|
NAMEsc::LebedevLaikovIntegrator - An implementation of a Lebedev angular integrator.SYNOPSIS#include <integrator.h> Inherits sc::AngularIntegrator. Public Member FunctionsLebedevLaikovIntegrator (const Ref< KeyVal > &) Construct a LebedevLaikovIntegrator using the given KeyVal input. LebedevLaikovIntegrator (StateIn &) LebedevLaikovIntegrator (int) void save_data_state (StateOut &) Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. int nw (void) const int num_angular_points (double r_value, int ir) double angular_point_cartesian (int iangular, double r, SCVector3 &integration_point) const void print (std::ostream &=ExEnv::out0()) const Print the object. Protected Member Functionsvoid init (int n) Protected Attributesint npoint_ double * x_ double * y_ double * z_ double * w_ Additional Inherited MembersDetailed DescriptionAn implementation of a Lebedev angular integrator.It uses code written by Dr. Dmitri N. Laikov. This can generate grids with the following numbers of points: 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266, 302, 350, 386, 434, 482, 530, 590, 650, 698, 770, 830, 890, 974, 1046, 1118, 1202, 1274, 1358, 1454, 1538, 1622, 1730, 1814, 1910, 2030, 2126, 2222, 2354, 2450, 2558, 2702, 2810, 2930, 3074, 3182, 3314, 3470, 3590, 3722, 3890, 4010, 4154, 4334, 4466, 4610, 4802, 4934, 5090, 5294, 5438, 5606, and 5810. V.I. Lebedev, and D.N. Laikov 'A quadrature formula for the sphere of the 131st algebraic order of accuracy' Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481. V.I. Lebedev 'A quadrature formula for the sphere of 59th algebraic order of accuracy' Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286. V.I. Lebedev, and A.L. Skorokhodov 'Quadrature formulas of orders 41, 47, and 53 for the sphere' Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592. V.I. Lebedev 'Spherical quadrature formulas exact to orders 25-29' Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107. V.I. Lebedev 'Quadratures on a sphere' Computational Mathematics and Mathematical Physics, Vol. 16, 1976, pp. 10-24. V.I. Lebedev 'Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion' Computational Mathematics and Mathematical Physics, Vol. 15, 1975, pp. 44-51. Constructor & Destructor Documentationsc::LebedevLaikovIntegrator::LebedevLaikovIntegrator (const Ref< KeyVal > &)Construct a LebedevLaikovIntegrator using the given KeyVal input. The n keyword gives the number of angular points. The default is 302.Member Function Documentationdouble sc::LebedevLaikovIntegrator::angular_point_cartesian (int iangular, double r, SCVector3 & integration_point) const [virtual]Implements sc::AngularIntegrator.int sc::LebedevLaikovIntegrator::num_angular_points (double r_value, int ir) [virtual]Implements sc::AngularIntegrator.int sc::LebedevLaikovIntegrator::nw (void) const [virtual]Implements sc::AngularIntegrator.void sc::LebedevLaikovIntegrator::print (std::ostream & = ExEnv::out0()) const [virtual]Print the object.Reimplemented from sc::DescribedClass. void sc::LebedevLaikovIntegrator::save_data_state (StateOut &) [virtual]Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. This must be implemented by the derived class if the class has data.Reimplemented from sc::AngularIntegrator. AuthorGenerated automatically by Doxygen for MPQC from the source code.
Visit the GSP FreeBSD Man Page Interface. |