|
NAMEvariantsPOcomputational - Variants Computational routinesSYNOPSISFunctionssubroutine cpotrf (UPLO, N, A, LDA, INFO) CPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. subroutine dpotrf (UPLO, N, A, LDA, INFO) DPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. subroutine spotrf (UPLO, N, A, LDA, INFO) SPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. subroutine zpotrf (UPLO, N, A, LDA, INFO) ZPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. Detailed DescriptionThis is the group of Variants Computational routinesFunction Documentationsubroutine cpotrf (character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, integer INFO)CPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. CPOTRF VARIANT: top-looking block version of the algorithm, calling Level 3 BLAS.Purpose: CPOTRF computes the Cholesky factorization of a real Hermitian positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the right looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Purpose: CPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the top-looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Definition at line 101 of file VARIANTS/cholesky/RL/cpotrf.f. subroutine dpotrf (character UPLO, integer N, double precision, dimension( lda, * ) A, integer LDA, integer INFO)DPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. DPOTRF VARIANT: top-looking block version of the algorithm, calling Level 3 BLAS.Purpose: DPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the right looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Purpose: DPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the top-looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Definition at line 101 of file VARIANTS/cholesky/RL/dpotrf.f. subroutine spotrf (character UPLO, integer N, real, dimension( lda, * ) A, integer LDA, integer INFO)SPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. SPOTRF VARIANT: top-looking block version of the algorithm, calling Level 3 BLAS.Purpose: SPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the right looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Purpose: SPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the top-looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Definition at line 101 of file VARIANTS/cholesky/RL/spotrf.f. subroutine zpotrf (character UPLO, integer N, complex*16, dimension( lda, * ) A, integer LDA, integer INFO)ZPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS. ZPOTRF VARIANT: top-looking block version of the algorithm, calling Level 3 BLAS.Purpose: ZPOTRF computes the Cholesky factorization of a real Hermitian positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the right looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Purpose: ZPOTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. The factorization has the form A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular. This is the top-looking block version of the algorithm, calling Level 3 BLAS. Parameters UPLO
UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the factorization could not be completed. Author Univ. of Tennessee
Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date December 2016
Definition at line 101 of file VARIANTS/cholesky/RL/zpotrf.f. AuthorGenerated automatically by Doxygen for LAPACK from the source code.
Visit the GSP FreeBSD Man Page Interface. |