GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
ssytrd_sb2st.F(3) LAPACK ssytrd_sb2st.F(3)

ssytrd_sb2st.F


subroutine ssytrd_sb2st (STAGE1, VECT, UPLO, N, KD, AB, LDAB, D, E, HOUS, LHOUS, WORK, LWORK, INFO)
SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T

SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T

Purpose:

 SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric
 tridiagonal form T by a orthogonal similarity transformation:
 Q**T * A * Q = T.

Parameters

STAGE1

          STAGE1 is CHARACTER*1
          = 'N':  "No": to mention that the stage 1 of the reduction  
                  from dense to band using the ssytrd_sy2sb routine
                  was not called before this routine to reproduce AB. 
                  In other term this routine is called as standalone. 
          = 'Y':  "Yes": to mention that the stage 1 of the 
                  reduction from dense to band using the ssytrd_sy2sb 
                  routine has been called to produce AB (e.g., AB is
                  the output of ssytrd_sy2sb.

VECT

          VECT is CHARACTER*1
          = 'N':  No need for the Housholder representation, 
                  and thus LHOUS is of size max(1, 4*N);
          = 'V':  the Householder representation is needed to 
                  either generate or to apply Q later on, 
                  then LHOUS is to be queried and computed.
                  (NOT AVAILABLE IN THIS RELEASE).

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

KD

          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

AB

          AB is REAL array, dimension (LDAB,N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
          On exit, the diagonal elements of AB are overwritten by the
          diagonal elements of the tridiagonal matrix T; if KD > 0, the
          elements on the first superdiagonal (if UPLO = 'U') or the
          first subdiagonal (if UPLO = 'L') are overwritten by the
          off-diagonal elements of T; the rest of AB is overwritten by
          values generated during the reduction.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.

D

          D is REAL array, dimension (N)
          The diagonal elements of the tridiagonal matrix T.

E

          E is REAL array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

HOUS

          HOUS is REAL array, dimension LHOUS, that
          store the Householder representation.

LHOUS

          LHOUS is INTEGER
          The dimension of the array HOUS. LHOUS = MAX(1, dimension)
          If LWORK = -1, or LHOUS=-1,
          then a query is assumed; the routine
          only calculates the optimal size of the HOUS array, returns
          this value as the first entry of the HOUS array, and no error
          message related to LHOUS is issued by XERBLA.
          LHOUS = MAX(1, dimension) where
          dimension = 4*N if VECT='N'
          not available now if VECT='H'     

WORK

          WORK is REAL array, dimension LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK. LWORK = MAX(1, dimension)
          If LWORK = -1, or LHOUS=-1,
          then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
          LWORK = MAX(1, dimension) where
          dimension   = (2KD+1)*N + KD*NTHREADS
          where KD is the blocking size of the reduction,
          FACTOPTNB is the blocking used by the QR or LQ
          algorithm, usually FACTOPTNB=128 is a good choice
          NTHREADS is the number of threads used when
          openMP compilation is enabled, otherwise =1.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  Implemented by Azzam Haidar.
  All details are available on technical report, SC11, SC13 papers.
  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  Parallel reduction to condensed forms for symmetric eigenvalue problems
  using aggregated fine-grained and memory-aware kernels. In Proceedings
  of 2011 International Conference for High Performance Computing,
  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  Article 8 , 11 pages.
  http://doi.acm.org/10.1145/2063384.2063394
  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  An improved parallel singular value algorithm and its implementation 
  for multicore hardware, In Proceedings of 2013 International Conference
  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  Denver, Colorado, USA, 2013.
  Article 90, 12 pages.
  http://doi.acm.org/10.1145/2503210.2503292
  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  calculations based on fine-grained memory aware tasks.
  International Journal of High Performance Computing Applications.
  Volume 28 Issue 2, Pages 196-209, May 2014.
  http://hpc.sagepub.com/content/28/2/196 

Definition at line 228 of file ssytrd_sb2st.F.

Generated automatically by Doxygen for LAPACK from the source code.
Mon Jun 28 2021 Version 3.10.0

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.