sockets (which usually work with any
kqueue implementation). Store the kqueue/socket-only event loop in
"loop_socket". (One might optionally use
"EVFLAG_NOENV", too).
struct ev_loop *loop = ev_default_init (0);
struct ev_loop *loop_socket = 0;
ev_embed embed;
if (ev_supported_backends () & ~ev_recommended_backends () & EVBACKEND_KQUEUE)
if ((loop_socket = ev_loop_new (EVBACKEND_KQUEUE))
{
ev_embed_init (&embed, 0, loop_socket);
ev_embed_start (loop, &embed);
}
if (!loop_socket)
loop_socket = loop;
// now use loop_socket for all sockets, and loop for everything else
Fork watchers are called when a "fork ()" was
detected (usually because whoever is a good citizen cared to tell libev about
it by calling "ev_loop_fork"). The
invocation is done before the event loop blocks next and before
"ev_check" watchers are being called, and
only in the child after the fork. If whoever good citizen calling
"ev_default_fork" cheats and calls it in the
wrong process, the fork handlers will be invoked, too, of course.
The special problem of life after fork - how is it
possible?
Most uses of "fork ()" consist
of forking, then some simple calls to set up/change the process environment,
followed by a call to "exec()". This
sequence should be handled by libev without any problems.
This changes when the application actually wants to do event
handling in the child, or both parent in child, in effect
"continuing" after the fork.
The default mode of operation (for libev, with application help to
detect forks) is to duplicate all the state in the child, as would be
expected when either the parent or the child process
continues.
When both processes want to continue using libev, then this is
usually the wrong result. In that case, usually one process (typically the
parent) is supposed to continue with all watchers in place as before, while
the other process typically wants to start fresh, i.e. without any active
watchers.
The cleanest and most efficient way to achieve that with libev is
to simply create a new event loop, which of course will be
"empty", and use that for new watchers. This has the advantage of
not touching more memory than necessary, and thus avoiding the
copy-on-write, and the disadvantage of having to use multiple event loops
(which do not support signal watchers).
When this is not possible, or you want to use the default loop for
other reasons, then in the process that wants to start "fresh",
call "ev_loop_destroy (EV_DEFAULT)"
followed by "ev_default_loop (...)".
Destroying the default loop will "orphan" (not stop) all
registered watchers, so you have to be careful not to execute code that
modifies those watchers. Note also that in that case, you have to
re-register any signal watchers.
Watcher-Specific Functions and Data Members
- ev_fork_init (ev_fork *, callback)
- Initialises and configures the fork watcher - it has no parameters of any
kind. There is a "ev_fork_set" macro,
but using it is utterly pointless, really.
Cleanup watchers are called just before the event loop is being destroyed by a
call to "ev_loop_destroy".
While there is no guarantee that the event loop gets destroyed,
cleanup watchers provide a convenient method to install cleanup hooks for
your program, worker threads and so on - you just to make sure to destroy
the loop when you want them to be invoked.
Cleanup watchers are invoked in the same way as any other watcher.
Unlike all other watchers, they do not keep a reference to the event loop
(which makes a lot of sense if you think about it). Like all other watchers,
you can call libev functions in the callback, except
"ev_cleanup_start".
Watcher-Specific Functions and Data Members
- ev_cleanup_init (ev_cleanup *, callback)
- Initialises and configures the cleanup watcher - it has no parameters of
any kind. There is a "ev_cleanup_set"
macro, but using it is utterly pointless, I assure you.
Example: Register an atexit handler to destroy the default loop,
so any cleanup functions are called.
static void
program_exits (void)
{
ev_loop_destroy (EV_DEFAULT_UC);
}
...
atexit (program_exits);
In general, you cannot use an "ev_loop" from
multiple threads or other asynchronous sources such as signal handlers (as
opposed to multiple event loops - those are of course safe to use in different
threads).
Sometimes, however, you need to wake up an event loop you do not
control, for example because it belongs to another thread. This is what
"ev_async" watchers do: as long as the
"ev_async" watcher is active, you can
signal it by calling "ev_async_send",
which is thread- and signal safe.
This functionality is very similar to
"ev_signal" watchers, as signals, too, are
asynchronous in nature, and signals, too, will be compressed (i.e. the
number of callback invocations may be less than the number of
"ev_async_send" calls). In fact, you could
use signal watchers as a kind of "global async watchers" by using
a watcher on an otherwise unused signal, and
"ev_feed_signal" to signal this watcher
from another thread, even without knowing which loop owns the signal.
Queueing
"ev_async" does not support
queueing of data in any way. The reason is that the author does not know of
a simple (or any) algorithm for a multiple-writer-single-reader queue that
works in all cases and doesn't need elaborate support such as pthreads or
unportable memory access semantics.
That means that if you want to queue data, you have to provide
your own queue. But at least I can tell you how to implement locking around
your queue:
- queueing from a signal handler context
- To implement race-free queueing, you simply add to the queue in the signal
handler but you block the signal handler in the watcher callback. Here is
an example that does that for some fictitious SIGUSR1 handler:
static ev_async mysig;
static void
sigusr1_handler (void)
{
sometype data;
// no locking etc.
queue_put (data);
ev_async_send (EV_DEFAULT_ &mysig);
}
static void
mysig_cb (EV_P_ ev_async *w, int revents)
{
sometype data;
sigset_t block, prev;
sigemptyset (&block);
sigaddset (&block, SIGUSR1);
sigprocmask (SIG_BLOCK, &block, &prev);
while (queue_get (&data))
process (data);
if (sigismember (&prev, SIGUSR1)
sigprocmask (SIG_UNBLOCK, &block, 0);
}
(Note: pthreads in theory requires you to use
"pthread_setmask" instead of
"sigprocmask" when you use threads,
but libev doesn't do it either...).
- queueing from a thread context
- The strategy for threads is different, as you cannot (easily) block
threads but you can easily preempt them, so to queue safely you need to
employ a traditional mutex lock, such as in this pthread example:
static ev_async mysig;
static pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;
static void
otherthread (void)
{
// only need to lock the actual queueing operation
pthread_mutex_lock (&mymutex);
queue_put (data);
pthread_mutex_unlock (&mymutex);
ev_async_send (EV_DEFAULT_ &mysig);
}
static void
mysig_cb (EV_P_ ev_async *w, int revents)
{
pthread_mutex_lock (&mymutex);
while (queue_get (&data))
process (data);
pthread_mutex_unlock (&mymutex);
}
Watcher-Specific Functions and Data Members
- ev_async_init (ev_async *, callback)
- Initialises and configures the async watcher - it has no parameters of any
kind. There is a "ev_async_set" macro,
but using it is utterly pointless, trust me.
- ev_async_send (loop, ev_async *)
- Sends/signals/activates the given
"ev_async" watcher, that is, feeds an
"EV_ASYNC" event on the watcher into the
event loop, and instantly returns.
Unlike "ev_feed_event", this
call is safe to do from other threads, signal or similar contexts (see
the discussion of "EV_ATOMIC_T" in the
embedding section below on what exactly this means).
Note that, as with other watchers in libev, multiple events
might get compressed into a single callback invocation (another way to
look at this is that "ev_async"
watchers are level-triggered: they are set on
"ev_async_send", reset when the event
loop detects that).
This call incurs the overhead of at most one extra system call
per event loop iteration, if the event loop is blocked, and no syscall
at all if the event loop (or your program) is processing events. That
means that repeated calls are basically free (there is no need to avoid
calls for performance reasons) and that the overhead becomes smaller
(typically zero) under load.
- bool = ev_async_pending (ev_async *)
- Returns a non-zero value when
"ev_async_send" has been called on the
watcher but the event has not yet been processed (or even noted) by the
event loop.
"ev_async_send" sets a flag
in the watcher and wakes up the loop. When the loop iterates next and
checks for the watcher to have become active, it will reset the flag
again. "ev_async_pending" can be used
to very quickly check whether invoking the loop might be a good
idea.
Not that this does not check whether the watcher itself
is pending, only whether it has been requested to make this watcher
pending: there is a time window between the event loop checking and
resetting the async notification, and the callback being invoked.
There are some other functions of possible interest. Described. Here. Now.
- ev_once (loop, int fd, int events, ev_tstamp timeout, callback, arg)
- This function combines a simple timer and an I/O watcher, calls your
callback on whichever event happens first and automatically stops both
watchers. This is useful if you want to wait for a single event on an fd
or timeout without having to allocate/configure/start/stop/free one or
more watchers yourself.
If "fd" is less than 0, then
no I/O watcher will be started and the
"events" argument is being ignored.
Otherwise, an "ev_io" watcher for the
given "fd" and
"events" set will be created and
started.
If "timeout" is less than 0,
then no timeout watcher will be started. Otherwise an
"ev_timer" watcher with after =
"timeout" (and repeat = 0) will be
started. 0 is a valid timeout.
The callback has the type "void
(*cb)(int revents, void *arg)" and is passed an
"revents" set like normal event
callbacks (a combination of
"EV_ERROR",
"EV_READ",
"EV_WRITE" or
"EV_TIMER") and the
"arg" value passed to
"ev_once". Note that it is possible to
receive both a timeout and an io event at the same time - you
probably should give io events precedence.
Example: wait up to ten seconds for data to appear on
STDIN_FILENO.
static void stdin_ready (int revents, void *arg)
{
if (revents & EV_READ)
/* stdin might have data for us, joy! */;
else if (revents & EV_TIMER)
/* doh, nothing entered */;
}
ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
- ev_feed_fd_event (loop, int fd, int revents)
- Feed an event on the given fd, as if a file descriptor backend detected
the given events.
- ev_feed_signal_event (loop, int signum)
- Feed an event as if the given signal occurred. See also
"ev_feed_signal", which is
async-safe.
This section explains some common idioms that are not immediately obvious. Note
that examples are sprinkled over the whole manual, and this section only
contains stuff that wouldn't fit anywhere else.
Each watcher has, by default, a "void *data"
member that you can read or modify at any time: libev will completely ignore
it. This can be used to associate arbitrary data with your watcher. If you
need more data and don't want to allocate memory separately and store a
pointer to it in that data member, you can also "subclass" the
watcher type and provide your own data:
struct my_io
{
ev_io io;
int otherfd;
void *somedata;
struct whatever *mostinteresting;
};
...
struct my_io w;
ev_io_init (&w.io, my_cb, fd, EV_READ);
And since your callback will be called with a pointer to the
watcher, you can cast it back to your own type:
static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
{
struct my_io *w = (struct my_io *)w_;
...
}
More interesting and less C-conformant ways of casting your
callback function type instead have been omitted.
Another common scenario is to use some data structure with multiple embedded
watchers, in effect creating your own watcher that combines multiple libev
event sources into one "super-watcher":
struct my_biggy
{
int some_data;
ev_timer t1;
ev_timer t2;
}
In this case getting the pointer to
"my_biggy" is a bit more complicated:
Either you store the address of your
"my_biggy" struct in the
"data" member of the watcher (for woozies
or C++ coders), or you need to use some pointer arithmetic using
"offsetof" inside your watchers (for real
programmers):
#include <stddef.h>
static void
t1_cb (EV_P_ ev_timer *w, int revents)
{
struct my_biggy big = (struct my_biggy *)
(((char *)w) - offsetof (struct my_biggy, t1));
}
static void
t2_cb (EV_P_ ev_timer *w, int revents)
{
struct my_biggy big = (struct my_biggy *)
(((char *)w) - offsetof (struct my_biggy, t2));
}
Often you have structures like this in event-based programs:
callback ()
{
free (request);
}
request = start_new_request (..., callback);
The intent is to start some "lengthy" operation. The
"request" could be used to cancel the
operation, or do other things with it.
It's not uncommon to have code paths in
"start_new_request" that immediately
invoke the callback, for example, to report errors. Or you add some caching
layer that finds that it can skip the lengthy aspects of the operation and
simply invoke the callback with the result.
The problem here is that this will happen before
"start_new_request" has returned, so
"request" is not set.
Even if you pass the request by some safer means to the callback,
you might want to do something to the request after starting it, such as
canceling it, which probably isn't working so well when the callback has
already been invoked.
A common way around all these issues is to make sure that
"start_new_request" always returns
before the callback is invoked. If
"start_new_request" immediately knows the
result, it can artificially delay invoking the callback by using a
"prepare" or
"idle" watcher for example, or more
sneakily, by reusing an existing (stopped) watcher and pushing it into the
pending queue:
ev_set_cb (watcher, callback);
ev_feed_event (EV_A_ watcher, 0);
This way, "start_new_request"
can safely return before the callback is invoked, while not delaying
callback invocation too much.
Often (especially in GUI toolkits) there are places where you have modal
interaction, which is most easily implemented by recursively invoking
"ev_run".
This brings the problem of exiting - a callback might want to
finish the main "ev_run" call, but not the
nested one (e.g. user clicked "Quit", but a modal "Are you
sure?" dialog is still waiting), or just the nested one and not the
main one (e.g. user clocked "Ok" in a modal dialog), or some other
combination: In these cases, a simple
"ev_break" will not work.
The solution is to maintain "break this loop" variable
for each "ev_run" invocation, and use a
loop around "ev_run" until the condition
is triggered, using "EVRUN_ONCE":
// main loop
int exit_main_loop = 0;
while (!exit_main_loop)
ev_run (EV_DEFAULT_ EVRUN_ONCE);
// in a modal watcher
int exit_nested_loop = 0;
while (!exit_nested_loop)
ev_run (EV_A_ EVRUN_ONCE);
To exit from any of these loops, just set the corresponding exit
variable:
// exit modal loop
exit_nested_loop = 1;
// exit main program, after modal loop is finished
exit_main_loop = 1;
// exit both
exit_main_loop = exit_nested_loop = 1;
Here is a fictitious example of how to run an event loop in a different thread
from where callbacks are being invoked and watchers are created/added/removed.
For a real-world example, see the
"EV::Loop::Async" perl module, which uses
exactly this technique (which is suited for many high-level languages).
The example uses a pthread mutex to protect the loop data, a
condition variable to wait for callback invocations, an async watcher to
notify the event loop thread and an unspecified mechanism to wake up the
main thread.
First, you need to associate some data with the event loop:
typedef struct {
mutex_t lock; /* global loop lock */
ev_async async_w;
thread_t tid;
cond_t invoke_cv;
} userdata;
void prepare_loop (EV_P)
{
// for simplicity, we use a static userdata struct.
static userdata u;
ev_async_init (&u->async_w, async_cb);
ev_async_start (EV_A_ &u->async_w);
pthread_mutex_init (&u->lock, 0);
pthread_cond_init (&u->invoke_cv, 0);
// now associate this with the loop
ev_set_userdata (EV_A_ u);
ev_set_invoke_pending_cb (EV_A_ l_invoke);
ev_set_loop_release_cb (EV_A_ l_release, l_acquire);
// then create the thread running ev_run
pthread_create (&u->tid, 0, l_run, EV_A);
}
The callback for the "ev_async"
watcher does nothing: the watcher is used solely to wake up the event loop
so it takes notice of any new watchers that might have been added:
static void
async_cb (EV_P_ ev_async *w, int revents)
{
// just used for the side effects
}
The "l_release" and
"l_acquire" callbacks simply unlock/lock
the mutex protecting the loop data, respectively.
static void
l_release (EV_P)
{
userdata *u = ev_userdata (EV_A);
pthread_mutex_unlock (&u->lock);
}
static void
l_acquire (EV_P)
{
userdata *u = ev_userdata (EV_A);
pthread_mutex_lock (&u->lock);
}
The event loop thread first acquires the mutex, and then jumps
straight into "ev_run":
void *
l_run (void *thr_arg)
{
struct ev_loop *loop = (struct ev_loop *)thr_arg;
l_acquire (EV_A);
pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
ev_run (EV_A_ 0);
l_release (EV_A);
return 0;
}
Instead of invoking all pending watchers, the
"l_invoke" callback will signal the main
thread via some unspecified mechanism (signals? pipe writes?
"Async::Interrupt"?) and then waits until
all pending watchers have been called (in a while loop because a) spurious
wakeups are possible and b) skipping inter-thread-communication when there
are no pending watchers is very beneficial):
static void
l_invoke (EV_P)
{
userdata *u = ev_userdata (EV_A);
while (ev_pending_count (EV_A))
{
wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
pthread_cond_wait (&u->invoke_cv, &u->lock);
}
}
Now, whenever the main thread gets told to invoke pending
watchers, it will grab the lock, call
"ev_invoke_pending" and then signal the
loop thread to continue:
static void
real_invoke_pending (EV_P)
{
userdata *u = ev_userdata (EV_A);
pthread_mutex_lock (&u->lock);
ev_invoke_pending (EV_A);
pthread_cond_signal (&u->invoke_cv);
pthread_mutex_unlock (&u->lock);
}
Whenever you want to start/stop a watcher or do other
modifications to an event loop, you will now have to lock:
ev_timer timeout_watcher;
userdata *u = ev_userdata (EV_A);
ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
pthread_mutex_lock (&u->lock);
ev_timer_start (EV_A_ &timeout_watcher);
ev_async_send (EV_A_ &u->async_w);
pthread_mutex_unlock (&u->lock);
Note that sending the "ev_async"
watcher is required because otherwise an event loop currently blocking in
the kernel will have no knowledge about the newly added timer. By waking up
the loop it will pick up any new watchers in the next event loop
iteration.
While the overhead of a callback that e.g. schedules a thread is small, it is
still an overhead. If you embed libev, and your main usage is with some kind
of threads or coroutines, you might want to customise libev so that doesn't
need callbacks anymore.
Imagine you have coroutines that you can switch to using a
function "switch_to (coro)", that libev
runs in a coroutine called "libev_coro"
and that due to some magic, the currently active coroutine is stored in a
global called "current_coro". Then you can
build your own "wait for libev event" primitive by changing
"EV_CB_DECLARE" and
"EV_CB_INVOKE" (note the differing
";" conventions):
#define EV_CB_DECLARE(type) struct my_coro *cb;
#define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)
That means instead of having a C callback function, you store the
coroutine to switch to in each watcher, and instead of having libev call
your callback, you instead have it switch to that coroutine.
A coroutine might now wait for an event with a function called
"wait_for_event". (the watcher needs to be
started, as always, but it doesn't matter when, or whether the watcher is
active or not when this function is called):
void
wait_for_event (ev_watcher *w)
{
ev_set_cb (w, current_coro);
switch_to (libev_coro);
}
That basically suspends the coroutine inside
"wait_for_event" and continues the libev
coroutine, which, when appropriate, switches back to this or any other
coroutine.
You can do similar tricks if you have, say, threads with an event
queue - instead of storing a coroutine, you store the queue object and
instead of switching to a coroutine, you push the watcher onto the queue and
notify any waiters.
To embed libev, see "EMBEDDING", but in short, it's
easiest to create two files, my_ev.h and my_ev.c that include
the respective libev files:
// my_ev.h
#define EV_CB_DECLARE(type) struct my_coro *cb;
#define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)
#include "../libev/ev.h"
// my_ev.c
#define EV_H "my_ev.h"
#include "../libev/ev.c"
And then use my_ev.h when you would normally use
ev.h, and compile my_ev.c into your project. When properly
specifying include paths, you can even use ev.h as header file name
directly.
Libev offers a compatibility emulation layer for libevent. It cannot emulate the
internals of libevent, so here are some usage hints:
The normal C API should work fine when used from C++: both ev.h and the libev
sources can be compiled as C++. Therefore, code that uses the C API will work
fine.
Proper exception specifications might have to be added to
callbacks passed to libev: exceptions may be thrown only from watcher
callbacks, all other callbacks (allocator, syserr, loop acquire/release and
periodic reschedule callbacks) must not throw exceptions, and might need a
"noexcept" specification. If you have code
that needs to be compiled as both C and C++ you can use the
"EV_NOEXCEPT" macro for this:
static void
fatal_error (const char *msg) EV_NOEXCEPT
{
perror (msg);
abort ();
}
...
ev_set_syserr_cb (fatal_error);
The only API functions that can currently throw exceptions are
"ev_run",
"ev_invoke",
"ev_invoke_pending" and
"ev_loop_destroy" (the latter because it
runs cleanup watchers).
Throwing exceptions in watcher callbacks is only supported if
libev itself is compiled with a C++ compiler or your C and C++ environments
allow throwing exceptions through C libraries (most do).
Libev comes with some simplistic wrapper classes for C++ that mainly allow you
to use some convenience methods to start/stop watchers and also change the
callback model to a model using method callbacks on objects.
To use it,
#include <ev++.h>
This automatically includes ev.h and puts all of its
definitions (many of them macros) into the global namespace. All C++
specific things are put into the "ev"
namespace. It should support all the same embedding options as ev.h,
most notably "EV_MULTIPLICITY".
Care has been taken to keep the overhead low. The only data member
the C++ classes add (compared to plain C-style watchers) is the event loop
pointer that the watcher is associated with (or no additional members at all
if you disable "EV_MULTIPLICITY" when
embedding libev).
Currently, functions, static and non-static member functions and
classes with "operator ()" can be used as
callbacks. Other types should be easy to add as long as they only need one
additional pointer for context. If you need support for other types of
functors please contact the author (preferably after implementing it).
For all this to work, your C++ compiler either has to use the same
calling conventions as your C compiler (for static member functions), or you
have to embed libev and compile libev itself as C++.
Here is a list of things available in the
"ev" namespace:
- "ev::READ", "ev::WRITE" etc.
- These are just enum values with the same values as the
"EV_READ" etc. macros from
ev.h.
- "ev::tstamp", "ev::now"
- Aliases to the same types/functions as with the
"ev_" prefix.
- "ev::io", "ev::timer", "ev::periodic",
"ev::idle", "ev::sig" etc.
- For each "ev_TYPE" watcher in
ev.h there is a corresponding class of the same name in the
"ev" namespace, with the exception of
"ev_signal" which is called
"ev::sig" to avoid clashes with the
"signal" macro defined by many
implementations.
All of those classes have these methods:
- ev::TYPE::TYPE ()
- ev::TYPE::TYPE (loop)
- ev::TYPE::~TYPE
- The constructor (optionally) takes an event loop to associate the watcher
with. If it is omitted, it will use
"EV_DEFAULT".
The constructor calls
"ev_init" for you, which means you
have to call the "set" method before
starting it.
It will not set a callback, however: You have to call the
templated "set" method to set a
callback before you can start the watcher.
(The reason why you have to use a method is a limitation in
C++ which does not allow explicit template arguments for
constructors).
The destructor automatically stops the watcher if it is
active.
- w->set<class, &class::method> (object *)
- This method sets the callback method to call. The method has to have a
signature of "void (*)(ev_TYPE &,
int)", it receives the watcher as first argument and the
"revents" as second. The object must be
given as parameter and is stored in the
"data" member of the watcher.
This method synthesizes efficient thunking code to call your
method from the C callback that libev requires. If your compiler can
inline your callback (i.e. it is visible to it at the place of the
"set" call and your compiler is good
:), then the method will be fully inlined into the thunking function,
making it as fast as a direct C callback.
Example: simple class declaration and watcher
initialisation
struct myclass
{
void io_cb (ev::io &w, int revents) { }
}
myclass obj;
ev::io iow;
iow.set <myclass, &myclass::io_cb> (&obj);
- w->set (object *)
- This is a variation of a method callback - leaving out the method to call
will default the method to "operator
()", which makes it possible to use functor objects without
having to manually specify the "operator
()" all the time. Incidentally, you can then also leave out
the template argument list.
The "operator ()" method
prototype must be "void operator ()(watcher
&w, int revents)".
See the method-"set" above
for more details.
Example: use a functor object as callback.
struct myfunctor
{
void operator() (ev::io &w, int revents)
{
...
}
}
myfunctor f;
ev::io w;
w.set (&f);
- w->set<function> (void *data = 0)
- Also sets a callback, but uses a static method or plain function as
callback. The optional "data" argument
will be stored in the watcher's "data"
member and is free for you to use.
The prototype of the
"function" must be
"void (*)(ev::TYPE &w, int)".
See the method-"set" above
for more details.
Example: Use a plain function as callback.
static void io_cb (ev::io &w, int revents) { }
iow.set <io_cb> ();
- w->set (loop)
- Associates a different "struct ev_loop"
with this watcher. You can only do this when the watcher is inactive (and
not pending either).
- w->set ([arguments])
- Basically the same as "ev_TYPE_set"
(except for "ev::embed" watchers>),
with the same arguments. Either this method or a suitable start method
must be called at least once. Unlike the C counterpart, an active watcher
gets automatically stopped and restarted when reconfiguring it with this
method.
For "ev::embed" watchers
this method is called "set_embed", to
avoid clashing with the "set (loop)"
method.
For "ev::io" watchers there
is an additional "set" method that
acepts a new event mask only, and internally calls
"ev_io_modfify".
- w->start ()
- Starts the watcher. Note that there is no
"loop" argument, as the constructor
already stores the event loop.
- w->start ([arguments])
- Instead of calling "set" and
"start" methods separately, it is often
convenient to wrap them in one call. Uses the same type of arguments as
the configure "set" method of the
watcher.
- w->stop ()
- Stops the watcher if it is active. Again, no
"loop" argument.
- w->again () ("ev::timer", "ev::periodic" only)
- For "ev::timer" and
"ev::periodic", this invokes the
corresponding "ev_TYPE_again"
function.
- w->sweep () ("ev::embed" only)
- Invokes "ev_embed_sweep".
- w->update () ("ev::stat" only)
- Invokes "ev_stat_stat".
Example: Define a class with two I/O and idle watchers, start the
I/O watchers in the constructor.
class myclass
{
ev::io io ; void io_cb (ev::io &w, int revents);
ev::io io2 ; void io2_cb (ev::io &w, int revents);
ev::idle idle; void idle_cb (ev::idle &w, int revents);
myclass (int fd)
{
io .set <myclass, &myclass::io_cb > (this);
io2 .set <myclass, &myclass::io2_cb > (this);
idle.set <myclass, &myclass::idle_cb> (this);
io.set (fd, ev::WRITE); // configure the watcher
io.start (); // start it whenever convenient
io2.start (fd, ev::READ); // set + start in one call
}
};
Libev does not offer other language bindings itself, but bindings for a number
of languages exist in the form of third-party packages. If you know any
interesting language binding in addition to the ones listed here, drop me a
note.
- Perl
- The EV module implements the full libev API and is actually used to test
libev. EV is developed together with libev. Apart from the EV core module,
there are additional modules that implement libev-compatible interfaces to
"libadns"
("EV::ADNS", but
"AnyEvent::DNS" is preferred nowadays),
"Net::SNMP"
("Net::SNMP::EV") and the
"libglib" event core
("Glib::EV" and
"EV::Glib").
It can be found and installed via CPAN, its homepage is at
<http://software.schmorp.de/pkg/EV>.
- Python
- Python bindings can be found at <http://code.google.com/p/pyev/>. It
seems to be quite complete and well-documented.
- Ruby
- Tony Arcieri has written a ruby extension that offers access to a subset
of the libev API and adds file handle abstractions, asynchronous DNS and
more on top of it. It can be found via gem servers. Its homepage is at
<http://rev.rubyforge.org/>.
Roger Pack reports that using the link order
"-lws2_32 -lmsvcrt-ruby-190" makes rev
work even on mingw.
- Haskell
- A haskell binding to libev is available at
<http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hlibev>.
- D
- Leandro Lucarella has written a D language binding (ev.d) for
libev, to be found at
<http://www.llucax.com.ar/proj/ev.d/index.html>.
- Ocaml
- Erkki Seppala has written Ocaml bindings for libev, to be found at
<http://modeemi.cs.tut.fi/~flux/software/ocaml-ev/>.
- Lua
- Brian Maher has written a partial interface to libev for lua (at the time
of this writing, only "ev_io" and
"ev_timer"), to be found at
<http://github.com/brimworks/lua-ev>.
- Javascript
- Node.js (<http://nodejs.org>) uses libev as the underlying event
library.
- Others
- There are others, and I stopped counting.
Libev can be compiled with a variety of options, the most fundamental of which
is "EV_MULTIPLICITY". This option determines
whether (most) functions and callbacks have an initial
"struct ev_loop *" argument.
To make it easier to write programs that cope with either variant,
the following macros are defined:
- "EV_A", "EV_A_"
- This provides the loop argument for functions, if one is required
("ev loop argument"). The
"EV_A" form is used when this is the
sole argument, "EV_A_" is used when
other arguments are following. Example:
ev_unref (EV_A);
ev_timer_add (EV_A_ watcher);
ev_run (EV_A_ 0);
It assumes the variable
"loop" of type
"struct ev_loop *" is in scope, which
is often provided by the following macro.
- "EV_P", "EV_P_"
- This provides the loop parameter for functions, if one is required
("ev loop parameter"). The
"EV_P" form is used when this is the
sole parameter, "EV_P_" is used when
other parameters are following. Example:
// this is how ev_unref is being declared
static void ev_unref (EV_P);
// this is how you can declare your typical callback
static void cb (EV_P_ ev_timer *w, int revents)
It declares a parameter
"loop" of type
"struct ev_loop *", quite suitable for
use with "EV_A".
- "EV_DEFAULT", "EV_DEFAULT_"
- Similar to the other two macros, this gives you the value of the default
loop, if multiple loops are supported ("ev loop default"). The
default loop will be initialised if it isn't already initialised.
For non-multiplicity builds, these macros do nothing, so you
always have to initialise the loop somewhere.
- "EV_DEFAULT_UC", "EV_DEFAULT_UC_"
- Usage identical to "EV_DEFAULT" and
"EV_DEFAULT_", but requires that the
default loop has been initialised ("UC"
== unchecked). Their behaviour is undefined when the default loop has not
been initialised by a previous execution of
"EV_DEFAULT",
"EV_DEFAULT_" or
"ev_default_init (...)".
It is often prudent to use
"EV_DEFAULT" when initialising the
first watcher in a function but use
"EV_DEFAULT_UC" afterwards.
Example: Declare and initialise a check watcher, utilising the
above macros so it will work regardless of whether multiple loops are
supported or not.
static void
check_cb (EV_P_ ev_timer *w, int revents)
{
ev_check_stop (EV_A_ w);
}
ev_check check;
ev_check_init (&check, check_cb);
ev_check_start (EV_DEFAULT_ &check);
ev_run (EV_DEFAULT_ 0);
Libev can (and often is) directly embedded into host applications. Examples of
applications that embed it include the Deliantra Game Server, the EV perl
module, the GNU Virtual Private Ethernet (gvpe) and rxvt-unicode.
The goal is to enable you to just copy the necessary files into
your source directory without having to change even a single line in them,
so you can easily upgrade by simply copying (or having a checked-out copy of
libev somewhere in your source tree).
Depending on what features you need you need to include one or more sets of
files in your application.
CORE EVENT LOOP
To include only the libev core (all the
"ev_*" functions), with manual
configuration (no autoconf):
#define EV_STANDALONE 1
#include "ev.c"
This will automatically include ev.h, too, and should be
done in a single C source file only to provide the function implementations.
To use it, do the same for ev.h in all files wishing to use this API
(best done by writing a wrapper around ev.h that you can include
instead and where you can put other configuration options):
#define EV_STANDALONE 1
#include "ev.h"
Both header files and implementation files can be compiled with a
C++ compiler (at least, that's a stated goal, and breakage will be treated
as a bug).
You need the following files in your source tree, or in a
directory in your include path (e.g. in libev/ when using -Ilibev):
ev.h
ev.c
ev_vars.h
ev_wrap.h
ev_win32.c required on win32 platforms only
ev_select.c only when select backend is enabled
ev_poll.c only when poll backend is enabled
ev_epoll.c only when the epoll backend is enabled
ev_linuxaio.c only when the linux aio backend is enabled
ev_iouring.c only when the linux io_uring backend is enabled
ev_kqueue.c only when the kqueue backend is enabled
ev_port.c only when the solaris port backend is enabled
ev.c includes the backend files directly when enabled, so
you only need to compile this single file.
LIBEVENT COMPATIBILITY API
To include the libevent compatibility API, also include:
#include "event.c"
in the file including ev.c, and:
#include "event.h"
in the files that want to use the libevent API. This also includes
ev.h.
You need the following additional files for this:
event.h
event.c
AUTOCONF SUPPORT
Instead of using
"EV_STANDALONE=1" and providing your
configuration in whatever way you want, you can also
"m4_include([libev.m4])" in your
configure.ac and leave
"EV_STANDALONE" undefined. ev.c
will then include config.h and configure itself accordingly.
For this of course you need the m4 file:
libev.m4
Libev can be configured via a variety of preprocessor symbols you have to define
before including (or compiling) any of its files. The default in the absence
of autoconf is documented for every option.
Symbols marked with "(h)" do not change the ABI, and can
have different values when compiling libev vs. including ev.h, so it
is permissible to redefine them before including ev.h without
breaking compatibility to a compiled library. All other symbols change the
ABI, which means all users of libev and the libev code itself must be
compiled with compatible settings.
- EV_COMPAT3 (h)
- Backwards compatibility is a major concern for libev. This is why this
release of libev comes with wrappers for the functions and symbols that
have been renamed between libev version 3 and 4.
You can disable these wrappers (to test compatibility with
future versions) by defining
"EV_COMPAT3" to
0 when compiling your sources. This has the
additional advantage that you can drop the
"struct" from
"struct ev_loop" declarations, as
libev will provide an "ev_loop"
typedef in that case.
In some future version, the default for
"EV_COMPAT3" will become
0, and in some even more future version the
compatibility code will be removed completely.
- EV_STANDALONE (h)
- Must always be 1 if you do not use autoconf
configuration, which keeps libev from including config.h, and it
also defines dummy implementations for some libevent functions (such as
logging, which is not supported). It will also not define any of the
structs usually found in event.h that are not directly supported by
the libev core alone.
In standalone mode, libev will still try to automatically
deduce the configuration, but has to be more conservative.
- EV_USE_FLOOR
- If defined to be 1, libev will use the
"floor ()" function for its periodic
reschedule calculations, otherwise libev will fall back on a portable
(slower) implementation. If you enable this, you usually have to link
against libm or something equivalent. Enabling this when the
"floor" function is not available will
fail, so the safe default is to not enable this.
- EV_USE_MONOTONIC
- If defined to be 1, libev will try to detect the
availability of the monotonic clock option at both compile time and
runtime. Otherwise no use of the monotonic clock option will be attempted.
If you enable this, you usually have to link against librt or something
similar. Enabling it when the functionality isn't available is safe,
though, although you have to make sure you link against any libraries
where the "clock_gettime" function is
hiding in (often -lrt). See also
"EV_USE_CLOCK_SYSCALL".
- EV_USE_REALTIME
- If defined to be 1, libev will try to detect the
availability of the real-time clock option at compile time (and assume its
availability at runtime if successful). Otherwise no use of the real-time
clock option will be attempted. This effectively replaces
"gettimeofday" by
"clock_get (CLOCK_REALTIME, ...)" and
will not normally affect correctness. See the note about libraries in the
description of "EV_USE_MONOTONIC",
though. Defaults to the opposite value of
"EV_USE_CLOCK_SYSCALL".
- EV_USE_CLOCK_SYSCALL
- If defined to be 1, libev will try to use a direct
syscall instead of calling the system-provided
"clock_gettime" function. This option
exists because on GNU/Linux,
"clock_gettime" is in
"librt", but
"librt" unconditionally pulls in
"libpthread", slowing down
single-threaded programs needlessly. Using a direct syscall is slightly
slower (in theory), because no optimised vdso implementation can be used,
but avoids the pthread dependency. Defaults to 1
on GNU/Linux with glibc 2.x or higher, as it simplifies linking (no need
for "-lrt").
- EV_USE_NANOSLEEP
- If defined to be 1, libev will assume that
"nanosleep ()" is available and will use
it for delays. Otherwise it will use "select
()".
- EV_USE_EVENTFD
- If defined to be 1, then libev will assume that
"eventfd ()" is available and will probe
for kernel support at runtime. This will improve
"ev_signal" and
"ev_async" performance and reduce
resource consumption. If undefined, it will be enabled if the headers
indicate GNU/Linux + Glibc 2.7 or newer, otherwise disabled.
- EV_USE_SIGNALFD
- If defined to be 1, then libev will assume that
"signalfd ()" is available and will
probe for kernel support at runtime. This enables the use of
EVFLAG_SIGNALFD for faster and simpler signal handling. If undefined, it
will be enabled if the headers indicate GNU/Linux + Glibc 2.7 or newer,
otherwise disabled.
- EV_USE_TIMERFD
- If defined to be 1, then libev will assume that
"timerfd ()" is available and will probe
for kernel support at runtime. This allows libev to detect time jumps
accurately. If undefined, it will be enabled if the headers indicate
GNU/Linux + Glibc 2.8 or newer and define
"TFD_TIMER_CANCEL_ON_SET", otherwise
disabled.
- EV_USE_EVENTFD
- If defined to be 1, then libev will assume that
"eventfd ()" is available and will probe
for kernel support at runtime. This will improve
"ev_signal" and
"ev_async" performance and reduce
resource consumption. If undefined, it will be enabled if the headers
indicate GNU/Linux + Glibc 2.7 or newer, otherwise disabled.
- EV_USE_SELECT
- If undefined or defined to be 1, libev will
compile in support for the "select"(2)
backend. No attempt at auto-detection will be done: if no other method
takes over, select will be it. Otherwise the select backend will not be
compiled in.
- EV_SELECT_USE_FD_SET
- If defined to 1, then the select backend will use
the system "fd_set" structure. This is
useful if libev doesn't compile due to a missing
"NFDBITS" or
"fd_mask" definition or it mis-guesses
the bitset layout on exotic systems. This usually limits the range of file
descriptors to some low limit such as 1024 or might have other limitations
(winsocket only allows 64 sockets). The
"FD_SETSIZE" macro, set before
compilation, configures the maximum size of the
"fd_set".
- EV_SELECT_IS_WINSOCKET
- When defined to 1, the select backend will assume
that select/socket/connect etc. don't understand file descriptors but
wants osf handles on win32 (this is the case when the select to be used is
the winsock select). This means that it will call
"_get_osfhandle" on the fd to convert it
to an OS handle. Otherwise, it is assumed that all these functions
actually work on fds, even on win32. Should not be defined on non-win32
platforms.
- EV_FD_TO_WIN32_HANDLE(fd)
- If "EV_SELECT_IS_WINSOCKET" is enabled,
then libev needs a way to map file descriptors to socket handles. When not
defining this symbol (the default), then libev will call
"_get_osfhandle", which is usually
correct. In some cases, programs use their own file descriptor management,
in which case they can provide this function to map fds to socket
handles.
- EV_WIN32_HANDLE_TO_FD(handle)
- If "EV_SELECT_IS_WINSOCKET" then libev
maps handles to file descriptors using the standard
"_open_osfhandle" function. For programs
implementing their own fd to handle mapping, overwriting this function
makes it easier to do so. This can be done by defining this macro to an
appropriate value.
- EV_WIN32_CLOSE_FD(fd)
- If programs implement their own fd to handle mapping on win32, then this
macro can be used to override the
"close" function, useful to unregister
file descriptors again. Note that the replacement function has to close
the underlying OS handle.
- EV_USE_WSASOCKET
- If defined to be 1, libev will use
"WSASocket" to create its internal
communication socket, which works better in some environments. Otherwise,
the normal "socket" function will be
used, which works better in other environments.
- EV_USE_POLL
- If defined to be 1, libev will compile in support
for the "poll"(2) backend. Otherwise it
will be enabled on non-win32 platforms. It takes precedence over
select.
- EV_USE_EPOLL
- If defined to be 1, libev will compile in support
for the Linux "epoll"(7) backend. Its
availability will be detected at runtime, otherwise another method will be
used as fallback. This is the preferred backend for GNU/Linux systems. If
undefined, it will be enabled if the headers indicate GNU/Linux + Glibc
2.4 or newer, otherwise disabled.
- EV_USE_LINUXAIO
- If defined to be 1, libev will compile in support
for the Linux aio backend
("EV_USE_EPOLL" must also be enabled).
If undefined, it will be enabled on linux, otherwise disabled.
- EV_USE_IOURING
- If defined to be 1, libev will compile in support
for the Linux io_uring backend
("EV_USE_EPOLL" must also be enabled).
Due to it's current limitations it has to be requested explicitly. If
undefined, it will be enabled on linux, otherwise disabled.
- EV_USE_KQUEUE
- If defined to be 1, libev will compile in support
for the BSD style "kqueue"(2) backend.
Its actual availability will be detected at runtime, otherwise another
method will be used as fallback. This is the preferred backend for BSD and
BSD-like systems, although on most BSDs kqueue only supports some types of
fds correctly (the only platform we found that supports ptys for example
was NetBSD), so kqueue might be compiled in, but not be used unless
explicitly requested. The best way to use it is to find out whether kqueue
supports your type of fd properly and use an embedded kqueue loop.
- EV_USE_PORT
- If defined to be 1, libev will compile in support
for the Solaris 10 port style backend. Its availability will be detected
at runtime, otherwise another method will be used as fallback. This is the
preferred backend for Solaris 10 systems.
- EV_USE_DEVPOLL
- Reserved for future expansion, works like the USE symbols above.
- EV_USE_INOTIFY
- If defined to be 1, libev will compile in support
for the Linux inotify interface to speed up
"ev_stat" watchers. Its actual
availability will be detected at runtime. If undefined, it will be enabled
if the headers indicate GNU/Linux + Glibc 2.4 or newer, otherwise
disabled.
- EV_NO_SMP
- If defined to be 1, libev will assume that memory
is always coherent between threads, that is, threads can be used, but
threads never run on different cpus (or different cpu cores). This reduces
dependencies and makes libev faster.
- EV_NO_THREADS
- If defined to be 1, libev will assume that it will
never be called from different threads (that includes signal handlers),
which is a stronger assumption than
"EV_NO_SMP", above. This reduces
dependencies and makes libev faster.
- EV_ATOMIC_T
- Libev requires an integer type (suitable for storing
0 or 1) whose access is
atomic with respect to other threads or signal contexts. No such type is
easily found in the C language, so you can provide your own type that you
know is safe for your purposes. It is used both for signal handler
"locking" as well as for signal and thread safety in
"ev_async" watchers.
In the absence of this define, libev will use
"sig_atomic_t volatile" (from
signal.h), which is usually good enough on most platforms.
- EV_H (h)
- The name of the ev.h header file used to include it. The default if
undefined is "ev.h" in event.h,
ev.c and ev++.h. This can be used to virtually rename the
ev.h header file in case of conflicts.
- EV_CONFIG_H (h)
- If "EV_STANDALONE" isn't
1, this variable can be used to override
ev.c's idea of where to find the config.h file, similarly to
"EV_H", above.
- EV_EVENT_H (h)
- Similarly to "EV_H", this macro can be
used to override event.c's idea of how the event.h header
can be found, the default is
"event.h".
- EV_PROTOTYPES (h)
- If defined to be 0, then ev.h will not
define any function prototypes, but still define all the structs and other
symbols. This is occasionally useful if you want to provide your own
wrapper functions around libev functions.
- EV_MULTIPLICITY
- If undefined or defined to 1, then all
event-loop-specific functions will have the "struct
ev_loop *" as first argument, and you can create additional
independent event loops. Otherwise there will be no support for multiple
event loops and there is no first event loop pointer argument. Instead,
all functions act on the single default loop.
Note that "EV_DEFAULT" and
"EV_DEFAULT_" will no longer provide a
default loop when multiplicity is switched off - you always have to
initialise the loop manually in this case.
- EV_MINPRI
- EV_MAXPRI
- The range of allowed priorities.
"EV_MINPRI" must be smaller or equal to
"EV_MAXPRI", but otherwise there are no
non-obvious limitations. You can provide for more priorities by overriding
those symbols (usually defined to be
"-2" and 2,
respectively).
When doing priority-based operations, libev usually has to
linearly search all the priorities, so having many of them (hundreds)
uses a lot of space and time, so using the defaults of five priorities
(-2 .. +2) is usually fine.
If your embedding application does not need any priorities,
defining these both to 0 will save some memory
and CPU.
- EV_PERIODIC_ENABLE, EV_IDLE_ENABLE, EV_EMBED_ENABLE, EV_STAT_ENABLE,
EV_PREPARE_ENABLE, EV_CHECK_ENABLE, EV_FORK_ENABLE, EV_SIGNAL_ENABLE,
EV_ASYNC_ENABLE, EV_CHILD_ENABLE.
- If undefined or defined to be 1 (and the platform
supports it), then the respective watcher type is supported. If defined to
be 0, then it is not. Disabling watcher types
mainly saves code size.
- EV_FEATURES
- If you need to shave off some kilobytes of code at the expense of some
speed (but with the full API), you can define this symbol to request
certain subsets of functionality. The default is to enable all features
that can be enabled on the platform.
A typical way to use this symbol is to define it to
0 (or to a bitset with some broad features you
want) and then selectively re-enable additional parts you want, for
example if you want everything minimal, but multiple event loop support,
async and child watchers and the poll backend, use this:
#define EV_FEATURES 0
#define EV_MULTIPLICITY 1
#define EV_USE_POLL 1
#define EV_CHILD_ENABLE 1
#define EV_ASYNC_ENABLE 1
The actual value is a bitset, it can be a combination of the
following values (by default, all of these are enabled):
- 1 - faster/larger code
- Use larger code to speed up some operations.
Currently this is used to override some inlining decisions
(enlarging the code size by roughly 30% on amd64).
When optimising for size, use of compiler flags such as
"-Os" with gcc is recommended, as well
as "-DNDEBUG", as libev contains a
number of assertions.
The default is off when
"__OPTIMIZE_SIZE__" is defined by your
compiler (e.g. gcc with "-Os").
- 2 - faster/larger data structures
- Replaces the small 2-heap for timer management by a faster 4-heap, larger
hash table sizes and so on. This will usually further increase code size
and can additionally have an effect on the size of data structures at
runtime.
The default is off when
"__OPTIMIZE_SIZE__" is defined by your
compiler (e.g. gcc with "-Os").
- 4 - full API configuration
- This enables priorities (sets
"EV_MAXPRI"=2 and
"EV_MINPRI"=-2), and enables
multiplicity ("EV_MULTIPLICITY"=1).
- 8 - full API
- This enables a lot of the "lesser used" API functions. See
"ev.h" for details on which parts of the
API are still available without this feature, and do not complain if this
subset changes over time.
- 16 - enable all optional watcher types
- Enables all optional watcher types. If you want to selectively enable only
some watcher types other than I/O and timers (e.g. prepare, embed, async,
child...) you can enable them manually by defining
"EV_watchertype_ENABLE" to
1 instead.
- 32 - enable all backends
- This enables all backends - without this feature, you need to enable at
least one backend manually
("EV_USE_SELECT" is a good choice).
- 64 - enable OS-specific "helper" APIs
- Enable inotify, eventfd, signalfd and similar OS-specific helper APIs by
default.
Compiling with "gcc -Os -DEV_STANDALONE
-DEV_USE_EPOLL=1 -DEV_FEATURES=0" reduces the compiled size of
libev from 24.7Kb code/2.8Kb data to 6.5Kb code/0.3Kb data on my GNU/Linux
amd64 system, while still giving you I/O watchers, timers and monotonic
clock support.
With an intelligent-enough linker (gcc+binutils are intelligent
enough when you use "-Wl,--gc-sections
-ffunction-sections") functions unused by your program might be
left out as well - a binary starting a timer and an I/O watcher then might
come out at only 5Kb.
- EV_API_STATIC
- If this symbol is defined (by default it is not), then all identifiers
will have static linkage. This means that libev will not export any
identifiers, and you cannot link against libev anymore. This can be useful
when you embed libev, only want to use libev functions in a single file,
and do not want its identifiers to be visible.
To use this, define
"EV_API_STATIC" and include
ev.c in the file that wants to use libev.
This option only works when libev is compiled with a C
compiler, as C++ doesn't support the required declaration syntax.
- EV_AVOID_STDIO
- If this is set to 1 at compiletime, then libev
will avoid using stdio functions (printf, scanf, perror etc.). This will
increase the code size somewhat, but if your program doesn't otherwise
depend on stdio and your libc allows it, this avoids linking in the stdio
library which is quite big.
Note that error messages might become less precise when this
option is enabled.
- EV_NSIG
- The highest supported signal number, +1 (or, the number of signals):
Normally, libev tries to deduce the maximum number of signals
automatically, but sometimes this fails, in which case it can be
specified. Also, using a lower number than detected
(32 should be good for about any system in
existence) can save some memory, as libev statically allocates some 12-24
bytes per signal number.
- EV_PID_HASHSIZE
- "ev_child" watchers use a small hash
table to distribute workload by pid. The default size is
16 (or 1 with
"EV_FEATURES" disabled), usually more
than enough. If you need to manage thousands of children you might want to
increase this value (must be a power of two).
- EV_INOTIFY_HASHSIZE
- "ev_stat" watchers use a small hash
table to distribute workload by inotify watch id. The default size is
16 (or 1 with
"EV_FEATURES" disabled), usually more
than enough. If you need to manage thousands of
"ev_stat" watchers you might want to
increase this value (must be a power of two).
- EV_USE_4HEAP
- Heaps are not very cache-efficient. To improve the cache-efficiency of the
timer and periodics heaps, libev uses a 4-heap when this symbol is defined
to 1. The 4-heap uses more complicated (longer)
code but has noticeably faster performance with many (thousands) of
watchers.
The default is 1, unless
"EV_FEATURES" overrides it, in which
case it will be 0.
- EV_HEAP_CACHE_AT
- Heaps are not very cache-efficient. To improve the cache-efficiency of the
timer and periodics heaps, libev can cache the timestamp (at)
within the heap structure (selected by defining
"EV_HEAP_CACHE_AT" to
1), which uses 8-12 bytes more per watcher and a
few hundred bytes more code, but avoids random read accesses on heap
changes. This improves performance noticeably with many (hundreds) of
watchers.
The default is 1, unless
"EV_FEATURES" overrides it, in which
case it will be 0.
- EV_VERIFY
- Controls how much internal verification (see
"ev_verify ()") will be done: If set to
0, no internal verification code will be compiled
in. If set to 1, then verification code will be
compiled in, but not called. If set to 2, then the
internal verification code will be called once per loop, which can slow
down libev. If set to 3, then the verification
code will be called very frequently, which will slow down libev
considerably.
Verification errors are reported via C's
"assert" mechanism, so if you disable
that (e.g. by defining "NDEBUG") then
no errors will be reported.
The default is 1, unless
"EV_FEATURES" overrides it, in which
case it will be 0.
- EV_COMMON
- By default, all watchers have a "void
*data" member. By redefining this macro to something else you
can include more and other types of members. You have to define it each
time you include one of the files, though, and it must be identical each
time.
For example, the perl EV module uses something like this:
#define EV_COMMON \
SV *self; /* contains this struct */ \
SV *cb_sv, *fh /* note no trailing ";" */
- EV_CB_DECLARE (type)
- EV_CB_INVOKE (watcher, revents)
- ev_set_cb (ev, cb)
- Can be used to change the callback member declaration in each watcher, and
the way callbacks are invoked and set. Must expand to a struct member
definition and a statement, respectively. See the ev.h header file
for their default definitions. One possible use for overriding these is to
avoid the "struct ev_loop *" as first
argument in all cases, or to use method calls instead of plain function
calls in C++.
If you need to re-export the API (e.g. via a DLL) and you need a list of
exported symbols, you can use the provided Symbol.* files which list
all public symbols, one per line:
Symbols.ev for libev proper
Symbols.event for the libevent emulation
This can also be used to rename all public symbols to avoid
clashes with multiple versions of libev linked together (which is obviously
bad in itself, but sometimes it is inconvenient to avoid this).
A sed command like this will create wrapper
"#define"'s that you need to include
before including ev.h:
<Symbols.ev sed -e "s/.*/#define & myprefix_&/" >wrap.h
This would create a file wrap.h which essentially looks
like this:
#define ev_backend myprefix_ev_backend
#define ev_check_start myprefix_ev_check_start
#define ev_check_stop myprefix_ev_check_stop
...
For a real-world example of a program the includes libev verbatim, you can have
a look at the EV perl module (<http://software.schmorp.de/pkg/EV.html>).
It has the libev files in the libev/ subdirectory and includes them in
the EV/EVAPI.h (public interface) and EV.xs (implementation)
files. Only the EV.xs file will be compiled. It is pretty complex
because it provides its own header file.
The usage in rxvt-unicode is simpler. It has a ev_cpp.h
header file that everybody includes and which overrides some configure
choices:
#define EV_FEATURES 8
#define EV_USE_SELECT 1
#define EV_PREPARE_ENABLE 1
#define EV_IDLE_ENABLE 1
#define EV_SIGNAL_ENABLE 1
#define EV_CHILD_ENABLE 1
#define EV_USE_STDEXCEPT 0
#define EV_CONFIG_H <config.h>
#include "ev++.h"
And a ev_cpp.C implementation file that contains libev
proper and is compiled:
#include "ev_cpp.h"
#include "ev.c"
THREADS
All libev functions are reentrant and thread-safe unless
explicitly documented otherwise, but libev implements no locking itself.
This means that you can use as many loops as you want in parallel, as long
as there are no concurrent calls into any libev function with the same loop
parameter ("ev_default_*" calls have an
implicit default loop parameter, of course): libev guarantees that different
event loops share no data structures that need any locking.
Or to put it differently: calls with different loop parameters can
be done concurrently from multiple threads, calls with the same loop
parameter must be done serially (but can be done from different threads, as
long as only one thread ever is inside a call at any point in time, e.g. by
using a mutex per loop).
Specifically to support threads (and signal handlers), libev
implements so-called "ev_async" watchers,
which allow some limited form of concurrency on the same event loop, namely
waking it up "from the outside".
If you want to know which design (one loop, locking, or multiple
loops without or something else still) is best for your problem, then I
cannot help you, but here is some generic advice:
- most applications have a main thread: use the default libev loop in that
thread, or create a separate thread running only the default loop.
This helps integrating other libraries or software modules
that use libev themselves and don't care/know about threading.
- one loop per thread is usually a good model.
Doing this is almost never wrong, sometimes a
better-performance model exists, but it is always a good start.
- other models exist, such as the leader/follower pattern, where one loop is
handed through multiple threads in a kind of round-robin fashion.
Choosing a model is hard - look around, learn, know that
usually you can do better than you currently do :-)
- often you need to talk to some other thread which blocks in the event
loop.
"ev_async" watchers can be
used to wake them up from other threads safely (or from signal
contexts...).
An example use would be to communicate signals or other events
that only work in the default loop by registering the signal watcher
with the default loop and triggering an
"ev_async" watcher from the default
loop watcher callback into the event loop interested in the signal.
See also "THREAD LOCKING EXAMPLE".
COROUTINES
Libev is very accommodating to coroutines ("cooperative
threads"): libev fully supports nesting calls to its functions from
different coroutines (e.g. you can call
"ev_run" on the same loop from two
different coroutines, and switch freely between both coroutines running the
loop, as long as you don't confuse yourself). The only exception is that you
must not do this from "ev_periodic"
reschedule callbacks.
Care has been taken to ensure that libev does not keep local state
inside "ev_run", and other calls do not
usually allow for coroutine switches as they do not call any callbacks.
Depending on your compiler and compiler settings, you might get no or a lot of
warnings when compiling libev code. Some people are apparently scared by this.
However, these are unavoidable for many reasons. For one, each
compiler has different warnings, and each user has different tastes
regarding warning options. "Warn-free" code therefore cannot be a
goal except when targeting a specific compiler and compiler-version.
Another reason is that some compiler warnings require elaborate
workarounds, or other changes to the code that make it less clear and less
maintainable.
And of course, some compiler warnings are just plain stupid, or
simply wrong (because they don't actually warn about the condition their
message seems to warn about). For example, certain older gcc versions had
some warnings that resulted in an extreme number of false positives. These
have been fixed, but some people still insist on making code warn-free with
such buggy versions.
While libev is written to generate as few warnings as possible,
"warn-free" code is not a goal, and it is recommended not to build
libev with any compiler warnings enabled unless you are prepared to cope
with them (e.g. by ignoring them). Remember that warnings are just that:
warnings, not errors, or proof of bugs.
Valgrind has a special section here because it is a popular tool that is highly
useful. Unfortunately, valgrind reports are very hard to interpret.
If you think you found a bug (memory leak, uninitialised data
access etc.) in libev, then check twice: If valgrind reports something
like:
==2274== definitely lost: 0 bytes in 0 blocks.
==2274== possibly lost: 0 bytes in 0 blocks.
==2274== still reachable: 256 bytes in 1 blocks.
Then there is no memory leak, just as memory accounted to global
variables is not a memleak - the memory is still being referenced, and
didn't leak.
Similarly, under some circumstances, valgrind might report kernel
bugs as if it were a bug in libev (e.g. in realloc or in the poll backend,
although an acceptable workaround has been found here), or it might be
confused.
Keep in mind that valgrind is a very good tool, but only a tool.
Don't make it into some kind of religion.
If you are unsure about something, feel free to contact the
mailing list with the full valgrind report and an explanation on why you
think this is a bug in libev (best check the archives, too :). However,
don't be annoyed when you get a brisk "this is no bug" answer and
take the chance of learning how to interpret valgrind properly.
If you need, for some reason, empty reports from valgrind for your
project I suggest using suppression lists.
GNU/Linux is the only common platform that supports 64 bit file/large file
interfaces but disables them by default.
That means that libev compiled in the default environment doesn't
support files larger than 2GiB or so, which mainly affects
"ev_stat" watchers.
Unfortunately, many programs try to work around this GNU/Linux
issue by enabling the large file API, which makes them incompatible with the
standard libev compiled for their system.
Likewise, libev cannot enable the large file API itself as this
would suddenly make it incompatible to the default compile time environment,
i.e. all programs not using special compile switches.
The whole thing is a bug if you ask me - basically any system interface you
touch is broken, whether it is locales, poll, kqueue or even the OpenGL
drivers.
"kqueue" is buggy
The kqueue syscall is broken in all known versions - most versions
support only sockets, many support pipes.
Libev tries to work around this by not using
"kqueue" by default on this rotten
platform, but of course you can still ask for it when creating a loop -
embedding a socket-only kqueue loop into a select-based one is probably
going to work well.
"poll" is buggy
Instead of fixing "kqueue",
Apple replaced their (working) "poll"
implementation by something calling
"kqueue" internally around the 10.5.6
release, so now "kqueue" and
"poll" are broken.
Libev tries to work around this by not using
"poll" by default on this rotten platform,
but of course you can still ask for it when creating a loop.
"select" is buggy
All that's left is "select", and
of course Apple found a way to fuck this one up as well: On OS/X,
"select" actively limits the number of
file descriptors you can pass in to 1024 - your program suddenly crashes
when you use more.
There is an undocumented "workaround" for this -
defining "_DARWIN_UNLIMITED_SELECT", which
libev tries to use, so select should work on OS/X.
"errno" reentrancy
The default compile environment on Solaris is unfortunately so
thread-unsafe that you can't even use components/libraries compiled without
"-D_REENTRANT" in a threaded program,
which, of course, isn't defined by default. A valid, if stupid,
implementation choice.
If you want to use libev in threaded environments you have to make
sure it's compiled with "_REENTRANT"
defined.
Event port backend
The scalable event interface for Solaris is called "event
ports". Unfortunately, this mechanism is very buggy in all major
releases. If you run into high CPU usage, your program freezes or you get a
large number of spurious wakeups, make sure you have all the relevant and
latest kernel patches applied. No, I don't know which ones, but there are
multiple ones to apply, and afterwards, event ports actually work great.
If you can't get it to work, you can try running the program by
setting the environment variable
"LIBEV_FLAGS=3" to only allow
"poll" and
"select" backends.
AIX unfortunately has a broken "poll.h"
header. Libev works around this by trying to avoid the poll backend altogether
(i.e. it's not even compiled in), which normally isn't a big problem as
"select" works fine with large bitsets on
AIX, and AIX is dead anyway.
General issues
Win32 doesn't support any of the standards (e.g. POSIX) that libev
requires, and its I/O model is fundamentally incompatible with the POSIX
model. Libev still offers limited functionality on this platform in the form
of the "EVBACKEND_SELECT" backend, and
only supports socket descriptors. This only applies when using Win32
natively, not when using e.g. cygwin. Actually, it only applies to the
microsofts own compilers, as every compiler comes with a slightly
differently broken/incompatible environment.
Lifting these limitations would basically require the full
re-implementation of the I/O system. If you are into this kind of thing,
then note that glib does exactly that for you in a very portable way (note
also that glib is the slowest event library known to man).
There is no supported compilation method available on windows
except embedding it into other applications.
Sensible signal handling is officially unsupported by Microsoft -
libev tries its best, but under most conditions, signals will simply not
work.
Not a libev limitation but worth mentioning: windows apparently
doesn't accept large writes: instead of resulting in a partial write,
windows will either accept everything or return
"ENOBUFS" if the buffer is too large, so
make sure you only write small amounts into your sockets (less than a
megabyte seems safe, but this apparently depends on the amount of memory
available).
Due to the many, low, and arbitrary limits on the win32 platform
and the abysmal performance of winsockets, using a large number of sockets
is not recommended (and not reasonable). If your program needs to use more
than a hundred or so sockets, then likely it needs to use a totally
different implementation for windows, as libev offers the POSIX readiness
notification model, which cannot be implemented efficiently on windows (due
to Microsoft monopoly games).
A typical way to use libev under windows is to embed it (see the
embedding section for details) and use the following evwrap.h header
file instead of ev.h:
#define EV_STANDALONE /* keeps ev from requiring config.h */
#define EV_SELECT_IS_WINSOCKET 1 /* configure libev for windows select */
#include "ev.h"
And compile the following evwrap.c file into your project
(make sure you do not compile the ev.c or any other embedded
source files!):
#include "evwrap.h"
#include "ev.c"
The winsocket "select" function
The winsocket "select" function
doesn't follow POSIX in that it requires socket handles and not
socket file descriptors (it is also extremely buggy). This makes
select very inefficient, and also requires a mapping from file descriptors
to socket handles (the Microsoft C runtime provides the function
"_open_osfhandle" for this). See the
discussion of the "EV_SELECT_USE_FD_SET",
"EV_SELECT_IS_WINSOCKET" and
"EV_FD_TO_WIN32_HANDLE" preprocessor
symbols for more info.
The configuration for a "naked" win32 using the
Microsoft runtime libraries and raw winsocket select is:
#define EV_USE_SELECT 1
#define EV_SELECT_IS_WINSOCKET 1 /* forces EV_SELECT_USE_FD_SET, too */
Note that winsockets handling of fd sets is O(n), so you can
easily get a complexity in the O(n²) range when using win32.
Limited number of file descriptors
Windows has numerous arbitrary (and low) limits on things.
Early versions of winsocket's select only supported waiting for a
maximum of 64 handles (probably owning to the fact
that all windows kernels can only wait for 64 things
at the same time internally; Microsoft recommends spawning a chain of
threads and wait for 63 handles and the previous thread in each. Sounds
great!).
Newer versions support more handles, but you need to define
"FD_SETSIZE" to some high number (e.g.
2048) before compiling the winsocket select call
(which might be in libev or elsewhere, for example, perl and many other
interpreters do their own select emulation on windows).
Another limit is the number of file descriptors in the Microsoft
runtime libraries, which by default is 64 (there
must be a hidden 64 fetish or something like this inside Microsoft).
You can increase this by calling
"_setmaxstdio", which can increase this
limit to 2048 (another arbitrary limit), but is
broken in many versions of the Microsoft runtime libraries. This might get
you to about 512 or 2048
sockets (depending on windows version and/or the phase of the moon). To get
more, you need to wrap all I/O functions and provide your own fd management,
but the cost of calling select (O(n²)) will likely make this
unworkable.
In addition to a working ISO-C implementation and of course the backend-specific
APIs, libev relies on a few additional extensions:
- "void (*)(ev_watcher_type *, int revents)" must have compatible
calling conventions regardless of "ev_watcher_type *".
- Libev assumes not only that all watcher pointers have the same internal
structure (guaranteed by POSIX but not by ISO C for example), but it also
assumes that the same (machine) code can be used to call any watcher
callback: The watcher callbacks have different type signatures, but libev
calls them using an "ev_watcher *"
internally.
- null pointers and integer zero are represented by 0 bytes
- Libev uses "memset" to initialise
structs and arrays to 0 bytes, and relies on this
setting pointers and integers to null.
- pointer accesses must be thread-atomic
- Accessing a pointer value must be atomic, it must both be readable and
writable in one piece - this is the case on all current
architectures.
- "sig_atomic_t volatile" must be thread-atomic as well
- The type "sig_atomic_t volatile" (or
whatever is defined as "EV_ATOMIC_T")
must be atomic with respect to accesses from different threads. This is
not part of the specification for
"sig_atomic_t", but is believed to be
sufficiently portable.
- "sigprocmask" must work in a threaded environment
- Libev uses "sigprocmask" to temporarily
block signals. This is not allowed in a threaded program
("pthread_sigmask" has to be used).
Typical pthread implementations will either allow
"sigprocmask" in the "main
thread" or will block signals process-wide, both behaviours would be
compatible with libev. Interaction between
"sigprocmask" and
"pthread_sigmask" could complicate
things, however.
The most portable way to handle signals is to block signals in
all threads except the initial one, and run the signal handling loop in
the initial thread as well.
- "long" must be large enough for common memory allocation
sizes
- To improve portability and simplify its API, libev uses
"long" internally instead of
"size_t" when allocating its data
structures. On non-POSIX systems (Microsoft...) this might be unexpectedly
low, but is still at least 31 bits everywhere, which is enough for
hundreds of millions of watchers.
- "double" must hold a time value in seconds with enough
accuracy
- The type "double" is used to represent
timestamps. It is required to have at least 51 bits of mantissa (and 9
bits of exponent), which is good enough for at least into the year 4000
with millisecond accuracy (the design goal for libev). This requirement is
overfulfilled by implementations using IEEE 754, which is basically all
existing ones.
With IEEE 754 doubles, you get microsecond accuracy until at
least the year 2255 (and millisecond accuracy till the year 287396 - by
then, libev is either obsolete or somebody patched it to use
"long double" or something like that,
just kidding).
If you know of other additional requirements drop me a note.
In this section the complexities of (many of) the algorithms used inside libev
will be documented. For complexity discussions about backends see the
documentation for "ev_default_init".
All of the following are about amortised time: If an array needs
to be extended, libev needs to realloc and move the whole array, but this
happens asymptotically rarer with higher number of elements, so O(1) might
mean that libev does a lengthy realloc operation in rare cases, but on
average it is much faster and asymptotically approaches constant time.
- Starting and stopping timer/periodic watchers: O(log
skipped_other_timers)
- This means that, when you have a watcher that triggers in one hour and
there are 100 watchers that would trigger before that, then inserting will
have to skip roughly seven ("ld 100") of
these watchers.
- Changing timer/periodic watchers (by autorepeat or calling again): O(log
skipped_other_timers)
- That means that changing a timer costs less than removing/adding them, as
only the relative motion in the event queue has to be paid for.
- Starting io/check/prepare/idle/signal/child/fork/async watchers: O(1)
- These just add the watcher into an array or at the head of a list.
- Stopping check/prepare/idle/fork/async watchers: O(1)
- Stopping an io/signal/child watcher:
O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))
- These watchers are stored in lists, so they need to be walked to find the
correct watcher to remove. The lists are usually short (you don't usually
have many watchers waiting for the same fd or signal: one is typical, two
is rare).
- Finding the next timer in each loop iteration: O(1)
- By virtue of using a binary or 4-heap, the next timer is always found at a
fixed position in the storage array.
- Each change on a file descriptor per loop iteration:
O(number_of_watchers_for_this_fd)
- A change means an I/O watcher gets started or stopped, which requires
libev to recalculate its status (and possibly tell the kernel, depending
on backend and whether "ev_io_set" was
used).
- Activating one watcher (putting it into the pending state): O(1)
- Priority handling: O(number_of_priorities)
- Priorities are implemented by allocating some space for each priority.
When doing priority-based operations, libev usually has to linearly search
all the priorities, but starting/stopping and activating watchers becomes
O(1) with respect to priority handling.
- Sending an ev_async: O(1)
- Processing ev_async_send: O(number_of_async_watchers)
- Processing signals: O(max_signal_number)
- Sending involves a system call iff there were no other
"ev_async_send" calls in the current
loop iteration and the loop is currently blocked. Checking for async and
signal events involves iterating over all running async watchers or all
signal numbers.
The major version 4 introduced some incompatible changes to the API.
At the moment, the "ev.h" header
file provides compatibility definitions for all changes, so most programs
should still compile. The compatibility layer might be removed in later
versions of libev, so better update to the new API early than late.
- "EV_COMPAT3" backwards compatibility mechanism
- The backward compatibility mechanism can be controlled by
"EV_COMPAT3". See "PREPROCESSOR
SYMBOLS/MACROS" in the "EMBEDDING" section.
- "ev_default_destroy" and "ev_default_fork" have been
removed
- These calls can be replaced easily by their
"ev_loop_xxx" counterparts:
ev_loop_destroy (EV_DEFAULT_UC);
ev_loop_fork (EV_DEFAULT);
- function/symbol renames
- A number of functions and symbols have been renamed:
ev_loop => ev_run
EVLOOP_NONBLOCK => EVRUN_NOWAIT
EVLOOP_ONESHOT => EVRUN_ONCE
ev_unloop => ev_break
EVUNLOOP_CANCEL => EVBREAK_CANCEL
EVUNLOOP_ONE => EVBREAK_ONE
EVUNLOOP_ALL => EVBREAK_ALL
EV_TIMEOUT => EV_TIMER
ev_loop_count => ev_iteration
ev_loop_depth => ev_depth
ev_loop_verify => ev_verify
Most functions working on "struct
ev_loop" objects don't have an
"ev_loop_" prefix, so it was removed;
"ev_loop",
"ev_unloop" and associated constants
have been renamed to not collide with the
"struct
ev_loop" anymore and
"EV_TIMER" now follows the same naming
scheme as all other watcher types. Note that
"ev_loop_fork" is still called
"ev_loop_fork" because it would
otherwise clash with the "ev_fork"
typedef.
- "EV_MINIMAL" mechanism replaced by "EV_FEATURES"
- The preprocessor symbol "EV_MINIMAL" has
been replaced by a different mechanism,
"EV_FEATURES". Programs using
"EV_MINIMAL" usually compile and work,
but the library code will of course be larger.
- active
- A watcher is active as long as it has been started and not yet stopped.
See "WATCHER STATES" for details.
- application
- In this document, an application is whatever is using libev.
- backend
- The part of the code dealing with the operating system interfaces.
- callback
- The address of a function that is called when some event has been
detected. Callbacks are being passed the event loop, the watcher that
received the event, and the actual event bitset.
- callback/watcher invocation
- The act of calling the callback associated with a watcher.
- event
- A change of state of some external event, such as data now being available
for reading on a file descriptor, time having passed or simply not having
any other events happening anymore.
In libev, events are represented as single bits (such as
"EV_READ" or
"EV_TIMER").
- event library
- A software package implementing an event model and loop.
- event loop
- An entity that handles and processes external events and converts them
into callback invocations.
- event model
- The model used to describe how an event loop handles and processes
watchers and events.
- pending
- A watcher is pending as soon as the corresponding event has been detected.
See "WATCHER STATES" for details.
- real time
- The physical time that is observed. It is apparently strictly monotonic
:)
- wall-clock time
- The time and date as shown on clocks. Unlike real time, it can actually be
wrong and jump forwards and backwards, e.g. when you adjust your
clock.
- watcher
- A data structure that describes interest in certain events. Watchers need
to be started (attached to an event loop) before they can receive
events.
Marc Lehmann <libev@schmorp.de>, with repeated corrections by Mikael
Magnusson and Emanuele Giaquinta, and minor corrections by many others.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc. |