|
NAMEsc::GaussianBasisSet - The GaussianBasisSet class is used describe a basis set composed of atomic gaussian orbitals.SYNOPSIS#include <gaussbas.h> Inherits sc::SavableState. Classesclass ValueData This holds scratch data needed to compute basis function values. Public Typesenum UnitType { Unit } This can be given to a CTOR to construct a unit basis function. Public Member FunctionsGaussianBasisSet (const Ref< KeyVal > &) The KeyVal constructor. GaussianBasisSet (UnitType) This can be given GaussianBasisSet::Unit to construct a basis set with a single basis function that is one everywhere. GaussianBasisSet (StateIn &) Ref< GaussianBasisSet > operator+ (const Ref< GaussianBasisSet > &B) Returns a GaussianBasisSet object that consists of the basis functions for each atom in this followed by the basis functions in B for the corresponding atom. void save_data_state (StateOut &) Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. const char * name () const Return the name of the basis set (is nonnull only if keyword 'name' was provided) const char * label () const Return the label of the basis set. Ref< Molecule > molecule () const Return the Molecule object. Ref< SCMatrixKit > matrixkit () Returns the SCMatrixKit that is to be used for AO bases. Ref< SCMatrixKit > so_matrixkit () Returns the SCMatrixKit that is to be used for SO bases. RefSCDimension basisdim () Returns the SCDimension object for the dimension. int ncenter () const Return the number of centers. int nshell () const Return the number of shells. int nshell_on_center (int icenter) const Return the number of shells on the given center. int shell_on_center (int icenter, int shell) const Return an overall shell number, given a center and the shell number on that center. int shell_to_center (int ishell) const Return the center on which the given shell is located. int shell_to_primitive (int ishell) const Return the overall index of the first primitive from the given shell. int nbasis () const Return the number of basis functions. int nbasis_on_center (int icenter) const Return the number of basis functions on the given center. int nprimitive () const Return the number of primitive Gaussians. int has_pure () const Return true if basis contains solid harmonics Gaussians. int max_nfunction_in_shell () const Return the maximum number of functions that any shell has. int max_ncartesian_in_shell (int aminc=0) const Return the maximum number of Cartesian functions that any shell has. int max_nprimitive_in_shell () const Return the maximum number of primitive Gaussian that any shell has. int max_angular_momentum () const Return the highest angular momentum in any shell. int max_ncontraction () const Return the maximum number of Gaussians in a contraction in any shell. int max_am_for_contraction (int con) const Return the maximum angular momentum found in the given contraction number for any shell. int max_cartesian () const Return the maximum number of Cartesian functions in any shell. int shell_to_function (int i) const Return the number of the first function in the given shell. int function_to_shell (int i) const Return the shell to which the given function belongs. const GaussianShell & operator() (int i) const Return a reference to GaussianShell number i. GaussianShell & operator() (int i) Return a reference to GaussianShell number i. const GaussianShell & operator[] (int i) const Return a reference to GaussianShell number i. GaussianShell & operator[] (int i) Return a reference to GaussianShell number i. const GaussianShell & shell (int i) const Return a reference to GaussianShell number i. GaussianShell & shell (int i) Return a reference to GaussianShell number i. const GaussianShell & operator() (int icenter, int ishell) const Return a reference to GaussianShell number ishell on center icenter. GaussianShell & operator() (int icenter, int ishell) Return a reference to GaussianShell number ishell on center icenter. const GaussianShell & shell (int i, int j) const Return a reference to GaussianShell number j on center i. GaussianShell & shell (int i, int j) Return a reference to GaussianShell number j on center i. double r (int icenter, int xyz) const The location of center icenter. int values (const SCVector3 &r, ValueData *, double *basis_values) const Compute the values for this basis set at position r. int grad_values (const SCVector3 &r, ValueData *, double *g_values, double *basis_values=0) const Like values(...), but computes gradients of the basis function values, too. int hessian_values (const SCVector3 &r, ValueData *, double *h_values, double *g_values=0, double *basis_values=0) const Like values(...), but computes first and second derivatives of the basis function values, too. int shell_values (const SCVector3 &r, int sh, ValueData *, double *basis_values) const Compute the values for the given shell functions at position r. int grad_shell_values (const SCVector3 &r, int sh, ValueData *, double *g_values, double *basis_values=0) const Like values(...), but computes gradients of the shell function values, too. int hessian_shell_values (const SCVector3 &r, int sh, ValueData *, double *h_values, double *g_values=0, double *basis_values=0) const Like values(...), but computes first and second derivatives of the shell function values, too. int equiv (const Ref< GaussianBasisSet > &b) Returns true if this and the argument are equivalent. void print_brief (std::ostream &=ExEnv::out0()) const Print a brief description of the basis set. void print (std::ostream &=ExEnv::out0()) const Print a detailed description of the basis set. Protected Member FunctionsGaussianBasisSet (const GaussianBasisSet &) virtual void set_matrixkit (const Ref< SCMatrixKit > &) Additional Inherited MembersDetailed DescriptionThe GaussianBasisSet class is used describe a basis set composed of atomic gaussian orbitals.Inputs for common basis sets are included in the MPQC distribution. They have been obtained from the EMSL Basis Set Database and translated into the MPQC format. The citation for this database is below. The technical citation for each basis set is listed in the individual basis set data files, in MPQC's lib/basis directory. Following is a table with available basis sets listing the supported elements for each basis and the number of basis functions for H, $n_0$, first row, $n_1$, and second row, $n_2$, atoms. Basis sets with non-alpha-numerical characters in their name must be given in quotes. Basis SetElements$n_0$$n_1$$n_2$ STO-2GH-Ca159 STO-3GH-Kr159 STO-3G*H-Ar1514 STO-6GH-Kr159 MINI (Huzinaga)H-Ca159 MINI (Scaled)H-Ca159 MIDI (Huzinaga)H-Na, Al-K2913 DZ (Dunning)H, Li, B-Ne, Al-Cl21018 DZP (Dunning)H, Li, B-Ne, Al-Cl51624 DZP + Diffuse (Dunning)H, B-Ne6193-21GH-Kr2913 3-21G*H-Ar2919 3-21++GH-Ar31317 3-21++G*H-Ar31323 4-31GH-Ne, P-Cl2913 6-31GH-Zn2913 6-31G*H-Zn21519 6-31G**H-Zn51519 6-31+G*H-Ar21923 6-31++GH-Ca31317 6-31++G*H-Ar31923 6-31++G**H-Ar61923 6-311GH-Ca, Ga-Kr31321 6-311G*H-Ca, Ga-Kr31826 6-311G**H-Ca, Ga-Kr61826 6-311G(2df,2pd)H-Ne, K, Ca14306-311++G**H-Ne7226-311++G(2d,2p)H-Ca102735 6-311++G(3df,3pd)H-Ar183947 cc-pVDZH-Ar, Ca, Ga-Kr51418 cc-pVTZH-Ar, Ca, Ga-Kr143034 cc-pVQZH-Ar, Ca, Ga-Kr305559 cc-pV5ZH-Ar, Ca, Ga-Kr559195 cc-pV6ZH, He, B-Ne, Al-Ar91140144 aug-cc-pVDZH, He, B-Ne, Al-Ar, Ga-Kr92327 aug-cc-pVTZH, He, B-Ne, Al-Ar, Ga-Kr234650 aug-cc-pVQZH, He, B-Ne, Al-Ar, Ga-Kr468084 aug-cc-pV5ZH, He, B-Ne, Al-Ar, Ga-Kr80127131 aug-cc-pV6ZH, He, B-Ne, Al-Ar127189193 cc-pCVDZLi, B-Ar1827 cc-pCVTZLi, B-Ar4359 cc-pCVQZLi, B-Ar84109 cc-pCV5ZB-Ne145aug-cc-pCVDZB-F, Al-Ar2736 aug-cc-pCVTZB-Ne, Al-Ar5975 aug-cc-pCVQZB-Ne, Al-Ar109134 aug-cc-pCV5ZB-F181NASA Ames ANOH, B-Ne, Al, P, Ti, Fe, Ni305559 pc-0H, C-F, Si-Cl2913 pc-1H, C-F, Si-Cl51418 pc-2H, C-F, Si-Cl143034 pc-3H, C-F, Si-Cl346464 pc-4H, C-F, Si-Cl63109105 pc-0-augH, C-F, Si-Cl31317 pc-1-augH, C-F, Si-Cl92327 pc-2-augH, C-F, Si-Cl234650 pc-3-augH, C-F, Si-Cl508989 pc-4-augH, C-F, Si-Cl88145141 All basis sets except for the pc-n and pc-n-aug basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 12/03/03, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information. The pc-n and pc-n-aug basis sets are the polarization consistent basis sets of Frank Jensen. See J. Chem. Phys. 115 (2001) 9113; J. Chem. Phys. 116 (2002) 7372; J. Chem. Phys. 117 (2002) 9234; and J. Chem. Phys. 121 (2004) 3463. Constructor & Destructor Documentationsc::GaussianBasisSet::GaussianBasisSet (const Ref< KeyVal > &)The KeyVal constructor.
Several files in various directories are checked for basis set data. First, basis sets can be given by the user in the basis section at the top level of the main input file. Next, if a path is given with the basisdir keyword, then all of the files given with the basisfiles keyword are read in after appending their names to the value of basisdir. Basis sets can be given in these files in the basis section at the top level as well. If the named basis set still cannot be found, then GaussianBasisSet will try convert the basis set name to a file name and check first in the directory given by basisdir. Next it checks for the environment variable SCLIBDIR. If it is set it will look for the basis file in $SCLIBDIR/basis. Otherwise it will look in the source code distribution in the directory SC/lib/basis. If the executable has changed machines or the source code has be moved, then it may be necessary to copy the library files to your machine and set the SCLIBDIR environmental variable. The basis set itself is also given in the ParsedKeyVal format. There are two recognized formats for basis sets:
basis: ( carbon: 'STO-2G': [ (type: [(am = s)] { exp coef:0 } = { 27.38503303 0.43012850 4.87452205 0.67891353 }) (type: [(am = p) (am = s)] { exp coef:1 coef:0 } = { 1.13674819 0.04947177 0.51154071 0.28830936 0.96378241 0.61281990 }) ] )
Here's an example of a basis set composed of 2 blocks of even-tempered s-functions and 1 block of even-tempered p-functions. basis: ( neon: '20s5s13p':( am = [ 0 0 1 ] nprim = [ 20 5 13 ] first_exp = [ 1000.0 0.1 70.0 ] last_exp = [ 1.0 0.01 0.1 ] ) ) sc::GaussianBasisSet::GaussianBasisSet (UnitType)This can be given GaussianBasisSet::Unit to construct a basis set with a single basis function that is one everywhere. This can be used with integral evaluators to compute certain classes of integrals, with limitations.Member Function Documentationint sc::GaussianBasisSet::grad_shell_values (const SCVector3 & r, int sh, ValueData *, double * g_values, double * basis_values = 0) constLike values(...), but computes gradients of the shell function values, too. See the other grad_values(...) members for more information.int sc::GaussianBasisSet::grad_values (const SCVector3 & r, ValueData *, double * g_values, double * basis_values = 0) constLike values(...), but computes gradients of the basis function values, too. The g_values argument must be vector of length 3*nbasis. The data will be written in the order bf1_x, bf1_y, bf1_z, ...int sc::GaussianBasisSet::hessian_shell_values (const SCVector3 & r, int sh, ValueData *, double * h_values, double * g_values = 0, double * basis_values = 0) constLike values(...), but computes first and second derivatives of the shell function values, too. See the other hessian_values(...) members for more information.int sc::GaussianBasisSet::hessian_values (const SCVector3 & r, ValueData *, double * h_values, double * g_values = 0, double * basis_values = 0) constLike values(...), but computes first and second derivatives of the basis function values, too. h_values must be vector of length 6*nbasis. The data will be written in the order bf1_xx, bf1_yx, bf1_yy, bf1_zx, bf1_zy, bf1_zz, ...const char * sc::GaussianBasisSet::label () const [inline]Return the label of the basis set. label() return the same string as name() if keyword 'name' was provided, otherwise it is a unique descriptive string which can be arbitrarily long.References name(). int sc::GaussianBasisSet::max_am_for_contraction (int con) constReturn the maximum angular momentum found in the given contraction number for any shell.int sc::GaussianBasisSet::max_ncartesian_in_shell (int aminc = 0) constReturn the maximum number of Cartesian functions that any shell has. The optional argument is an angular momentum increment.Ref< GaussianBasisSet > sc::GaussianBasisSet::operator+ (const Ref< GaussianBasisSet > & B)Returns a GaussianBasisSet object that consists of the basis functions for each atom in this followed by the basis functions in B for the corresponding atom. The Molecule object for the two basis sets must be identical.void sc::GaussianBasisSet::print (std::ostream & = ExEnv::out0()) const [virtual]Print a detailed description of the basis set.Reimplemented from sc::DescribedClass. double sc::GaussianBasisSet::r (int icenter, int xyz) constThe location of center icenter. The xyz argument is 0 for x, 1 for y, and 2 for z.void sc::GaussianBasisSet::save_data_state (StateOut &) [virtual]Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. This must be implemented by the derived class if the class has data.Reimplemented from sc::SavableState. int sc::GaussianBasisSet::shell_values (const SCVector3 & r, int sh, ValueData *, double * basis_values) constCompute the values for the given shell functions at position r. See the other values(...) members for more information.int sc::GaussianBasisSet::values (const SCVector3 & r, ValueData *, double * basis_values) constCompute the values for this basis set at position r. The basis_values argument must be vector of length nbasis.AuthorGenerated automatically by Doxygen for MPQC from the source code.
Visit the GSP FreeBSD Man Page Interface. |