|
NAMEpublic_key - API module for public-key infrastructure.DESCRIPTIONProvides functions to handle public-key infrastructure, for details see public_key(6).COMMON RECORDS AND ASN.1 TYPESNote:
All records used in this Reference Manual are generated from ASN.1
specifications and are documented in the User's Guide. See Public-key Records.
Use the following include directive to get access to the records and constant macros described here and in the User's Guide: -include_lib("public_key/include/public_key.hrl"). DATA TYPESoid() = tuple() Object identifier, a tuple of integers as generated by the ASN.1 compiler. key_oid_name() = rsaEncryption | 'id-RSASSA-PSS' | 'id-ecPublicKey' | 'id-Ed25519' | 'id-Ed448' | 'id-dsa' Macro names for key object identifiers used by prefixing with ? der_encoded() = binary() pki_asn1_type() = 'Certificate' | 'RSAPrivateKey' | 'RSAPublicKey' | 'DSAPrivateKey' | 'DSAPublicKey' | 'DHParameter' | 'SubjectPublicKeyInfo' | 'PrivateKeyInfo' | 'CertificationRequest' | 'CertificateList' | 'ECPrivateKey' | 'EcpkParameters' asn1_type() = atom() ASN.1 type present in the Public Key applications ASN.1 specifications. pem_entry() = {pki_asn1_type(), der_or_encrypted_der(), not_encrypted | cipher_info()} der_or_encrypted_der() = binary() cipher_info() = {cipher(), cipher_info_params()} cipher() = string() salt() = binary() cipher_info_params() = salt() | {#'PBEParameter'{}, digest_type()} | #'PBES2-params'{} Cipher = "RC2-CBC" | "DES-CBC" | "DES-EDE3-CBC" Salt could be generated with crypto:strong_rand_bytes(8). public_key() = rsa_public_key() | rsa_pss_public_key() | dsa_public_key() | ec_public_key() | ed_public_key() rsa_public_key() = #'RSAPublicKey'{} dss_public_key() = integer() rsa_pss_public_key() = {rsa_pss_public_key(), #'RSASSA-PSS-params'{}} dsa_public_key() = {dss_public_key(), #'Dss-Parms'{}} ec_public_key() = {#'ECPoint'{}, ecpk_parameters_api()} public_key_params() = 'NULL' | #'RSASSA-PSS-params'{} | {namedCurve, oid()} | #'ECParameters'{} | #'Dss-Parms'{} ecpk_parameters() = {ecParameters, #'ECParameters'{}} | {namedCurve, Oid :: tuple()} ecpk_parameters_api() = ecpk_parameters() | #'ECParameters'{} | {namedCurve, Name :: crypto:ec_named_curve()} public_key_info() = {key_oid_name(), rsa_public_key() | #'ECPoint'{} | dss_public_key(), public_key_params()} ed_public_key() = {#'ECPoint'{}, ed_params()} ed_legacy_pubkey() = {ed_pub, ed25519 | ed448, Key :: binary()} Warning:
The tagged ed_pub format will not be returned from any public_key functions but
can be used as input, should be considered deprecated.
ed_params() = {namedCurve, ed_oid_name()} private_key() = rsa_private_key() | rsa_pss_private_key() | dsa_private_key() | ec_private_key() | ed_private_key() rsa_private_key() = #'RSAPrivateKey'{} rsa_pss_private_key() = {#'RSAPrivateKey'{}, #'RSASSA-PSS-params'{}} dsa_private_key() = #'DSAPrivateKey'{} ec_private_key() = #'ECPrivateKey'{} ed_private_key() = #'ECPrivateKey'{parameters = ed_params()} ed_legacy_privkey() = {ed_pri, ed25519 | ed448, Pub :: binary(), Priv :: binary()} Warning:
The tagged ed_pri format will not be returned from any public_key functions but
can be used as input, should be considered deprecated.
ed_oid_name() = 'id-Ed25519' | 'id-Ed448' Macro names for object identifiers for EDDSA curves used by prefixing with ? key_params() = #'DHParameter'{} | {namedCurve, oid()} | #'ECParameters'{} | {rsa, Size :: integer(), PubExp :: integer()} digest_type() = none | sha1 | crypto:rsa_digest_type() | crypto:dss_digest_type() | crypto:ecdsa_digest_type() issuer_name() = {rdnSequence, [[#'AttributeTypeAndValue'{}]]} referenceIDs() = [referenceID()] referenceID() = {uri_id | dns_id | ip | srv_id | atom() | oid(), string()} | {ip, inet:ip_address() | string()} cert_id() = {SerialNr :: integer(), issuer_name()} cert() = der_cert() | otp_cert() otp_cert() = #'OTPCertificate'{} der_cert() = der_encoded() combined_cert() = #cert{der = public_key:der_encoded(), otp = #'OTPCertificate'{}} bad_cert_reason() = cert_expired | invalid_issuer | invalid_signature | name_not_permitted | missing_basic_constraint | invalid_key_usage | {revoked, crl_reason()} | atom() crl_reason() = unspecified | keyCompromise | cACompromise | affiliationChanged | superseded | cessationOfOperation | certificateHold | privilegeWithdrawn | aACompromise chain_opts() = #{chain_end() := [cert_opt()], intermediates => [[cert_opt()]]} chain_end() = root | peer cert_opt() = {digest, public_key:digest_type()} | {key, public_key:key_params() | public_key:private_key()} | {validity, {From :: erlang:timestamp(), To :: erlang:timestamp()}} | {extensions, [#'Extension'{}]} test_root_cert() = #{cert := der_encoded(), key := public_key:private_key()} test_config() = #{server_config := [conf_opt()], client_config := [conf_opt()]} conf_opt() = {cert, public_key:der_encoded()} | {key, public_key:private_key()} | {cacerts, [public_key:der_encoded()]} ssh_file() = openssh_public_key | rfc4716_public_key | known_hosts | auth_keys EXPORTScompute_key(OthersECDHkey, MyECDHkey) -> SharedSecret Types: OthersECDHkey = #'ECPoint'{}
MyECDHkey = #'ECPrivateKey'{} SharedSecret = binary() Computes shared secret. compute_key(OthersDHkey, MyDHkey, DHparms) -> SharedSecret Types: OthersDHkey = crypto:dh_public()
MyDHkey = crypto:dh_private() DHparms = #'DHParameter'{} SharedSecret = binary() Computes shared secret. decrypt_private(CipherText, Key) -> PlainText decrypt_private(CipherText, Key, Options) -> PlainText Types: CipherText = binary()
Key = rsa_private_key() Options = crypto:pk_encrypt_decrypt_opts() PlainText = binary() Public-key decryption using the private key. See also crypto:private_decrypt/4 decrypt_public(CipherText, Key) -> PlainText decrypt_public(CipherText, Key, Options) -> PlainText Types: CipherText = binary()
Key = rsa_public_key() Options = crypto:pk_encrypt_decrypt_opts() PlainText = binary() Public-key decryption using the public key. See also crypto:public_decrypt/4 der_decode(Asn1Type, Der) -> Entity Types: Asn1Type = asn1_type()
Der = der_encoded() Entity = term() Decodes a public-key ASN.1 DER encoded entity. der_encode(Asn1Type, Entity) -> Der Types: Asn1Type = asn1_type()
Entity = term() Der = binary() Encodes a public-key entity with ASN.1 DER encoding. dh_gex_group(MinSize, SuggestedSize, MaxSize, Groups) -> {ok, {Size, Group}} | {error, term()} Types: MinSize = SuggestedSize = MaxSize = integer() >= 1
Groups = undefined | [{Size, [Group]}] Size = integer() >= 1 Group = {G, P} G = P = integer() >= 1 Selects a group for Diffie-Hellman key exchange with the key size in the range MinSize...MaxSize and as close to SuggestedSize as possible. If Groups == undefined a default set will be used, otherwise the group is selected from Groups. First a size, as close as possible to SuggestedSize, is selected. Then one group with that key size is randomly selected from the specified set of groups. If no size within the limits of MinSize and MaxSize is available, {error,no_group_found} is returned. The default set of groups is listed in lib/public_key/priv/moduli. This file may be regenerated like this: $> cd $ERL_TOP/lib/public_key/priv/ $> generate ---- wait until all background jobs has finished. It may take several days ! $> cat moduli-* > moduli $> cd ..; make encrypt_private(PlainText, Key) -> CipherText encrypt_private(PlainText, Key, Options) -> CipherText Types: PlainText = binary()
Key = rsa_private_key() Options = crypto:pk_encrypt_decrypt_opts() CipherText = binary() Public-key encryption using the private key. See also crypto:private_encrypt/4. encrypt_public(PlainText, Key) -> CipherText encrypt_public(PlainText, Key, Options) -> CipherText Types: PlainText = binary()
Key = rsa_public_key() Options = crypto:pk_encrypt_decrypt_opts() CipherText = binary() Public-key encryption using the public key. See also crypto:public_encrypt/4. generate_key(Params :: DHparams | ECparams | RSAparams) -> DHkeys | ECkey | RSAkey Types: DHparams = #'DHParameter'{}
DHkeys = {PublicDH :: binary(), PrivateDH :: binary()} ECparams = ecpk_parameters_api() ECkey = #'ECPrivateKey'{} RSAparams = {rsa, Size, PubExp} Size = PubExp = integer() >= 1 RSAkey = #'RSAPrivateKey'{} Generates a new key pair. Note that except for Diffie-Hellman the public key is included in the private key structure. See also crypto:generate_key/2 pem_decode(PemBin :: binary()) -> [pem_entry()] Decodes PEM binary data and returns entries as ASN.1 DER encoded entities. Example {ok, PemBin} = file:read_file("cert.pem"). PemEntries = public_key:pem_decode(PemBin). pem_encode(PemEntries :: [pem_entry()]) -> binary() Creates a PEM binary. pem_entry_decode(PemEntry) -> term() pem_entry_decode(PemEntry, Password) -> term() Types: PemEntry = pem_entry()
Password = string() Decodes a PEM entry. pem_decode/1 returns a list of PEM entries. Notice that if the PEM entry is of type 'SubjectPublickeyInfo', it is further decoded to an rsa_public_key() or dsa_public_key(). pem_entry_encode(Asn1Type, Entity) -> pem_entry() pem_entry_encode(Asn1Type, Entity, InfoPwd) -> pem_entry() Types: Asn1Type = pki_asn1_type()
Entity = term() InfoPwd = {CipherInfo, Password} CipherInfo = cipher_info() Password = string() Creates a PEM entry that can be feed to pem_encode/1. If Asn1Type is 'SubjectPublicKeyInfo', Entity must be either an rsa_public_key(), dsa_public_key() or an ec_public_key() and this function creates the appropriate 'SubjectPublicKeyInfo' entry. pkix_decode_cert(Cert, Type) -> #'Certificate'{} | otp_cert() Types: Cert = der_cert()
Type = plain | otp Decodes an ASN.1 DER-encoded PKIX certificate. Option otp uses the customized ASN.1 specification OTP-PKIX.asn1 for decoding and also recursively decode most of the standard parts. pkix_encode(Asn1Type, Entity, Type) -> Der Types: Asn1Type = asn1_type()
Entity = term() Type = otp | plain Der = der_encoded() DER encodes a PKIX x509 certificate or part of such a certificate. This function must be used for encoding certificates or parts of certificates that are decoded/created in the otp format, whereas for the plain format this function directly calls der_encode/2. Note:
Subtle ASN-1 encoding errors in certificates may be worked around when decoding,
this may have the affect that the encoding a certificate back to DER may
generate different bytes then the supplied original.
pkix_is_issuer(CertorCRL, IssuerCert) -> boolean() Types: CertorCRL = cert() | #'CertificateList'{}
IssuerCert = cert() Checks if IssuerCert issued Cert. pkix_is_fixed_dh_cert(Cert) -> boolean() Types: Cert = cert()
Checks if a certificate is a fixed Diffie-Hellman certificate. pkix_is_self_signed(Cert) -> boolean() Types: Cert = cert()
Checks if a certificate is self-signed. pkix_issuer_id(Cert, IssuedBy) -> {ok, ID :: cert_id()} | {error, Reason} Types: Cert = cert()
IssuedBy = self | other Reason = term() Returns the x509 certificate issuer id, if it can be determined. pkix_normalize_name(Issuer) -> Normalized Types: Issuer = Normalized = issuer_name()
Normalizes an issuer name so that it can be easily compared to another issuer name. pkix_path_validation(Cert, CertChain, Options) -> {ok, {PublicKeyInfo, PolicyTree}} | {error, {bad_cert, Reason :: bad_cert_reason()}} Types: Cert = cert() | atom()
CertChain = [cert() | combined_cert()] Options = [{max_path_length, integer()} | {verify_fun, {function(), term()}}] PublicKeyInfo = public_key_info() PolicyTree = list() Performs a basic path validation according to RFC 5280. However, CRL validation is done separately by pkix_crls_validate/3 and is to be called from the supplied verify_fun. The optional policy tree check is currently not implemented but an empty place holder list is returned instead. Available options:
fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom() | {revoked, atom()}} | {extension, #'Extension'{}}, InitialUserState :: term()) -> {valid, UserState :: term()} | {valid_peer, UserState :: term()} | {fail, Reason :: term()} | {unknown, UserState :: term()}. If the verify callback fun returns {fail, Reason}, the verification process is immediately stopped. If the verify callback fun returns {valid, UserState}, the verification process is continued. This can be used to accept specific path validation errors, such as selfsigned_peer, as well as verifying application-specific extensions. If called with an extension unknown to the user application, the return value {unknown, UserState} is to be used. Warning:
Note that user defined custom verify_fun may alter original path
validation error (e.g selfsigned_peer). Use with caution.
Explanations of reasons for a bad certificate:
pkix_crl_issuer(CRL) -> Issuer Types: CRL = der_encoded() | #'CertificateList'{}
Issuer = issuer_name() Returns the issuer of the CRL. pkix_crls_validate(OTPcertificate, DPandCRLs, Options) -> CRLstatus Types: OTPcertificate = #'OTPCertificate'{}
DPandCRLs = [DPandCRL] DPandCRL = {DP, {DerCRL, CRL}} DP = #'DistributionPoint'{} DerCRL = der_encoded() CRL = #'CertificateList'{} Options = [{atom(), term()}] CRLstatus = valid | {bad_cert, BadCertReason} BadCertReason = revocation_status_undetermined | {revocation_status_undetermined, Reason :: term()} | {revoked, crl_reason()} Performs CRL validation. It is intended to be called from the verify fun of pkix_path_validation/3 . Available options:
fun(#'DistributionPoint'{}, #'CertificateList'{}) -> #'CertificateList'{} The fun uses the information in the distribution point to access the latest possible version of the CRL. If this fun is not specified, Public Key uses the default implementation: fun(_DP, CRL) -> CRL end
fun(#'DistributionPoint'{}, #'CertificateList'{}, {rdnSequence,[#'AttributeTypeAndValue'{}]}, term()) -> {ok, #'OTPCertificate'{}, [der_encoded]} The fun returns the root certificate and certificate chain that has signed the CRL. fun(DP, CRL, Issuer, UserState) -> {ok, RootCert, CertChain}
pkix_crl_verify(CRL, Cert) -> boolean() Types: CRL = der_encoded() | #'CertificateList'{}
Cert = cert() Verify that Cert is the CRL signer. pkix_dist_point(Cert) -> DistPoint Types: Cert = cert()
DistPoint = #'DistributionPoint'{} Creates a distribution point for CRLs issued by the same issuer as Cert. Can be used as input to pkix_crls_validate/3 pkix_dist_points(Cert) -> DistPoints Types: Cert = cert()
DistPoints = [#'DistributionPoint'{}] Extracts distribution points from the certificates extensions. pkix_hash_type(HashOid :: oid()) -> DigestType :: md5 | crypto:sha1() | crypto:sha2() Translates OID to Erlang digest type pkix_match_dist_point(CRL, DistPoint) -> boolean() Types: CRL = der_encoded() | #'CertificateList'{}
DistPoint = #'DistributionPoint'{} Checks whether the given distribution point matches the Issuing Distribution Point of the CRL, as described in RFC 5280. If the CRL doesn't have an Issuing Distribution Point extension, the distribution point always matches. pkix_sign(Cert, Key) -> Der Types: Cert = #'OTPTBSCertificate'{}
Key = private_key() Der = der_encoded() Signs an 'OTPTBSCertificate'. Returns the corresponding DER-encoded certificate. pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType} Types: AlgorithmId = oid()
DigestType = crypto:rsa_digest_type() | none SignatureType = rsa | dsa | ecdsa Translates signature algorithm OID to Erlang digest and signature types. The AlgorithmId is the signature OID from a certificate or a certificate revocation list. pkix_test_data(ChainConf) -> TestConf Types: ChainConf =
#{server_chain := chain_opts(), client_chain := chain_opts()} |
chain_opts()
TestConf = test_config() | [conf_opt()] Creates certificate configuration(s) consisting of certificate and its private key plus CA certificate bundle, for a client and a server, intended to facilitate automated testing of applications using X509-certificates, often through SSL/TLS. The test data can be used when you have control over both the client and the server in a test scenario. When this function is called with a map containing client and server chain specifications; it generates both a client and a server certificate chain where the cacerts returned for the server contains the root cert the server should trust and the intermediate certificates the server should present to connecting clients. The root cert the server should trust is the one used as root of the client certificate chain. Vice versa applies to the cacerts returned for the client. The root cert(s) can either be pre-generated with pkix_test_root_cert/2 , or if options are specified; it is (they are) generated. When this function is called with a list of certificate options; it generates a configuration with just one node certificate where cacerts contains the root cert and the intermediate certs that should be presented to a peer. In this case the same root cert must be used for all peers. This is useful in for example an Erlang distributed cluster where any node, towards another node, acts either as a server or as a client depending on who connects to whom. The generated certificate contains a subject altname, which is not needed in a client certificate, but makes the certificate useful for both roles. Explanation of the options used to customize certificates in the generated chains:
Default extensions included in CA certificates if not otherwise specified are: [#'Extension'{extnID = ?'id-ce-keyUsage', extnValue = [keyCertSign, cRLSign], critical = false}, #'Extension'{extnID = ?'id-ce-basicConstraints', extnValue = #'BasicConstraints'{cA = true}, critical = true}] Default extensions included in the server peer cert if not otherwise specified are: [#'Extension'{extnID = ?'id-ce-keyUsage', extnValue = [digitalSignature, keyAgreement], critical = false}, #'Extension'{extnID = ?'id-ce-subjectAltName', extnValue = [{dNSName, Hostname}], critical = false}] Hostname is the result of calling net_adm:localhost() in the Erlang node where this funcion is called. Note:
Note that the generated certificates and keys does not provide a formally
correct PKIX-trust-chain and they cannot be used to achieve real security.
This function is provided for testing purposes only.
pkix_test_root_cert(Name, Options) -> RootCert Types: Name = string()
Options = [cert_opt()] RootCert = test_root_cert() Generates a root certificate that can be used in multiple calls to pkix_test_data/1 when you want the same root certificate for several generated certificates. pkix_subject_id(Cert) -> ID Types: Cert = cert()
ID = cert_id() Returns the X509 certificate subject id. pkix_verify(Cert, Key) -> boolean() Types: Cert = der_cert()
Key = public_key() Verifies PKIX x.509 certificate signature. pkix_verify_hostname(Cert, ReferenceIDs) -> boolean() pkix_verify_hostname(Cert, ReferenceIDs, Options) -> boolean() Types: Cert = cert()
ReferenceIDs = referenceIDs() Options = [{match_fun | fail_callback | fqdn_fun, function()}] This function checks that the Presented Identifier (e.g hostname) in a peer certificate is in agreement with at least one of the Reference Identifier that the client expects to be connected to. The function is intended to be added as an extra client check of the peer certificate when performing public_key:pkix_path_validation/3 See RFC 6125 for detailed information about hostname verification. The User's Guide and code examples describes this function more detailed. The option funs are described here:
fun(ReferenceId::ReferenceId() | FQDN::string(), PresentedId::{dNSName,string()} | {uniformResourceIdentifier,string() | {iPAddress,list(byte())} | {OtherId::atom()|oid(),term()}}) fun(....) -> true; % My special case (_, _) -> default % all others falls back to the inherit tests end See pkix_verify_hostname_match_fun/1 for a function that takes a protocol name as argument and returns a fun/2 suitable for this option and Re-defining the match operation in the User's Guide for an example. Note:
Reference Id values given as binaries will be converted to strings, and ip
references may be given in string format that is "10.0.1.1" or
"1234::5678:9012" as well as on the format inet:ip_address()
For an example, see Hostname extraction in the User's Guide. pkix_verify_hostname_match_fun(Protocol) -> Result Types: Protocol = https
Result = function() The return value of calling this function is intended to be used in the match_fun option in pkix_verify_hostname/3. The returned fun augments the verify hostname matching according to the specific rules for the protocol in the argument. Note:
Currently supported https fun will allow wildcard certificate matching as
specified by the HTTP standard. Note that for instance LDAP have a different
set of wildcard matching rules. If you do not want to allow wildcard
certificates (recommended from a security perspective) or otherwise customize
the hostname match the default match function used by ssl application will be
sufficient.
sign(Msg, DigestType, Key) -> Signature sign(Msg, DigestType, Key, Options) -> Signature Types: Msg = binary() | {digest, binary()}
DigestType = digest_type() Key = private_key() | ed_legacy_privkey() Options = crypto:pk_sign_verify_opts() Signature = binary() Creates a digital signature. The Msg is either the binary "plain text" data to be signed or it is the hashed value of "plain text", that is, the digest. ssh_decode(SshBin, Type) -> Decoded Types: SshBin = binary()
Type = ssh2_pubkey | OtherType | InternalType OtherType = public_key | ssh_file() InternalType = new_openssh Decoded = Decoded_ssh2_pubkey | Decoded_OtherType Decoded_ssh2_pubkey = public_key() | ed_legacy_pubkey() Decoded_OtherType = [{public_key() | ed_legacy_pubkey(), Attributes}] Attributes = [{atom(), term()}] Note:
This function is deprecated and should not be used in new programs. Use
ssh_file:decode/2 instead.
Decodes an SSH file-binary. In the case of known_hosts or auth_keys, the binary can include one or more lines of the file. Returns a list of public keys and their attributes, possible attribute values depends on the file type represented by the binary. If the Type is ssh2_pubkey, the result will be Decoded_ssh2_pubkey. Otherwise it will be Decoded_OtherType.
Example: {ok, SshBin} = file:read_file("known_hosts"). If Type is public_key the binary can be either an RFC4716 public key or an OpenSSH public key. ssh_encode(InData, Type) -> binary() Types: Type = ssh2_pubkey | OtherType
OtherType = public_key | ssh_file() InData = InData_ssh2_pubkey | OtherInData InData_ssh2_pubkey = public_key() | ed_legacy_pubkey() OtherInData = [{Key, Attributes}] Key = public_key() | ed_legacy_pubkey() Attributes = [{atom(), term()}] Note:
This function is deprecated and should not be used in new programs. Use
ssh_file:encode/2 instead.
Encodes a list of SSH file entries (public keys and attributes) to a binary. Possible attributes depend on the file type, see ssh_decode/2 . If the Type is ssh2_pubkey, the InData shall be InData_ssh2_pubkey. Otherwise it shall be OtherInData. ssh_hostkey_fingerprint(HostKey) -> string()
Types: HostKey = public_key()
DigestType = digest_type() Calculates a ssh fingerprint from a public host key as openssh does. Note:
This function is deprecated and should not be used in new programs. Use
ssh:hostkey_fingerprint/1 or ssh:hostkey_fingerprint/2 instead.
The algorithm in ssh_hostkey_fingerprint/1 is md5 to be compatible with older ssh-keygen commands. The string from the second variant is prepended by the algorithm name in uppercase as in newer ssh-keygen commands. Examples: 2> public_key:ssh_hostkey_fingerprint(Key). "f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84" 3> public_key:ssh_hostkey_fingerprint(md5,Key). "MD5:f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84" 4> public_key:ssh_hostkey_fingerprint(sha,Key). "SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY" 5> public_key:ssh_hostkey_fingerprint(sha256,Key). "SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ" 6> public_key:ssh_hostkey_fingerprint([sha,sha256],Key). ["SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY", "SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"] verify(Msg, DigestType, Signature, Key) -> boolean() verify(Msg, DigestType, Signature, Key, Options) -> boolean() Types: Msg = binary() | {digest, binary()}
DigestType = digest_type() Signature = binary() Key = public_key() | ed_legacy_pubkey() Options = crypto:pk_sign_verify_opts() Verifies a digital signature. The Msg is either the binary "plain text" data or it is the hashed value of "plain text", that is, the digest. short_name_hash(Name) -> string() Types: Name = issuer_name()
Generates a short hash of an issuer name. The hash is returned as a string containing eight hexadecimal digits. The return value of this function is the same as the result of the commands openssl crl -hash and openssl x509 -issuer_hash, when passed the issuer name of a CRL or a certificate, respectively. This hash is used by the c_rehash tool to maintain a directory of symlinks to CRL files, in order to facilitate looking up a CRL by its issuer name.
Visit the GSP FreeBSD Man Page Interface. |