|
NAMEgpsd_json - gpsd request/response protocolOVERVIEWgpsd is a service daemon that can be used to monitor GPSes, DGPS receivers, Marine AIS broadcasts, and various other location-related and kinematic sensors.Clients may communicate with gpsd via textual requests and responses over a socket. It is a bad idea for applications to speak the protocol directly: rather, they should use the libgps client library (for C; bindings also exist for other languages) and take appropriate care to check in their code for the expected major and minor protocol versions. The GPSD protocol is built on top of JSON, JavaScript Object Notation, as specified in RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format. Similar to ECMA 404. GPSD’s use of JSON is restricted in some ways that make parsing it in fixed-extent languages (such as C) easier. A request line is introduced by "?" and may include multiple commands. Commands begin with a command identifier, followed either by a terminating ';' or by an equal sign "=" and a JSON object treated as an argument. Any ';' or newline indication (either LF or CR-LF) after the end of a command is ignored. All request lines must be composed of US-ASCII characters and may be no more than 80 characters in length, exclusive of the trailing newline. Responses are single JSON objects that have a "class" attribute the value of which is the object type . Object types include, but are not limited to: "TPV", "SKY", "DEVICE", and "ERROR". Objects are sent both in response to commands, and periodically as gpsd sends reports. Each object is terminated by a carriage return and a new line (CR-NL). The order of JSON attributes within a response object is never significant, and you may specify command attributes in any order. Responses never contain the special JSON value null; instead, attributes with empty or undefined values are omitted. The length limit for responses and reports is currently 10240 characters, including the trailing CR-NL. Longer responses will be truncated, so client code must be prepared for the possibility of invalid JSON fragments. The default maximum message length is set by GPS_JSON_RESPONSE_MAX in include/gpsd_json.h. at compile time. In JSON reports, if an attribute is present only if the parent attribute is present or has a particular range, then the parent attribute is emitted first. There is one constraint on the order in which attributes will be omitted. If an optional attribute is present only when a parent attribute has a specified value or range of values, the parent attribute will be emitted first to make parsing easier. The next subsection section documents the core GPSD protocol. Extensions are documented in the following subsections. The extensions may not be supported in your gpsd instance if it has been compiled with a restricted feature set. The protocol was designed and documented by Eric S. Raymond. CORE PROTOCOL RESPONSESHere are the core-protocol responses.TPVA TPV object is a time-position-velocity report. The "class" and "mode" fields will reliably be present. When "mode" is 0 (Unknown) there is likely no usable data in the sentence. The remaining fields are optional, their presence depends on what data the GNSS receiver has sent, and what gpsd may calculate from that data.A TPV object will usually be sent at least once for every measurement epoch as determined by the "time" field. Unless the receiver has a solid fix, and knows the current leap second, the time may be random. Multiple TPV objects are often sent per epoch. When the receiver dribbles data to gpsd, then gpsd has no choice but to dribble it to the client in multiple TPV messages. The optional "status" field (aka fix type), is a modifier (adjective) to mode. It is not a replacement for, or superset of, the "mode" field. It is almost, but not quite, the same as the NMEA 4.x xxGGA GPS Quality Indicator Values. Many GNSS receivers do not supply it. Those that do interpret the specification in various incompatible ways. All error estimates (epc, epd, epe, eph, ept, epv, epx, epy) are guessed to be 95% confidence, may also be 50%, one sigma, or two sigma confidence. Many GNSS receivers do not specify a confidence level. None specify how the value is calculated. Use error estimates with caution, and only as relative "goodness" indicators. If the GPS reports a value to gpsd, then gpsd will report that value. Otherwise gpsd will try to compute the value from the skyview. See the file include/gps.h, especially struct gps_data_t, for expanded notes on the items and values in the TPV message. Table 1. TPV object
When the C client library parses a response of this kind, it will
Invalid or unknown floating-point values will be set to NAN. Always check floating point values with isfinite() before use. isnan() is not sufficient. Here’s an example TPV sentence: {"class":"TPV","device":"/dev/pts/1", "time":"2005-06-08T10:34:48.283Z","ept":0.005, "lat":46.498293369,"lon":7.567411672,"alt":1343.127, "eph":36.000,"epv":32.321, "track":10.3788,"speed":0.091,"climb":-0.085,"mode":3} SKYA SKY object reports a sky view of the GPS satellite positions. If there is no GPS device available, or no skyview has been reported yet, only the "class" field will reliably be present.Table 2. SKY object
Many devices compute dilution of precision factors but do not
include
The satellite list objects have the following elements: Table 3. Satellite object
Note that satellite objects do not have a "class" field,
as they are
When the C client library parses a SKY response, it will assert the SATELLITE_SET bit in the top-level set member. Here’s an example: {"class":"SKY","device":"/dev/pts/1", "time":"2005-07-08T11:28:07.114Z", "xdop":1.55,"hdop":1.24,"pdop":1.99, "satellites":[ {"PRN":23,"el":6,"az":84,"ss":0,"used":false}, {"PRN":28,"el":7,"az":160,"ss":0,"used":false}, {"PRN":8,"el":66,"az":189,"ss":44,"used":true}, {"PRN":29,"el":13,"az":273,"ss":0,"used":false}, {"PRN":10,"el":51,"az":304,"ss":29,"used":true}, {"PRN":4,"el":15,"az":199,"ss":36,"used":true}, {"PRN":2,"el":34,"az":241,"ss":43,"used":true}, {"PRN":27,"el":71,"az":76,"ss":43,"used":true}]} GSTA GST object is a pseudorange noise report.Table 4. GST object
Here’s an example: {"class":"GST","device":"/dev/ttyUSB0", "time":"2010-12-07T10:23:07.096Z","rms":2.440, "major":1.660,"minor":1.120,"orient":68.989, "lat":1.600,"lon":1.200,"alt":2.520} ATTAn ATT object is a vehicle-attitude report. It is returned by digital-compass and gyroscope sensors; depending on device, it may include: heading, pitch, roll, yaw, gyroscope, and magnetic-field readings. Because such sensors are often bundled as part of marine-navigation systems, the ATT response may also include water depth.The "class" and "mode" fields will reliably be present. Others may be reported or not depending on the specific device type. The ATT object is synchronous to the GNSS epoch. Some devices report attitude information with arbitrary, even out of order, time scales. gpsd reports those in an IMU object. The ATT and IMU objects have the same fields, but IMU objects are output as soon as possible. Some devices output both types with arbitrary interleaving. Table 5. ATT object
The heading, pitch, and roll status codes (if present) vary by
device.
Table 6. Device flags
When the C client library parses a response of this kind, it will
Here’s an example: {"class":"ATT","time":1270938096.843, "heading":14223.00,"mag_st":"N", "pitch":169.00,"pitch_st":"N", "roll":-43.00,"roll_st":"N", "dip":13641.000,"mag_x":2454.000} IMUThe IMU object is asynchronous to the GNSS epoch. It is reported with arbitrary, even out of order, time scales.The ATT and IMU objects have the same fields, but IMU objects are output as soon as possible. Seee the ATT onject description for field details. TOFFThis message is emitted on each cycle and reports the offset between the host’s clock time and the GPS time at top of the second (actually, when the first data for the reporting cycle is received).This message exactly mirrors the PPS message except for two details. TOFF emits no NTP precision, this is assumed to be -2. See the NTP documentation for their definition of precision. The TOFF message reports the GPS time as derived from the GPS serial data stream. The PPS message reports the GPS time as derived from the GPS PPS pulse. A TOFF object has the following elements: Table 7. TOFF object
This message is emitted once per second to watchers of a device
and is
The message contains two second/nanosecond pairs: real_sec and real_nsec contain the time the GPS thinks it was at the start of the current cycle; clock_sec and clock_nsec contain the time the system clock thinks it was on receipt of the first timing message of the cycle. real_nsec is always to nanosecond precision. clock_nsec is nanosecond precision on most systems. Here’s an example: {"class":"TOFF","device":"/dev/ttyUSB0", "real_sec":1330212592, "real_nsec":343182, "clock_sec":1330212592,"clock_nsec":343184, "precision":-2} PPSThis message is emitted each time the daemon sees a valid PPS (Pulse Per Second) strobe from a device.This message exactly mirrors the TOFF message except for two details. PPS emits the NTP precision. See the NTP documentation for their definition of precision. The TOFF message reports the GPS time as derived from the GPS serial data stream. The PPS message reports the GPS time as derived from the GPS PPS pulse. There are various sources of error in the reported clock times. The speed of the serial connection between the GPS and the system adds a delay to the start of cycle detection. An even bigger error is added by the variable computation time inside the GPS. Taken together the time derived from the start of the GPS cycle can have offsets of 10 milliseconds to 700 milliseconds and combined jitter and wander of 100 to 300 milliseconds. A PPS object has the following elements: Table 8. PPS object
This message is emitted once per second to watchers of a device
The message contains two second/nanosecond pairs: real_sec and real_nsec contain the time the GPS thinks it was at the PPS edge; clock_sec and clock_nsec contain the time the system clock thinks it was at the PPS edge. real_nsec is always to nanosecond precision. clock_nsec is nanosecond precision on most systems. There are various sources of error in the reported clock times. For PPS delivered via a real serial-line strobe, serial-interrupt latency plus processing time to the timer call should be bounded above by about 10 microseconds; that can be reduced to less than 1 microsecond if your kernel supports RFC 2783. USB1.1-to-serial control-line emulation is limited to about 1 millisecond. seconds. Here’s an example: {"class":"PPS","device":"/dev/ttyUSB0", "real_sec":1330212592, "real_nsec":343182, "clock_sec":1330212592,"clock_nsec":343184, "precision":-3} OSCThis message reports the status of a GPS-disciplined oscillator (GPSDO). The GPS PPS output (which has excellent long-term stability) is typically used to discipline a local oscillator with much better short-term stability (such as a rubidium atomic clock).An OSC object has the following elements: Table 9. OSC object
Here’s an example: {"class":"OSC","running":true,"device":"/dev/ttyUSB0", "reference":true,"disciplined":true,"delta":67} CORE PROTOCOL COMMANDSAnd here are the commands you can send to gpsd.?VERSION;Returns an object with the following attributes:Table 10. VERSION object
The daemon ships a VERSION response to each client when the client
When the C client library parses a response of this kind, it will assert the VERSION_SET bit in the top-level set member. Here’s an example: {"class":"VERSION","version":"2.40dev", "rev":"06f62e14eae9886cde907dae61c124c53eb1101f", "proto_major":3,"proto_minor":1 } ?DEVICES;Returns a device list object with the following elements:Table 11. DEVICES object
When the C client library parses a response of this kind, it will
Here’s an example: {"class"="DEVICES","devices":[ {"class":"DEVICE","path":"/dev/pts/1","flags":1,"driver":"SiRF binary"}, {"class":"DEVICE","path":"/dev/pts/3","flags":4,"driver":"AIVDM"}]} The daemon occasionally ships a bare DEVICE object to the client (that is, one not inside a DEVICES wrapper). The data content of these objects will be described later as a response to the ?DEVICE command. ?WATCH;This command sets watcher mode. It also sets or elicits a report of per-subscriber policy and the raw bit. An argument WATCH object changes the subscriber’s policy. The response describes the subscriber’s policy. The response will also include a DEVICES object.A WATCH object has the following elements: Table 12. WATCH object
There is an additional boolean "timing" attribute which
is
In watcher mode, GPS reports are dumped as TPV and SKY responses. AIS, Subframe and RTCM reporting is described in the next section. When the C client library parses a response of this kind, it will assert the POLICY_SET bit in the top-level set member. Here’s an example: {"class":"WATCH", "raw":1,"scaled":true} ?POLL;The POLL command requests data from the last-seen fixes on all active GPS devices. Devices must previously have been activated by ?WATCH to be pollable.Polling can lead to possibly surprising results when it is used on a device such as an NMEA GPS for which a complete fix has to be accumulated from several sentences. If you poll while those sentences are being emitted, the response will contain only the fix data collected so far in the current epoch. It may be as much as one cycle time (typically 1 second) stale. The POLL response will contain a timestamped list of TPV objects describing cached data, and a timestamped list of SKY objects describing satellite configuration. If a device has not seen fixes, it will be reported with a mode field of zero. Table 13. POLL object
Here’s an example of a POLL response: {"class":"POLL","time":"2010-06-04T10:31:00.289Z","active":1, "tpv":[{"class":"TPV","device":"/dev/ttyUSB0", "time":"2010-09-08T13:33:06.095Z", "ept":0.005,"lat":40.035093060, "lon":-75.519748733,"track":99.4319,"speed":0.123,"mode":2}], "sky":[{"class":"SKY","device":"/dev/ttyUSB0", "time":1270517264.240,"hdop":9.20, "satellites":[{"PRN":16,"el":55,"az":42,"ss":36,"used":true}, {"PRN":19,"el":25,"az":177,"ss":0,"used":false}, {"PRN":7,"el":13,"az":295,"ss":0,"used":false}, {"PRN":6,"el":56,"az":135,"ss":32,"used":true}, {"PRN":13,"el":47,"az":304,"ss":0,"used":false}, {"PRN":23,"el":66,"az":259,"ss":0,"used":false}, {"PRN":20,"el":7,"az":226,"ss":0,"used":false}, {"PRN":3,"el":52,"az":163,"ss":32,"used":true}, {"PRN":31,"el":16,"az":102,"ss":0,"used":false} ]}]} Note Client software should not assume the field inventory of the POLL
?DEVICE; ?DEVICE=This command reports (when followed by ';') the state of a device, or sets (when followed by '=' and a DEVICE object) device-specific control bits, notably the device’s speed and serial mode and the native-mode bit. The parameter-setting form will be rejected if more than one client is attached to the channel.Pay attention to the response, because it is possible for this command to fail if the GPS does not support a speed-switching command or only supports some combinations of serial modes. In case of failure, the daemon and GPS will continue to communicate at the old speed. Use the parameter-setting form with caution. On USB and Bluetooth GPSes it is also possible for serial mode setting to fail either because the serial adaptor chip does not support non-8N1 modes or because the device firmware does not properly synchronize the serial adaptor chip with the UART on the GPS chipset when the speed changes. These failures can hang your device, possibly requiring a GPS power cycle or (in extreme cases) physically disconnecting the NVRAM backup battery. A DEVICE object has the following elements: Table 14. DEVICE object
The serial parameters will (bps, parity, stopbits) be omitted in a
The contents of the flags field should be interpreted as follows: Table 15. Device flags
When the C client library parses a response of this kind, it will
Here’s an example: {"class":"DEVICE","bps":4800,"parity":"N","stopbits":1,"native":0} When a client is in watcher mode, the daemon will ship it DEVICE notifications when a device is added to the pool or deactivated. When the C client library parses a response of this kind, it will assert the DEVICE_SET bit in the top-level set member. Here’s an example: {"class":"DEVICE","path":"/dev/pts1","activated":0} ERRORThe daemon may ship an error object in response to a syntactically invalid command line or unknown command. It has the following elements:Table 16. ERROR notification object
Here’s an example: {"class":"ERROR","message":"Unrecognized request '?FOO'"} When the C client library parses a response of this kind, it will assert the ERR_SET bit in the top-level set member. RTCM2RTCM-104 is a family of serial protocols used for broadcasting pseudorange corrections from differential-GPS reference stations. Many GPS receivers can accept these corrections to improve their reporting accuracy.RTCM-104 comes in two major and incompatible flavors, 2.x and 3.x. Each major flavor has minor (compatible) revisions. The applicable standard for RTCM Version 2.x is RTCM Recommended Standards for Differential NAVSTAR GPS Service RTCM Paper 194-93/SC 104-STD. For RTCM 3.1 it is RTCM Paper 177-2006-SC104-STD. Ordering instructions for both standards are accessible from the website of the Radio Technical Commission for Maritime Services <https://www.rtcm.org/> under "Publications". RTCM WIRE TRANSMISSIONSDifferential-GPS correction stations consist of a GPS reference receiver coupled to a low frequency (LF) transmitter. The GPS reference receiver is a survey-grade GPS that does GPS carrier tracking and can work out its position to a few millimeters. It generates range and range-rate corrections and encodes them into RTCM104. It ships the RTCM104 to the LF transmitter over serial rs-232 signal at 100 baud or 200 baud depending on the requirements of the transmitter.The LF transmitter broadcasts the approximately 300khz radio signal that differential-GPS radio receivers pick up. Transmitters that are meant to have a higher range will need to transmit at a slower rate. The higher the data rate the harder it will be for the remote radio receiver to receive with a good signal-to-noise ration. (Higher data rate signals can’t be averaged over as long a time frame, hence they appear noisier.) RTCM WIRE FORMATSAn RTCM 2.x message consists of a sequence of up to 33 30-bit words. The 24 most significant bits of each word are data and the six least significant bits are parity. The parity algorithm used is the same ISGPS-2000 as that used on GPS satellite downlinks. Each RTCM 2.x message consists of two header words followed by zero or more data words, depending upon the message type.An RTCM 3.x message begins with a fixed leader byte 0xD3. That is followed by six bits of version information and 10 bits of payload length information. Following that is the payload; following the payload is a 3-byte checksum of the payload using the Qualcomm CRC-24Q algorithm. RTCM2 JSON FORMATEach RTCM2 message is dumped as a single JSON object per message, with the message fields as attributes of that object. Arrays of satellite, station, and constellation statistics become arrays of JSON sub-objects. Each sentence will normally also have a "device" field containing the pathname of the originating device.All attributes other than the device field are mandatory. Header attributes are emitted before others. Header portionTable 17. SKY object
<message type> is one of 1 full corrections — one message containing
corrections for all GPS satellites in view. This is not common.
3 reference station parameters — the position of the
reference station GPS antenna.
4 datum — the datum to which the DGPS data is
referred.
5 constellation health — information about the
satellites the beacon can see.
6 null message — just a filler.
7 radio beacon almanac — information about this or
other beacons.
9 subset corrections — a message containing
corrections for only a subset of the GPS satellites in view.
16 special message — a text message from the beacon
operator.
31 GLONASS subset corrections — a message containing
corrections for a set of the GLONASS satellites in view.
Type 1 and 9: Correction dataOne or more satellite objects follow the header for type 1 or type 9 messages. Here is the format:Table 18. Satellite object
User Differential Range Error values are as follows: Table 19. UDRE values
Here’s an example: {"class":"RTCM2","type":1, "station_id":688,"zcount":843.0,"seqnum":5,"length":19,"station_health":6, "satellites":[ {"ident":10,"udre":0,"iod":46,"prc":-2.400,"rrc":0.000}, {"ident":13,"udre":0,"iod":94,"prc":-4.420,"rrc":0.000}, {"ident":7,"udre":0,"iod":22,"prc":-5.160,"rrc":0.002}, {"ident":2,"udre":0,"iod":34,"prc":-6.480,"rrc":0.000}, {"ident":4,"udre":0,"iod":47,"prc":-8.860,"rrc":0.000}, {"ident":8,"udre":0,"iod":76,"prc":-7.980,"rrc":0.002}, {"ident":5,"udre":0,"iod":99,"prc":-8.260,"rrc":0.002}, {"ident":23,"udre":0,"iod":81,"prc":-8.060,"rrc":0.000}, {"ident":16,"udre":0,"iod":70,"prc":-11.740,"rrc":0.000}, {"ident":30,"udre":0,"iod":4,"prc":-18.960,"rrc":-0.006}, {"ident":29,"udre":0,"iod":101,"prc":-24.960,"rrc":-0.002} ]} Type 3: Reference Station ParametersHere are the payload members of a type 3 (Reference Station Parameters) message:Table 20. Reference Station Parameters
The coordinates are the position of the station, in meters to two
An invalid reference message is represented by a type 3 header without payload fields. Here’s an example: {"class":"RTCM2","type":3, "station_id":652,"zcount":1657.2,"seqnum":2,"length":4,"station_health":6, "x":3878620.92,"y":670281.40,"z":5002093.59 } Type 4: DatumHere are the payload members of a type 4 (Datum) message:Table 21. Datum
<dx> <dy> <dz> are offsets to convert from local
datum to GNSS datum or
An invalid datum message is represented by a type 4 header without payload fields. Type 5: Constellation HealthOne or more of these follow the header for type 5 messages — one for each satellite.Here is the format: Table 22. Constellation health
Type 6: NullThis just indicates a null message. There are no payload fields.Unknown messageThis format is used to dump message words in hexadecimal when the message type field doesn’t match any of the known ones.Here is the format: Table 23. Unknown Message
Each string in the array is a hex literal representing 30 bits of
Type 7: Radio Beacon AlmanacHere is the format:Table 24. Constellation health
Here’s an example: {"class":"RTCM2","type":9,"station_id":268,"zcount":252.6, "seqnum":4,"length":5,"station_health":0, "satellites":[ {"ident":13,"udre":0,"iod":3,"prc":-25.940,"rrc":0.066}, {"ident":2,"udre":0,"iod":73,"prc":0.920,"rrc":-0.080}, {"ident":8,"udre":0,"iod":22,"prc":23.820,"rrc":0.014} ]} Type 13: GPS Time of WeekHere are the payload members of a type 13 (Groumf Tramitter Parameters) message:Table 25. Ground Transmitter Parameters
This message type replaces message type 3 (Reference Station
Parameters)
Type 14: GPS Time of WeekHere are the payload members of a type 14 (GPS Time of Week) message:Table 26. Reference Station Parameters
Here’s an example: {"class":"RTCM2","type":14,"station_id":652,"zcount":1657.2, "seqnum":3,"length":1,"station_health":6,"week":601,"hour":109, "leapsecs":15} Type 16: Special MessageTable 27. Special Message
Type 31: Correction dataOne or more GLONASS satellite objects follow the header for type 1 ortype 9 messages. Here is the format: Table 28. Satellite object
Here’s an example: {"class":"RTCM2","type":31,"station_id":652,"zcount":1642.2, "seqnum":0,"length":14,"station_health":6, "satellites":[ {"ident":5,"udre":0,"change":false,"tod":0,"prc":132.360,"rrc":0.000}, {"ident":15,"udre":0,"change":false,"tod":0,"prc":134.840,"rrc":0.002}, {"ident":14,"udre":0,"change":false,"tod":0,"prc":141.520,"rrc":0.000}, {"ident":6,"udre":0,"change":false,"tod":0,"prc":127.000,"rrc":0.000}, {"ident":21,"udre":0,"change":false,"tod":0,"prc":128.780,"rrc":0.000}, {"ident":22,"udre":0,"change":false,"tod":0,"prc":125.260,"rrc":0.002}, {"ident":20,"udre":0,"change":false,"tod":0,"prc":117.280,"rrc":-0.004}, {"ident":16,"udre":0,"change":false,"tod":17,"prc":113.460,"rrc":0.018} ]} RTCM3 DUMP FORMATThe support for RTCM104v3 dumping is incomplete and buggy. Do not attempt to use it for production! Anyone interested in it should read the source code.AIS DUMP FORMATSAIS support is an extension. It may not be present if your instance of gpsd has been built with a restricted feature set.AIS packets are dumped as JSON objects with class "AIS". Each AIS report object contains a "type" field giving the AIS message type and a "scaled" field telling whether the remainder of the fields are dumped in scaled or unscaled form. (These will be emitted before any type-specific fields.) It will also contain a "device" field naming the data source. Other fields have names and types as specified in the AIVDM/AIVDO Protocol Decoding document on the GPSD project website; each message field table may be directly interpreted as a specification for the members of the corresponding JSON object type. By default, certain scaling and conversion operations are performed for JSON output. Latitudes and longitudes are scaled to decimal degrees rather than the native AIS unit of 1/10000th of a minute of arc. Ship (but not air) speeds are scaled to knots rather than tenth-of-knot units. Rate of turn may appear as "nan" if is unavailable, or as one of the strings "fastright" or "fastleft" if it is out of the AIS encoding range; otherwise it is quadratically mapped back to the turn sensor number in degrees per minute. Vessel draughts are converted to decimal meters rather than native AIS decimeters. Various other scaling conversions are described in "AIVDM/AIVDO Protocol Decoding". SUBFRAME DUMP FORMATSSubframe support is always compiled into gpsd but many GPSes do not output subframe data or the gpsd driver may not support subframes.Subframe packets are dumped as JSON objects with class "SUBFRAME". Each subframe report object contains a "frame" field giving the subframe number, a "tSV" field for the transmitting satellite number, a "TOW17" field containing the 17 MSBs of the start of the next 12-second message and a "scaled" field telling whether the remainder of the fields are dumped in scaled or unscaled form. It will also contain a "device" field naming the data source. Each SUBFRAME object will have a sub-object specific to that subframe page type. Those sub-object fields have names and types similar to those specified in the IS-GPS-200 document; each message field table may be directly interpreted as a specification for the members of the corresponding JSON object type. Table 29. SUBFRAME object
SEE ALSOgpsd(8), libgps(3), libgpsmm(3)RESOURCESProject web site: <https://gpsd.io/>RFC 2783:
<https://datatracker.ietf.org/doc/html/rfc2783>
RFC 7159:
<https://datatracker.ietf.org/doc/html/rfc7159>
COPYINGThis file is Copyright 2013 by the GPSD projectSPDX-License-Identifier: BSD-2-clause AUTHOREric S. Raymond
Visit the GSP FreeBSD Man Page Interface. |