|
NAMEsc::Integral - The Integral abstract class acts as a factory to provide objects that compute one and two electron integrals.SYNOPSIS#include <integral.h> Inherits sc::SavableState. Inherited by sc::IntegralCCA, sc::IntegralCints, and sc::IntegralV3. Public Member FunctionsIntegral (StateIn &) Restore the Integral object from the given StateIn object. Integral (const Ref< KeyVal > &) Construct the Integral object from the given KeyVal object. void save_data_state (StateOut &) Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. virtual Integral * clone ()=0 Clones the given Integral factory. The new factory may need to have set_basis and set_storage to be called on it. virtual int equiv (const Ref< Integral > &) Returns nonzero if this and the given Integral object have the same integral ordering, normalization conventions, etc. void set_storage (size_t i) Sets the total amount of storage, in bytes, that is available. size_t storage_used () Returns how much storage has been used. size_t storage_unused () Returns how much storage was not needed. virtual size_t storage_required_eri (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0) Returns how much storage will be needed to initialize a two-body integrals evaluator for electron repulsion integrals. virtual size_t storage_required_grt (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0) Returns how much storage will be needed to initialize a two-body integrals evaluator for linear R12 integrals. virtual size_t storage_required_eri_deriv (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0) Returns how much storage will be needed to initialize a two-body integrals evaluator for derivative electron repulsion integrals. void adjust_storage (ptrdiff_t s) The specific integral classes use this to tell Integral how much memory they are using/freeing. Ref< PetiteList > petite_list () Return the PetiteList object. Ref< PetiteList > petite_list (const Ref< GaussianBasisSet > &) Return the PetiteList object for the given basis set. ShellRotation shell_rotation (int am, SymmetryOperation &, int pure=0) Return the ShellRotation object for a shell of the given angular momentum. virtual void set_basis (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2=0, const Ref< GaussianBasisSet > &b3=0, const Ref< GaussianBasisSet > &b4=0) Set the basis set for each center. virtual CartesianIter * new_cartesian_iter (int)=0 Return a CartesianIter object. virtual RedundantCartesianIter * new_redundant_cartesian_iter (int)=0 Return a RedundantCartesianIter object. virtual RedundantCartesianSubIter * new_redundant_cartesian_sub_iter (int)=0 Return a RedundantCartesianSubIter object. virtual SphericalTransformIter * new_spherical_transform_iter (int l, int inv=0, int subl=-1)=0 Return a SphericalTransformIter object. virtual const SphericalTransform * spherical_transform (int l, int inv=0, int subl=-1)=0 Return a SphericalTransform object. virtual Ref< OneBodyInt > overlap ()=0 Return a OneBodyInt that computes the overlap. virtual Ref< OneBodyInt > kinetic ()=0 Return a OneBodyInt that computes the kinetic energy. virtual Ref< OneBodyInt > point_charge (const Ref< PointChargeData > &)=0 Return a OneBodyInt that computes the integrals for interactions with point charges. virtual Ref< OneBodyOneCenterInt > point_charge1 (const Ref< PointChargeData > &) Return a OneBodyInt that computes the integrals for interactions with point charges. virtual Ref< OneBodyInt > nuclear ()=0 Return a OneBodyInt that computes the nuclear repulsion integrals. virtual Ref< OneBodyInt > hcore ()=0 Return a OneBodyInt that computes the core Hamiltonian integrals. virtual Ref< OneBodyInt > efield_dot_vector (const Ref< EfieldDotVectorData > &)=0 Return a OneBodyInt that computes the electric field integrals dotted with a given vector. virtual Ref< OneBodyInt > dipole (const Ref< DipoleData > &)=0 Return a OneBodyInt that computes electric dipole moment integrals. virtual Ref< OneBodyInt > quadrupole (const Ref< DipoleData > &)=0 Return a OneBodyInt that computes electric quadrupole moment integrals. virtual Ref< OneBodyDerivInt > overlap_deriv ()=0 Return a OneBodyDerivInt that computes overlap derivatives. virtual Ref< OneBodyDerivInt > kinetic_deriv ()=0 Return a OneBodyDerivInt that computes kinetic energy derivatives. virtual Ref< OneBodyDerivInt > nuclear_deriv ()=0 Return a OneBodyDerivInt that computes nuclear repulsion derivatives. virtual Ref< OneBodyDerivInt > hcore_deriv ()=0 Return a OneBodyDerivInt that computes core Hamiltonian derivatives. virtual Ref< TwoBodyThreeCenterInt > electron_repulsion3 () Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. virtual Ref< TwoBodyThreeCenterDerivInt > electron_repulsion3_deriv () Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. virtual Ref< TwoBodyTwoCenterInt > electron_repulsion2 () Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. virtual Ref< TwoBodyTwoCenterDerivInt > electron_repulsion2_deriv () Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. virtual Ref< TwoBodyInt > electron_repulsion ()=0 Return a TwoBodyInt that computes electron repulsion integrals. virtual Ref< TwoBodyDerivInt > electron_repulsion_deriv ()=0 Return a TwoBodyDerivInt that computes electron repulsion derivatives. virtual Ref< TwoBodyInt > grt () Return a TwoBodyInt that computes two-electron integrals specific to linear R12 methods. Ref< MessageGrp > messagegrp () Return the MessageGrp used by the integrals objects. Static Public Member Functionsstatic Integral * initial_integral (int &argc, char **argv) Create an integral factory. static void set_default_integral (const Ref< Integral > &) Specifies a new default Integral factory. static Integral * get_default_integral () Returns the default Integral factory. Protected Member FunctionsIntegral (const Ref< GaussianBasisSet > &b1, const Ref< GaussianBasisSet > &b2, const Ref< GaussianBasisSet > &b3, const Ref< GaussianBasisSet > &b4) Initialize the Integral object given a GaussianBasisSet for each center. Protected AttributesRef< GaussianBasisSet > bs1_ Ref< GaussianBasisSet > bs2_ Ref< GaussianBasisSet > bs3_ Ref< GaussianBasisSet > bs4_ size_t storage_ size_t storage_used_ Ref< MessageGrp > grp_ Detailed DescriptionThe Integral abstract class acts as a factory to provide objects that compute one and two electron integrals.Member Function Documentationvirtual Integral * sc::Integral::clone () [pure virtual]Clones the given Integral factory. The new factory may need to have set_basis and set_storage to be called on it.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyInt > sc::Integral::dipole (const Ref< DipoleData > &) [pure virtual]Return a OneBodyInt that computes electric dipole moment integrals. The canonical order of integrals in a set is x, y, z.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyInt > sc::Integral::efield_dot_vector (const Ref< EfieldDotVectorData > &) [pure virtual]Return a OneBodyInt that computes the electric field integrals dotted with a given vector.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< TwoBodyInt > sc::Integral::electron_repulsion () [pure virtual]Return a TwoBodyInt that computes electron repulsion integrals.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< TwoBodyTwoCenterInt > sc::Integral::electron_repulsion2 () [virtual]Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. If this is not re-implemented it will throw.Reimplemented in sc::IntegralV3. virtual Ref< TwoBodyTwoCenterDerivInt > sc::Integral::electron_repulsion2_deriv () [virtual]Return a TwoBodyTwoCenterInt that computes electron repulsion integrals. If this is not re-implemented it will throw.virtual Ref< TwoBodyThreeCenterInt > sc::Integral::electron_repulsion3 () [virtual]Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. If this is not re-implemented it will throw.Reimplemented in sc::IntegralV3. virtual Ref< TwoBodyThreeCenterDerivInt > sc::Integral::electron_repulsion3_deriv () [virtual]Return a TwoBodyThreeCenterInt that computes electron repulsion integrals. If this is not re-implemented it will throw.virtual Ref< TwoBodyDerivInt > sc::Integral::electron_repulsion_deriv () [pure virtual]Return a TwoBodyDerivInt that computes electron repulsion derivatives.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual int sc::Integral::equiv (const Ref< Integral > &) [virtual]Returns nonzero if this and the given Integral object have the same integral ordering, normalization conventions, etc.virtual Ref< TwoBodyInt > sc::Integral::grt () [virtual]Return a TwoBodyInt that computes two-electron integrals specific to linear R12 methods. According to the convention in the literature, 'g' stands for electron repulsion integral, 'r' for the integral of r12 operator, and 't' for the commutator integrals. Implementation for this kind of TwoBodyInt is optional.Reimplemented in sc::IntegralCints. virtual Ref< OneBodyInt > sc::Integral::hcore () [pure virtual]Return a OneBodyInt that computes the core Hamiltonian integrals.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyDerivInt > sc::Integral::hcore_deriv () [pure virtual]Return a OneBodyDerivInt that computes core Hamiltonian derivatives.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. static Integral * sc::Integral::initial_integral (int & argc, char ** argv) [static]Create an integral factory. This routine looks for a -integral argument, then the environmental variable INTEGRAL. The argument to -integral should be either string for a ParsedKeyVal constructor or a classname. This factory is not guaranteed to have its storage and basis sets set up properly, hence set_basis and set_storage need to be called on it.virtual Ref< OneBodyInt > sc::Integral::kinetic () [pure virtual]Return a OneBodyInt that computes the kinetic energy.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyDerivInt > sc::Integral::kinetic_deriv () [pure virtual]Return a OneBodyDerivInt that computes kinetic energy derivatives.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual CartesianIter * sc::Integral::new_cartesian_iter (int) [pure virtual]Return a CartesianIter object. The caller is responsible for freeing the object.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual RedundantCartesianIter * sc::Integral::new_redundant_cartesian_iter (int) [pure virtual]Return a RedundantCartesianIter object. The caller is responsible for freeing the object.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual RedundantCartesianSubIter * sc::Integral::new_redundant_cartesian_sub_iter (int) [pure virtual]Return a RedundantCartesianSubIter object. The caller is responsible for freeing the object.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual SphericalTransformIter * sc::Integral::new_spherical_transform_iter (int l, int inv = 0, int subl = -1) [pure virtual]Return a SphericalTransformIter object. The caller is responsible for freeing the object.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyInt > sc::Integral::nuclear () [pure virtual]Return a OneBodyInt that computes the nuclear repulsion integrals. Charges from the atoms on center one are used. If center two is not identical to center one, then the charges on center two are included as well.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyDerivInt > sc::Integral::nuclear_deriv () [pure virtual]Return a OneBodyDerivInt that computes nuclear repulsion derivatives.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyInt > sc::Integral::overlap () [pure virtual]Return a OneBodyInt that computes the overlap.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyDerivInt > sc::Integral::overlap_deriv () [pure virtual]Return a OneBodyDerivInt that computes overlap derivatives.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyInt > sc::Integral::point_charge (const Ref< PointChargeData > &) [pure virtual]Return a OneBodyInt that computes the integrals for interactions with point charges.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual Ref< OneBodyOneCenterInt > sc::Integral::point_charge1 (const Ref< PointChargeData > &) [virtual]Return a OneBodyInt that computes the integrals for interactions with point charges.Reimplemented in sc::IntegralV3. virtual Ref< OneBodyInt > sc::Integral::quadrupole (const Ref< DipoleData > &) [pure virtual]Return a OneBodyInt that computes electric quadrupole moment integrals. The canonical order of integrals in a set is x^2, xy, xz, y^2, yz, z^2.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. void sc::Integral::save_data_state (StateOut &) [virtual]Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. This must be implemented by the derived class if the class has data.Reimplemented from sc::SavableState. Reimplemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual void sc::Integral::set_basis (const Ref< GaussianBasisSet > & b1, const Ref< GaussianBasisSet > & b2 = 0, const Ref< GaussianBasisSet > & b3 = 0, const Ref< GaussianBasisSet > & b4 = 0) [virtual]Set the basis set for each center.Reimplemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. ShellRotation sc::Integral::shell_rotation (int am, SymmetryOperation &, int pure = 0)Return the ShellRotation object for a shell of the given angular momentum. Pass nonzero to pure to do solid harmonics.virtual const SphericalTransform * sc::Integral::spherical_transform (int l, int inv = 0, int subl = -1) [pure virtual]Return a SphericalTransform object. The pointer is only valid while this Integral object is valid.Implemented in sc::IntegralCints, sc::IntegralCCA, and sc::IntegralV3. virtual size_t sc::Integral::storage_required_eri (const Ref< GaussianBasisSet > & b1, const Ref< GaussianBasisSet > & b2 = 0, const Ref< GaussianBasisSet > & b3 = 0, const Ref< GaussianBasisSet > & b4 = 0) [virtual]Returns how much storage will be needed to initialize a two-body integrals evaluator for electron repulsion integrals.Reimplemented in sc::IntegralCints. virtual size_t sc::Integral::storage_required_grt (const Ref< GaussianBasisSet > & b1, const Ref< GaussianBasisSet > & b2 = 0, const Ref< GaussianBasisSet > & b3 = 0, const Ref< GaussianBasisSet > & b4 = 0) [virtual]Returns how much storage will be needed to initialize a two-body integrals evaluator for linear R12 integrals.Reimplemented in sc::IntegralCints. AuthorGenerated automatically by Doxygen for MPQC from the source code.
Visit the GSP FreeBSD Man Page Interface. |