|
NAMEcmake-modules - CMake Modules ReferenceThe modules listed here are part of the CMake distribution. Projects may provide further modules; their location(s) can be specified in the CMAKE_MODULE_PATH variable. UTILITY MODULESThese modules are loaded using the include() command.AndroidTestUtilitiesNew in version 3.7.Create a test that automatically loads specified data onto an Android device. IntroductionUse this module to push data needed for testing an Android device behavior onto a connected Android device. The module will accept files and libraries as well as separate destinations for each. It will create a test that loads the files into a device object store and link to them from the specified destination. The files are only uploaded if they are not already in the object store.For example: include(AndroidTestUtilities) android_add_test_data( example_setup_test FILES <files>... LIBS <libs>... DEVICE_TEST_DIR "/data/local/tests/example" DEVICE_OBJECT_STORE "/sdcard/.ExternalData/SHA" ) At build time a test named "example_setup_test" will be created. Run this test on the command line with ctest(1) to load the data onto the Android device. Module Functions
android_add_test_data(<test-name> [FILES <files>...] [FILES_DEST <device-dir>] [LIBS <libs>...] [LIBS_DEST <device-dir>] [DEVICE_OBJECT_STORE <device-dir>] [DEVICE_TEST_DIR <device-dir>] [NO_LINK_REGEX <strings>...] ) The android_add_test_data function is used to copy files and libraries needed to run project-specific tests. On the host operating system, this is done at build time. For on-device testing, the files are loaded onto the device by the manufactured test at run time. This function accepts the following named parameters:
BundleUtilitiesFunctions to help assemble a standalone bundle application.A collection of CMake utility functions useful for dealing with .app bundles on the Mac and bundle-like directories on any OS. The following functions are provided by this module: fixup_bundle copy_and_fixup_bundle verify_app get_bundle_main_executable get_dotapp_dir get_bundle_and_executable get_bundle_all_executables get_item_key get_item_rpaths clear_bundle_keys set_bundle_key_values get_bundle_keys copy_resolved_item_into_bundle copy_resolved_framework_into_bundle fixup_bundle_item verify_bundle_prerequisites verify_bundle_symlinks Requires CMake 2.6 or greater because it uses function, break and PARENT_SCOPE. Also depends on GetPrerequisites.cmake. DO NOT USE THESE FUNCTIONS AT CONFIGURE TIME (from CMakeLists.txt)! Instead, invoke them from an install(CODE) or install(SCRIPT) rule. fixup_bundle(<app> <libs> <dirs>) Fix up <app> bundle in-place and make it standalone, such that it can be drag-n-drop copied to another machine and run on that machine as long as all of the system libraries are compatible. If you pass plugins to fixup_bundle as the libs parameter, you should install them or copy them into the bundle before calling fixup_bundle. The <libs> parameter is a list of libraries that must be fixed up, but that cannot be determined by otool output analysis (i.e. plugins). Gather all the keys for all the executables and libraries in a bundle, and then, for each key, copy each prerequisite into the bundle. Then fix each one up according to its own list of prerequisites. Then clear all the keys and call verify_app on the final bundle to ensure that it is truly standalone. New in version 3.6: As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM "vcredist_x86.exe;vcredist_x64.exe"). copy_and_fixup_bundle(<src> <dst> <libs> <dirs>) Makes a copy of the bundle <src> at location <dst> and then fixes up the new copied bundle in-place at <dst>. verify_app(<app>) Verifies that an application <app> appears valid based on running analysis tools on it. Calls message(FATAL_ERROR) if the application is not verified. New in version 3.6: As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM "vcredist_x86.exe;vcredist_x64.exe") get_bundle_main_executable(<bundle> <result_var>) The result will be the full path name of the bundle's main executable file or an error: prefixed string if it could not be determined. get_dotapp_dir(<exe> <dotapp_dir_var>) Returns the nearest parent dir whose name ends with .app given the full path to an executable. If there is no such parent dir, then simply return the dir containing the executable. The returned directory may or may not exist. get_bundle_and_executable(<app> <bundle_var> <executable_var> <valid_var>) Takes either a .app directory name or the name of an executable nested inside a .app directory and returns the path to the .app directory in <bundle_var> and the path to its main executable in <executable_var>. get_bundle_all_executables(<bundle> <exes_var>) Scans <bundle> bundle recursively for all <exes_var> executable files and accumulates them into a variable. get_item_key(<item> <key_var>) Given <item> file name, generate <key_var> key that should be unique considering the set of libraries that need copying or fixing up to make a bundle standalone. This is essentially the file name including extension with . replaced by _ This key is used as a prefix for CMake variables so that we can associate a set of variables with a given item based on its key. clear_bundle_keys(<keys_var>) Loop over the <keys_var> list of keys, clearing all the variables associated with each key. After the loop, clear the list of keys itself. Caller of get_bundle_keys should call clear_bundle_keys when done with list of keys. set_bundle_key_values(<keys_var> <context> <item> <exepath> <dirs> <copyflag> [<rpaths>]) Add <keys_var> key to the list (if necessary) for the given item. If added, also set all the variables associated with that key. get_bundle_keys(<app> <libs> <dirs> <keys_var>) Loop over all the executable and library files within <app> bundle (and given as extra <libs>) and accumulate a list of keys representing them. Set values associated with each key such that we can loop over all of them and copy prerequisite libs into the bundle and then do appropriate install_name_tool fixups. New in version 3.6: As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM "vcredist_x86.exe;vcredist_x64.exe") copy_resolved_item_into_bundle(<resolved_item> <resolved_embedded_item>) Copy a resolved item into the bundle if necessary. Copy is not necessary, if the <resolved_item> is "the same as" the <resolved_embedded_item>. copy_resolved_framework_into_bundle(<resolved_item> <resolved_embedded_item>) Copy a resolved framework into the bundle if necessary. Copy is not necessary, if the <resolved_item> is "the same as" the <resolved_embedded_item>. By default, BU_COPY_FULL_FRAMEWORK_CONTENTS is not set. If you want full frameworks embedded in your bundles, set BU_COPY_FULL_FRAMEWORK_CONTENTS to ON before calling fixup_bundle. By default, COPY_RESOLVED_FRAMEWORK_INTO_BUNDLE copies the framework dylib itself plus the framework Resources directory. fixup_bundle_item(<resolved_embedded_item> <exepath> <dirs>) Get the direct/non-system prerequisites of the <resolved_embedded_item>. For each prerequisite, change the way it is referenced to the value of the _EMBEDDED_ITEM keyed variable for that prerequisite. (Most likely changing to an @executable_path style reference.) This function requires that the <resolved_embedded_item> be inside the bundle already. In other words, if you pass plugins to fixup_bundle as the libs parameter, you should install them or copy them into the bundle before calling fixup_bundle. The libs parameter is a list of libraries that must be fixed up, but that cannot be determined by otool output analysis. (i.e., plugins) Also, change the id of the item being fixed up to its own _EMBEDDED_ITEM value. Accumulate changes in a local variable and make one call to install_name_tool at the end of the function with all the changes at once. If the BU_CHMOD_BUNDLE_ITEMS variable is set then bundle items will be marked writable before install_name_tool tries to change them. verify_bundle_prerequisites(<bundle> <result_var> <info_var>) Verifies that the sum of all prerequisites of all files inside the bundle are contained within the bundle or are system libraries, presumed to exist everywhere. New in version 3.6: As an optional parameter (IGNORE_ITEM) a list of file names can be passed, which are then ignored (e.g. IGNORE_ITEM "vcredist_x86.exe;vcredist_x64.exe") verify_bundle_symlinks(<bundle> <result_var> <info_var>) Verifies that any symlinks found in the <bundle> bundle point to other files that are already also in the bundle... Anything that points to an external file causes this function to fail the verification. CheckCCompilerFlagCheck whether the C compiler supports a given flag.
check_c_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_c_source_compiles macro from the CheckCSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_C_FLAGS, unknown flags in such variables may
cause a false negative for this check.
CheckCompilerFlagNew in version 3.19.Check whether the compiler supports a given flag.
check_compiler_flag(<lang> <flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_source_compiles(<LANG>) function from the CheckSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_<LANG>_FLAGS, unknown flags in such
variables may cause a false negative for this check.
CheckCSourceCompilesCheck if given C source compiles and links into an executable.
check_c_source_compiles(<code> <resultVar> [FAIL_REGEX <regex1> [<regex2>...]]) Check that the source supplied in <code> can be compiled as a C source file and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by <resultVar>, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is provided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_c_source_compiles():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckCSourceRunsCheck if given C source compiles and links into an executable and can subsequently be run.
check_c_source_runs(<code> <resultVar>) Check that the source supplied in <code> can be compiled as a C source file, linked as an executable and then run. The <code> must contain at least a main() function. If the <code> could be built and run successfully, the internal cache variable specified by <resultVar> will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_c_source_runs():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckCXXCompilerFlagCheck whether the CXX compiler supports a given flag.
check_cxx_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_cxx_source_compiles macro from the CheckCXXSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_CXX_FLAGS, unknown flags in such variables
may cause a false negative for this check.
CheckCXXSourceCompilesCheck if given C++ source compiles and links into an executable.
check_cxx_source_compiles(<code> <resultVar> [FAIL_REGEX <regex1> [<regex2>...]]) Check that the source supplied in <code> can be compiled as a C++ source file and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by <resultVar>, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is provided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_cxx_source_compiles():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckCXXSourceRunsCheck if given C++ source compiles and links into an executable and can subsequently be run.
check_cxx_source_runs(<code> <resultVar>) Check that the source supplied in <code> can be compiled as a C++ source file, linked as an executable and then run. The <code> must contain at least a main() function. If the <code> could be built and run successfully, the internal cache variable specified by <resultVar> will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_cxx_source_runs():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckCXXSymbolExistsCheck if a symbol exists as a function, variable, or macro in C++.
check_cxx_symbol_exists(<symbol> <files> <variable>) Check that the <symbol> is available after including given header <files> and store the result in a <variable>. Specify the list of files in one argument as a semicolon-separated list. check_cxx_symbol_exists() can be used to check for symbols as seen by the C++ compiler, as opposed to check_symbol_exists(), which always uses the C compiler. If the header files define the symbol as a macro it is considered available and assumed to work. If the header files declare the symbol as a function or variable then the symbol must also be available for linking. If the symbol is a type, enum value, or C++ template it will not be recognized: consider using the CheckTypeSize or CheckSourceCompiles module instead. NOTE: This command is unreliable when <symbol> is
(potentially) an overloaded function. Since there is no reliable way to
predict whether a given function in the system environment may be defined as
an overloaded function or may be an overloaded function on other systems or
will become so in the future, it is generally advised to use the
CheckCXXSourceCompiles module for checking any function symbol (unless
somehow you surely know the checked function is not overloaded on other
systems or will not be so in the future).
The following variables may be set before calling this macro to modify the way the check is run:
For example: include(CheckCXXSymbolExists) # Check for macro SEEK_SET check_cxx_symbol_exists(SEEK_SET "cstdio" HAVE_SEEK_SET) # Check for function std::fopen check_cxx_symbol_exists(std::fopen "cstdio" HAVE_STD_FOPEN) CheckFortranCompilerFlagNew in version 3.3.Check whether the Fortran compiler supports a given flag.
check_fortran_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_fortran_source_compiles macro from the CheckFortranSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_Fortran_FLAGS, unknown flags in such
variables may cause a false negative for this check.
CheckFortranFunctionExistsCheck if a Fortran function exists.
CHECK_FORTRAN_FUNCTION_EXISTS(<function> <result>) where
NOTE: This command does not detect functions in Fortran
modules. In general it is recommended to use CheckSourceCompiles
instead to determine if a Fortran function or subroutine is available.
The following variables may be set before calling this macro to modify the way the check is run:
CheckFortranSourceCompilesNew in version 3.1.Check if given Fortran source compiles and links into an executable.
check_fortran_source_compiles(<code> <resultVar> [FAIL_REGEX <regex>...] [SRC_EXT <extension>] ) Checks that the source supplied in <code> can be compiled as a Fortran source file and linked as an executable. The <code> must be a Fortran program containing at least an end statement--for example: check_fortran_source_compiles("character :: b; error stop b; end" F2018ESTOPOK SRC_EXT F90) This command can help avoid costly build processes when a compiler lacks support for a necessary feature, or a particular vendor library is not compatible with the Fortran compiler version being used. This generate-time check may advise the user of such before the main build process. See also the check_fortran_source_runs() command to actually run the compiled code. The result will be stored in the internal cache variable <resultVar>, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is provided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. By default, the test source file will be given a .F file extension. The SRC_EXT option can be used to override this with .<extension> instead-- .F90 is a typical choice. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_fortran_source_compiles():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckFortranSourceRunsNew in version 3.14.Check if given Fortran source compiles and links into an executable and can subsequently be run.
check_fortran_source_runs(<code> <resultVar> [SRC_EXT <extension>]) Check that the source supplied in <code> can be compiled as a Fortran source file, linked as an executable and then run. The <code> must be a Fortran program containing at least an end statement--for example: check_fortran_source_runs("real :: x[*]; call co_sum(x); end" F2018coarrayOK) This command can help avoid costly build processes when a compiler lacks support for a necessary feature, or a particular vendor library is not compatible with the Fortran compiler version being used. Some of these failures only occur at runtime instead of linktime, and a trivial runtime example can catch the issue before the main build process. If the <code> could be built and run successfully, the internal cache variable specified by <resultVar> will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). By default, the test source file will be given a .F90 file extension. The SRC_EXT option can be used to override this with .<extension> instead. The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_fortran_source_runs():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckFunctionExistsCheck if a C function can be linked
check_function_exists(<function> <variable>) Checks that the <function> is provided by libraries on the system and store the result in a <variable>, which will be created as an internal cache variable. The following variables may be set before calling this macro to modify the way the check is run:
NOTE: Prefer using CheckSymbolExists instead of this
module, for the following reasons:
CheckIncludeFileCXXProvides a macro to check if a header file can be included in CXX.
CHECK_INCLUDE_FILE_CXX(<include> <variable> [<flags>]) Check if the given <include> file may be included in a CXX source file and store the result in an internal cache entry named <variable>. The optional third argument may be used to add compilation flags to the check (or use CMAKE_REQUIRED_FLAGS below). The following variables may be set before calling this macro to modify the way the check is run:
See modules CheckIncludeFile and CheckIncludeFiles to check for one or more C headers. CheckIncludeFileProvides a macro to check if a header file can be included in C.
CHECK_INCLUDE_FILE(<include> <variable> [<flags>]) Check if the given <include> file may be included in a C source file and store the result in an internal cache entry named <variable>. The optional third argument may be used to add compilation flags to the check (or use CMAKE_REQUIRED_FLAGS below). The following variables may be set before calling this macro to modify the way the check is run:
See the CheckIncludeFiles module to check for multiple headers at once. See the CheckIncludeFileCXX module to check for headers using the CXX language. CheckIncludeFilesProvides a macro to check if a list of one or more header files can be included together.
CHECK_INCLUDE_FILES("<includes>" <variable> [LANGUAGE <language>]) Check if the given <includes> list may be included together in a source file and store the result in an internal cache entry named <variable>. Specify the <includes> argument as a ;-list of header file names. If LANGUAGE is set, the specified compiler will be used to perform the check. Acceptable values are C and CXX. If not set, the C compiler will be used if enabled. If the C compiler is not enabled, the C++ compiler will be used if enabled. The following variables may be set before calling this macro to modify the way the check is run:
See modules CheckIncludeFile and CheckIncludeFileCXX to check for a single header file in C or CXX languages. CheckIPOSupportedNew in version 3.9.Check whether the compiler supports an interprocedural optimization (IPO/LTO). Use this before enabling the INTERPROCEDURAL_OPTIMIZATION target property.
check_ipo_supported([RESULT <result>] [OUTPUT <output>] [LANGUAGES <lang>...]) Options are:
It makes no sense to use this module when CMP0069 is set to OLD so module will return error in this case. See policy CMP0069 for details. New in version 3.13: Add support for Visual Studio generators. Examplescheck_ipo_supported() # fatal error if IPO is not supported set_property(TARGET foo PROPERTY INTERPROCEDURAL_OPTIMIZATION TRUE) # Optional IPO. Do not use IPO if it's not supported by compiler. check_ipo_supported(RESULT result OUTPUT output) if(result) set_property(TARGET foo PROPERTY INTERPROCEDURAL_OPTIMIZATION TRUE) else() message(WARNING "IPO is not supported: ${output}") endif() CheckLanguageCheck if a language can be enabledUsage: check_language(<lang>) where <lang> is a language that may be passed to enable_language() such as Fortran. If CMAKE_<LANG>_COMPILER is already defined the check does nothing. Otherwise it tries enabling the language in a test project. The result is cached in CMAKE_<LANG>_COMPILER as the compiler that was found, or NOTFOUND if the language cannot be enabled. For CUDA which can have an explicit host compiler, the cache CMAKE_CUDA_HOST_COMPILER variable will be set if it was required for compilation (and cleared if it was not). Example: check_language(Fortran) if(CMAKE_Fortran_COMPILER) enable_language(Fortran) else() message(STATUS "No Fortran support") endif() CheckLibraryExistsCheck if the function exists.
CHECK_LIBRARY_EXISTS(LIBRARY FUNCTION LOCATION VARIABLE) LIBRARY - the name of the library you are looking for FUNCTION - the name of the function LOCATION - location where the library should be found VARIABLE - variable to store the result Will be created as an internal cache variable. The following variables may be set before calling this macro to modify the way the check is run:
CheckLinkerFlagNew in version 3.18.Check whether the compiler supports a given link flag.
check_linker_flag(<lang> <flag> <var>) Check that the link <flag> is accepted by the <lang> compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_LINK_OPTIONS variable and calls the check_source_compiles() command from the CheckSourceCompiles module. See that module's documentation for a listing of variables that can otherwise modify the build. The underlying implementation relies on the LINK_OPTIONS property to check the specified flag. The LINKER: prefix, as described in the target_link_options() command, can be used as well. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the link flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_<LANG>_FLAGS, unknown flags in such
variables may cause a false negative for this check.
CheckOBJCCompilerFlagNew in version 3.16.Check whether the Objective-C compiler supports a given flag.
check_objc_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_objc_source_compiles macro from the CheckOBJCSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_OBJC_FLAGS, unknown flags in such variables
may cause a false negative for this check.
CheckOBJCSourceCompilesNew in version 3.16.Check if given Objective-C source compiles and links into an executable.
check_objc_source_compiles(<code> <resultVar> [FAIL_REGEX <regex1> [<regex2>...]]) Check that the source supplied in <code> can be compiled as a Objectie-C source file and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by <resultVar>, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is provided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_objc_source_compiles():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckOBJCSourceRunsNew in version 3.16.Check if given Objective-C source compiles and links into an executable and can subsequently be run.
check_objc_source_runs(<code> <resultVar>) Check that the source supplied in <code> can be compiled as a Objective-C source file, linked as an executable and then run. The <code> must contain at least a main() function. If the <code> could be built and run successfully, the internal cache variable specified by <resultVar> will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_objc_source_runs():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckOBJCXXCompilerFlagNew in version 3.16.Check whether the Objective-C++ compiler supports a given flag.
check_objcxx_compiler_flag(<flag> <var>) Check that the <flag> is accepted by the compiler without a diagnostic. Stores the result in an internal cache entry named <var>. This command temporarily sets the CMAKE_REQUIRED_DEFINITIONS variable and calls the check_objcxx_source_compiles macro from the CheckOBJCXXSourceCompiles module. See documentation of that module for a listing of variables that can otherwise modify the build. A positive result from this check indicates only that the compiler did not issue a diagnostic message when given the flag. Whether the flag has any effect or even a specific one is beyond the scope of this module. NOTE: Since the try_compile() command forwards flags
from variables like CMAKE_OBJCXX_FLAGS, unknown flags in such variables
may cause a false negative for this check.
CheckOBJCXXSourceCompilesNew in version 3.16.Check if given Objective-C++ source compiles and links into an executable.
check_objcxx_source_compiles(<code> <resultVar> [FAIL_REGEX <regex1> [<regex2>...]]) Check that the source supplied in <code> can be compiled as a Objective-C++ source file and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by <resultVar>, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is provided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_objcxx_source_compiles():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckOBJCXXSourceRunsNew in version 3.16.Check if given Objective-C++ source compiles and links into an executable and can subsequently be run.
check_objcxx_source_runs(<code> <resultVar>) Check that the source supplied in <code> can be compiled as a Objective-C++ source file, linked as an executable and then run. The <code> must contain at least a main() function. If the <code> could be built and run successfully, the internal cache variable specified by <resultVar> will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_objcxx_source_runs():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckPIESupportedNew in version 3.14.Check whether the linker supports Position Independent Code (PIE) or No Position Independent Code (NO_PIE) for executables. Use this to ensure that the POSITION_INDEPENDENT_CODE target property for executables will be honored at link time.
check_pie_supported([OUTPUT_VARIABLE <output>] [LANGUAGES <lang>...]) Options are:
It makes no sense to use this module when CMP0083 is set to OLD, so the command will return an error in this case. See policy CMP0083 for details. VariablesFor each language checked, two boolean cache variables are defined.
Examplescheck_pie_supported() set_property(TARGET foo PROPERTY POSITION_INDEPENDENT_CODE TRUE) # Retrieve any error message. check_pie_supported(OUTPUT_VARIABLE output LANGUAGES C) set_property(TARGET foo PROPERTY POSITION_INDEPENDENT_CODE TRUE) if(NOT CMAKE_C_LINK_PIE_SUPPORTED) message(WARNING "PIE is not supported at link time: ${output}.\n" "PIE link options will not be passed to linker.") endif() CheckPrototypeDefinitionCheck if the prototype we expect is correct.
check_prototype_definition(FUNCTION PROTOTYPE RETURN HEADER VARIABLE) FUNCTION - The name of the function (used to check if prototype exists) PROTOTYPE- The prototype to check. RETURN - The return value of the function. HEADER - The header files required. VARIABLE - The variable to store the result. Will be created as an internal cache variable. Example: check_prototype_definition(getpwent_r "struct passwd *getpwent_r(struct passwd *src, char *buf, int buflen)" "NULL" "unistd.h;pwd.h" SOLARIS_GETPWENT_R) The following variables may be set before calling this function to modify the way the check is run:
CheckSourceCompilesNew in version 3.19.Check if given source compiles and links into an executable.
check_source_compiles(<lang> <code> <resultVar> [FAIL_REGEX <regex1> [<regex2>...]] [SRC_EXT <extension>]) Check that the source supplied in <code> can be compiled as a source file for the requested language and linked as an executable (so it must contain at least a main() function). The result will be stored in the internal cache variable specified by <resultVar>, with a boolean true value for success and boolean false for failure. If FAIL_REGEX is provided, then failure is determined by checking if anything in the output matches any of the specified regular expressions. By default, the test source file will be given a file extension that matches the requested language. The SRC_EXT option can be used to override this with .<extension> instead. The underlying check is performed by the try_compile() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_source_compiles():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckSourceRunsNew in version 3.19.Check if given source compiles and links into an executable and can subsequently be run.
check_source_runs(<lang> <code> <resultVar> [SRC_EXT <extension>]) Check that the source supplied in <code> can be compiled as a source file for the requested language, linked as an executable and then run. The <code> must contain at least a main() function. If the <code> could be built and run successfully, the internal cache variable specified by <resultVar> will be set to 1, otherwise it will be set to an value that evaluates to boolean false (e.g. an empty string or an error message). By default, the test source file will be given a file extension that matches the requested language. The SRC_EXT option can be used to override this with .<extension> instead. The underlying check is performed by the try_run() command. The compile and link commands can be influenced by setting any of the following variables prior to calling check_objc_source_runs():
The check is only performed once, with the result cached in the variable named by <resultVar>. Every subsequent CMake run will re-use this cached value rather than performing the check again, even if the <code> changes. In order to force the check to be re-evaluated, the variable named by <resultVar> must be manually removed from the cache. CheckStructHasMemberCheck if the given struct or class has the specified member variable
CHECK_STRUCT_HAS_MEMBER(<struct> <member> <header> <variable> [LANGUAGE <language>]) <struct> - the name of the struct or class you are interested in <member> - the member which existence you want to check <header> - the header(s) where the prototype should be declared <variable> - variable to store the result <language> - the compiler to use (C or CXX) The following variables may be set before calling this macro to modify the way the check is run:
Example: CHECK_STRUCT_HAS_MEMBER("struct timeval" tv_sec sys/select.h HAVE_TIMEVAL_TV_SEC LANGUAGE C) CheckSymbolExistsProvides a macro to check if a symbol exists as a function, variable, or macro in C.
check_symbol_exists(<symbol> <files> <variable>) Check that the <symbol> is available after including given header <files> and store the result in a <variable>. Specify the list of files in one argument as a semicolon-separated list. <variable> will be created as an internal cache variable. If the header files define the symbol as a macro it is considered available and assumed to work. If the header files declare the symbol as a function or variable then the symbol must also be available for linking (so intrinsics may not be detected). If the symbol is a type, enum value, or intrinsic it will not be recognized (consider using CheckTypeSize or CheckSourceCompiles). If the check needs to be done in C++, consider using CheckCXXSymbolExists instead. The following variables may be set before calling this macro to modify the way the check is run:
For example: include(CheckSymbolExists) # Check for macro SEEK_SET check_symbol_exists(SEEK_SET "stdio.h" HAVE_SEEK_SET) # Check for function fopen check_symbol_exists(fopen "stdio.h" HAVE_FOPEN) CheckTypeSizeCheck sizeof a type
CHECK_TYPE_SIZE(TYPE VARIABLE [BUILTIN_TYPES_ONLY] [LANGUAGE <language>]) Check if the type exists and determine its size. On return, HAVE_${VARIABLE} holds the existence of the type, and ${VARIABLE} holds one of the following: <size> = type has non-zero size <size> "0" = type has arch-dependent size (see below) "" = type does not exist Both HAVE_${VARIABLE} and ${VARIABLE} will be created as internal cache variables. Furthermore, the variable ${VARIABLE}_CODE holds C preprocessor code to define the macro ${VARIABLE} to the size of the type, or leave the macro undefined if the type does not exist. The variable ${VARIABLE} may be 0 when CMAKE_OSX_ARCHITECTURES has multiple architectures for building OS X universal binaries. This indicates that the type size varies across architectures. In this case ${VARIABLE}_CODE contains C preprocessor tests mapping from each architecture macro to the corresponding type size. The list of architecture macros is stored in ${VARIABLE}_KEYS, and the value for each key is stored in ${VARIABLE}-${KEY}. If the BUILTIN_TYPES_ONLY option is not given, the macro checks for headers <sys/types.h>, <stdint.h>, and <stddef.h>, and saves results in HAVE_SYS_TYPES_H, HAVE_STDINT_H, and HAVE_STDDEF_H. The type size check automatically includes the available headers, thus supporting checks of types defined in the headers. If LANGUAGE is set, the specified compiler will be used to perform the check. Acceptable values are C and CXX. Despite the name of the macro you may use it to check the size of more complex expressions, too. To check e.g. for the size of a struct member you can do something like this: check_type_size("((struct something*)0)->member" SIZEOF_MEMBER) The following variables may be set before calling this macro to modify the way the check is run:
CheckVariableExistsCheck if the variable exists.
CHECK_VARIABLE_EXISTS(VAR VARIABLE) VAR - the name of the variable VARIABLE - variable to store the result Will be created as an internal cache variable. This macro is only for C variables. The following variables may be set before calling this macro to modify the way the check is run:
CMakeAddFortranSubdirectoryAdd a fortran-only subdirectory, find a fortran compiler, and build.The cmake_add_fortran_subdirectory function adds a subdirectory to a project that contains a fortran-only subproject. The module will check the current compiler and see if it can support fortran. If no fortran compiler is found and the compiler is MSVC, then this module will find the MinGW gfortran. It will then use an external project to build with the MinGW tools. It will also create imported targets for the libraries created. This will only work if the fortran code is built into a dll, so BUILD_SHARED_LIBS is turned on in the project. In addition the CMAKE_GNUtoMS option is set to on, so that Microsoft .lib files are created. Usage is as follows: cmake_add_fortran_subdirectory( <subdir> # name of subdirectory PROJECT <project_name> # project name in subdir top CMakeLists.txt ARCHIVE_DIR <dir> # dir where project places .lib files RUNTIME_DIR <dir> # dir where project places .dll files LIBRARIES <lib>... # names of library targets to import LINK_LIBRARIES # link interface libraries for LIBRARIES [LINK_LIBS <lib> <dep>...]... CMAKE_COMMAND_LINE ... # extra command line flags to pass to cmake NO_EXTERNAL_INSTALL # skip installation of external project ) Relative paths in ARCHIVE_DIR and RUNTIME_DIR are interpreted with respect to the build directory corresponding to the source directory in which the function is invoked. Limitations: NO_EXTERNAL_INSTALL is required for forward compatibility with a future version that supports installation of the external project binaries during make install. CMakeBackwardCompatibilityCXXdefine a bunch of backwards compatibility variablesCMAKE_ANSI_CXXFLAGS - flag for ansi c++ CMAKE_HAS_ANSI_STRING_STREAM - has <strstream> include(TestForANSIStreamHeaders) include(CheckIncludeFileCXX) include(TestForSTDNamespace) include(TestForANSIForScope) CMakeDependentOptionMacro to provide an option dependent on other options.This macro presents an option to the user only if a set of other conditions are true.
cmake_dependent_option(<option> "<help_text>" <value> <depends> <force>) Makes <option> available to the user if <depends> is true. When <option> is available, the given <help_text> and initial <value> are used. If the <depends> condition is not true, <option> will not be presented and will always have the value given by <force>. Any value set by the user is preserved for when the option is presented again. In case <depends> is a semicolon-separated list, all elements must be true in order to initialize <option> with <value>. Example invocation: cmake_dependent_option(USE_FOO "Use Foo" ON "USE_BAR;NOT USE_ZOT" OFF) If USE_BAR is true and USE_ZOT is false, this provides an option called USE_FOO that defaults to ON. Otherwise, it sets USE_FOO to OFF and hides the option from the user. If the status of USE_BAR or USE_ZOT ever changes, any value for the USE_FOO option is saved so that when the option is re-enabled it retains its old value. New in version 3.22: Full Condition Syntax is now supported. See policy CMP0127. CMakeFindDependencyMacro
find_dependency(<dep> [...]) It is designed to be used in a Package Configuration File (<PackageName>Config.cmake). find_dependency forwards the correct parameters for QUIET and REQUIRED which were passed to the original find_package() call. Any additional arguments specified are forwarded to find_package(). If the dependency could not be found it sets an informative diagnostic message and calls return() to end processing of the calling package configuration file and return to the find_package() command that loaded it. NOTE: The call to return() makes this macro unsuitable
to call from Find Modules.
CMakeFindFrameworkshelper module to find OSX frameworksThis module reads hints about search locations from variables: CMAKE_FIND_FRAMEWORK_EXTRA_LOCATIONS - Extra directories CMakeFindPackageModeThis file is executed by cmake when invoked with --find-package. It expects that the following variables are set using -D:
CMakeGraphVizOptionsThe builtin Graphviz support of CMake.Generating Graphviz filesCMake can generate Graphviz files showing the dependencies between the targets in a project, as well as external libraries which are linked against.When running CMake with the --graphviz=foo.dot option, it produces:
Those .dot files can be converted to images using the dot command from the Graphviz package: dot -Tpng -o foo.png foo.dot New in version 3.10: The different dependency types PUBLIC, INTERFACE and PRIVATE are represented as solid, dashed and dotted edges. Variables specific to the Graphviz supportThe resulting graphs can be huge. The look and content of the generated graphs can be controlled using the file CMakeGraphVizOptions.cmake. This file is first searched in CMAKE_BINARY_DIR, and then in CMAKE_SOURCE_DIR. If found, the variables set in it are used to adjust options for the generated Graphviz files.
CMakePackageConfigHelpersHelpers functions for creating config files that can be included by other projects to find and use a package.Adds the configure_package_config_file() and write_basic_package_version_file() commands. Generating a Package Configuration File
configure_package_config_file(<input> <output> INSTALL_DESTINATION <path> [PATH_VARS <var1> <var2> ... <varN>] [NO_SET_AND_CHECK_MACRO] [NO_CHECK_REQUIRED_COMPONENTS_MACRO] [INSTALL_PREFIX <path>] ) configure_package_config_file() should be used instead of the plain configure_file() command when creating the <PackageName>Config.cmake or <PackageName>-config.cmake file for installing a project or library. It helps making the resulting package relocatable by avoiding hardcoded paths in the installed Config.cmake file. In a FooConfig.cmake file there may be code like this to make the install destinations know to the using project: set(FOO_INCLUDE_DIR "@CMAKE_INSTALL_FULL_INCLUDEDIR@" ) set(FOO_DATA_DIR "@CMAKE_INSTALL_PREFIX@/@RELATIVE_DATA_INSTALL_DIR@" ) set(FOO_ICONS_DIR "@CMAKE_INSTALL_PREFIX@/share/icons" ) #...logic to determine installedPrefix from the own location... set(FOO_CONFIG_DIR "${installedPrefix}/@CONFIG_INSTALL_DIR@" ) All 4 options shown above are not sufficient, since the first 3 hardcode the absolute directory locations, and the 4th case works only if the logic to determine the installedPrefix is correct, and if CONFIG_INSTALL_DIR contains a relative path, which in general cannot be guaranteed. This has the effect that the resulting FooConfig.cmake file would work poorly under Windows and OSX, where users are used to choose the install location of a binary package at install time, independent from how CMAKE_INSTALL_PREFIX was set at build/cmake time. Using configure_package_config_file helps. If used correctly, it makes the resulting FooConfig.cmake file relocatable. Usage:
The <input> and <output> arguments are the input and output file, the same way as in configure_file(). The <path> given to INSTALL_DESTINATION must be the destination where the FooConfig.cmake file will be installed to. This path can either be absolute, or relative to the INSTALL_PREFIX path. The variables <var1> to <varN> given as PATH_VARS are the variables which contain install destinations. For each of them the macro will create a helper variable PACKAGE_<var...>. These helper variables must be used in the FooConfig.cmake.in file for setting the installed location. They are calculated by configure_package_config_file so that they are always relative to the installed location of the package. This works both for relative and also for absolute locations. For absolute locations it works only if the absolute location is a subdirectory of INSTALL_PREFIX. New in version 3.1: If the INSTALL_PREFIX argument is passed, this is used as base path to calculate all the relative paths. The <path> argument must be an absolute path. If this argument is not passed, the CMAKE_INSTALL_PREFIX variable will be used instead. The default value is good when generating a FooConfig.cmake file to use your package from the install tree. When generating a FooConfig.cmake file to use your package from the build tree this option should be used. By default configure_package_config_file also generates two helper macros, set_and_check() and check_required_components() into the FooConfig.cmake file. set_and_check() should be used instead of the normal set() command for setting directories and file locations. Additionally to setting the variable it also checks that the referenced file or directory actually exists and fails with a FATAL_ERROR otherwise. This makes sure that the created FooConfig.cmake file does not contain wrong references. When using the NO_SET_AND_CHECK_MACRO, this macro is not generated into the FooConfig.cmake file. check_required_components(<PackageName>) should be called at the end of the FooConfig.cmake file. This macro checks whether all requested, non-optional components have been found, and if this is not the case, sets the Foo_FOUND variable to FALSE, so that the package is considered to be not found. It does that by testing the Foo_<Component>_FOUND variables for all requested required components. This macro should be called even if the package doesn't provide any components to make sure users are not specifying components erroneously. When using the NO_CHECK_REQUIRED_COMPONENTS_MACRO option, this macro is not generated into the FooConfig.cmake file. For an example see below the documentation for write_basic_package_version_file(). Generating a Package Version File
write_basic_package_version_file(<filename> [VERSION <major.minor.patch>] COMPATIBILITY <AnyNewerVersion|SameMajorVersion|SameMinorVersion|ExactVersion> [ARCH_INDEPENDENT] ) Writes a file for use as <PackageName>ConfigVersion.cmake file to <filename>. See the documentation of find_package() for details on this. <filename> is the output filename, it should be in the build tree. <major.minor.patch> is the version number of the project to be installed. If no VERSION is given, the PROJECT_VERSION variable is used. If this hasn't been set, it errors out. The COMPATIBILITY mode AnyNewerVersion means that the installed package version will be considered compatible if it is newer or exactly the same as the requested version. This mode should be used for packages which are fully backward compatible, also across major versions. If SameMajorVersion is used instead, then the behavior differs from AnyNewerVersion in that the major version number must be the same as requested, e.g. version 2.0 will not be considered compatible if 1.0 is requested. This mode should be used for packages which guarantee backward compatibility within the same major version. If SameMinorVersion is used, the behavior is the same as SameMajorVersion, but both major and minor version must be the same as requested, e.g version 0.2 will not be compatible if 0.1 is requested. If ExactVersion is used, then the package is only considered compatible if the requested version matches exactly its own version number (not considering the tweak version). For example, version 1.2.3 of a package is only considered compatible to requested version 1.2.3. This mode is for packages without compatibility guarantees. If your project has more elaborated version matching rules, you will need to write your own custom ConfigVersion.cmake file instead of using this macro. New in version 3.11: The SameMinorVersion compatibility mode. New in version 3.14: If ARCH_INDEPENDENT is given, the installed package version will be considered compatible even if it was built for a different architecture than the requested architecture. Otherwise, an architecture check will be performed, and the package will be considered compatible only if the architecture matches exactly. For example, if the package is built for a 32-bit architecture, the package is only considered compatible if it is used on a 32-bit architecture, unless ARCH_INDEPENDENT is given, in which case the package is considered compatible on any architecture. NOTE: ARCH_INDEPENDENT is intended for header-only
libraries or similar packages with no binaries.
New in version 3.19: COMPATIBILITY_MODE AnyNewerVersion, SameMajorVersion and SameMinorVersion handle the version range if any is specified (see find_package() command for the details). ExactVersion mode is incompatible with version ranges and will display an author warning if one is specified. Internally, this macro executes configure_file() to create the resulting version file. Depending on the COMPATIBILITY, the corresponding BasicConfigVersion-<COMPATIBILITY>.cmake.in file is used. Please note that these files are internal to CMake and you should not call configure_file() on them yourself, but they can be used as starting point to create more sophisticted custom ConfigVersion.cmake files. Example Generating Package FilesExample using both configure_package_config_file() and write_basic_package_version_file():CMakeLists.txt: set(INCLUDE_INSTALL_DIR include/ ... CACHE ) set(LIB_INSTALL_DIR lib/ ... CACHE ) set(SYSCONFIG_INSTALL_DIR etc/foo/ ... CACHE ) #... include(CMakePackageConfigHelpers) configure_package_config_file(FooConfig.cmake.in ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake INSTALL_DESTINATION ${LIB_INSTALL_DIR}/Foo/cmake PATH_VARS INCLUDE_INSTALL_DIR SYSCONFIG_INSTALL_DIR) write_basic_package_version_file( ${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake VERSION 1.2.3 COMPATIBILITY SameMajorVersion ) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/FooConfig.cmake ${CMAKE_CURRENT_BINARY_DIR}/FooConfigVersion.cmake DESTINATION ${LIB_INSTALL_DIR}/Foo/cmake ) FooConfig.cmake.in: set(FOO_VERSION x.y.z) ... @PACKAGE_INIT@ ... set_and_check(FOO_INCLUDE_DIR "@PACKAGE_INCLUDE_INSTALL_DIR@") set_and_check(FOO_SYSCONFIG_DIR "@PACKAGE_SYSCONFIG_INSTALL_DIR@") check_required_components(Foo) CMakePrintHelpersConvenience functions for printing properties and variables, useful e.g. for debugging.cmake_print_properties([TARGETS target1 .. targetN] [SOURCES source1 .. sourceN] [DIRECTORIES dir1 .. dirN] [TESTS test1 .. testN] [CACHE_ENTRIES entry1 .. entryN] PROPERTIES prop1 .. propN ) This function prints the values of the properties of the given targets, source files, directories, tests or cache entries. Exactly one of the scope keywords must be used. Example: cmake_print_properties(TARGETS foo bar PROPERTIES LOCATION INTERFACE_INCLUDE_DIRECTORIES) This will print the LOCATION and INTERFACE_INCLUDE_DIRECTORIES properties for both targets foo and bar. cmake_print_variables(var1 var2 .. varN) This function will print the name of each variable followed by its value. Example: cmake_print_variables(CMAKE_C_COMPILER CMAKE_MAJOR_VERSION DOES_NOT_EXIST) Gives: -- CMAKE_C_COMPILER="/usr/bin/gcc" ; CMAKE_MAJOR_VERSION="2" ; DOES_NOT_EXIST="" CMakePrintSystemInformationPrint system information.This module serves diagnostic purposes. Just include it in a project to see various internal CMake variables. CMakePushCheckStateThis module defines three macros: CMAKE_PUSH_CHECK_STATE() CMAKE_POP_CHECK_STATE() and CMAKE_RESET_CHECK_STATE() These macros can be used to save, restore and reset (i.e., clear contents) the state of the variables CMAKE_REQUIRED_FLAGS, CMAKE_REQUIRED_DEFINITIONS, CMAKE_REQUIRED_LINK_OPTIONS, CMAKE_REQUIRED_LIBRARIES, CMAKE_REQUIRED_INCLUDES and CMAKE_EXTRA_INCLUDE_FILES used by the various Check-files coming with CMake, like e.g. check_function_exists() etc. The variable contents are pushed on a stack, pushing multiple times is supported. This is useful e.g. when executing such tests in a Find-module, where they have to be set, but after the Find-module has been executed they should have the same value as they had before.CMAKE_PUSH_CHECK_STATE() macro receives optional argument RESET. Whether it's specified, CMAKE_PUSH_CHECK_STATE() will set all CMAKE_REQUIRED_* variables to empty values, same as CMAKE_RESET_CHECK_STATE() call will do. Usage: cmake_push_check_state(RESET) set(CMAKE_REQUIRED_DEFINITIONS -DSOME_MORE_DEF) check_function_exists(...) cmake_reset_check_state() set(CMAKE_REQUIRED_DEFINITIONS -DANOTHER_DEF) check_function_exists(...) cmake_pop_check_state() CMakeVerifyManifestCMakeVerifyManifest.cmakeThis script is used to verify that embedded manifests and side by side manifests for a project match. To run this script, cd to a directory and run the script with cmake -P. On the command line you can pass in versions that are OK even if not found in the .manifest files. For example, cmake -Dallow_versions=8.0.50608.0 -PCmakeVerifyManifest.cmake could be used to allow an embedded manifest of 8.0.50608.0 to be used in a project even if that version was not found in the .manifest file. CPackConfigure generators for binary installers and source packages.IntroductionThe CPack module generates the configuration files CPackConfig.cmake and CPackSourceConfig.cmake. They are intended for use in a subsequent run of the cpack program where they steer the generation of installers or/and source packages.Depending on the CMake generator, the CPack module may also add two new build targets, package and package_source. See the packaging targets section below for details. The generated binary installers will contain all files that have been installed via CMake's install() command (and the deprecated commands install_files(), install_programs(), and install_targets()). Note that the DESTINATION option of the install() command must be a relative path; otherwise installed files are ignored by CPack. Certain kinds of binary installers can be configured such that users can select individual application components to install. See the CPackComponent module for further details. Source packages (configured through CPackSourceConfig.cmake and generated by the CPack Archive Generator) will contain all source files in the project directory except those specified in CPACK_SOURCE_IGNORE_FILES. CPack GeneratorsThe CPACK_GENERATOR variable has different meanings in different contexts. In a CMakeLists.txt file, CPACK_GENERATOR is a list of generators: and when cpack is run with no other arguments, it will iterate over that list and produce one package for each generator. In a CPACK_PROJECT_CONFIG_FILE, CPACK_GENERATOR is a string naming a single generator. If you need per-cpack-generator logic to control other cpack settings, then you need a CPACK_PROJECT_CONFIG_FILE. If set, the CPACK_PROJECT_CONFIG_FILE is included automatically on a per-generator basis. It only need contain overrides.Here's how it works:
This is the key: For each generator listed in CPACK_GENERATOR in CPackConfig.cmake, cpack will reset CPACK_GENERATOR internally to the one currently being used and then include the CPACK_PROJECT_CONFIG_FILE. For a list of available generators, see cpack-generators(7). Targets package and package_sourceIf CMake is run with the Makefile, Ninja, or Xcode generator, then include(CPack) generates a target package. This makes it possible to build a binary installer from CMake, Make, or Ninja: Instead of cpack, one may call cmake --build . --target package or make package or ninja package. The VS generator creates an uppercase target PACKAGE.If CMake is run with the Makefile or Ninja generator, then include(CPack) also generates a target package_source. To build a source package, instead of cpack -G TGZ --config CPackSourceConfig.cmake one may call cmake --build . --target package_source, make package_source, or ninja package_source. Variables common to all CPack GeneratorsBefore including this CPack module in your CMakeLists.txt file, there are a variety of variables that can be set to customize the resulting installers. The most commonly-used variables are:
${CPACK_PACKAGE_NAME}-${CPACK_PACKAGE_VERSION}-${CPACK_SYSTEM_NAME}
${CPACK_PACKAGE_FILE_NAME}.${CPACK_PACKAGE_CHECKSUM} Supported algorithms are those listed by the string(<HASH>) command.
Variables for Source Package GeneratorsThe following CPack variables are specific to source packages, and will not affect binary packages:
Variables for Advanced UseThe following variables are for advanced uses of CPack:
CPackComponentConfigure components for binary installers and source packages.IntroductionThis module is automatically included by CPack.Certain binary installers (especially the graphical installers) generated by CPack allow users to select individual application components to install. This module allows developers to configure the packaging of such components. Contents is assigned to components by the COMPONENT argument of CMake's install() command. Components can be annotated with user-friendly names and descriptions, inter-component dependencies, etc., and grouped in various ways to customize the resulting installer, using the commands described below. To specify different groupings for different CPack generators use a CPACK_PROJECT_CONFIG_FILE. VariablesThe following variables influence the component-specific packaging:
get_cmake_property(CPACK_COMPONENTS_ALL COMPONENTS) list(REMOVE_ITEM CPACK_COMPONENTS_ALL "foo" "bar")
CommandsAdd component
Describe an installation component. cpack_add_component(compname [DISPLAY_NAME name] [DESCRIPTION description] [HIDDEN | REQUIRED | DISABLED ] [GROUP group] [DEPENDS comp1 comp2 ... ] [INSTALL_TYPES type1 type2 ... ] [DOWNLOADED] [ARCHIVE_FILE filename] [PLIST filename]) compname is the name of an installation component, as defined by the COMPONENT argument of one or more CMake install() commands. With the cpack_add_component command one can set a name, a description, and other attributes of an installation component. One can also assign a component to a component group. DISPLAY_NAME is the displayed name of the component, used in graphical installers to display the component name. This value can be any string. DESCRIPTION is an extended description of the component, used in graphical installers to give the user additional information about the component. Descriptions can span multiple lines using \n as the line separator. Typically, these descriptions should be no more than a few lines long. HIDDEN indicates that this component will be hidden in the graphical installer, so that the user cannot directly change whether it is installed or not. REQUIRED indicates that this component is required, and therefore will always be installed. It will be visible in the graphical installer, but it cannot be unselected. (Typically, required components are shown greyed out). DISABLED indicates that this component should be disabled (unselected) by default. The user is free to select this component for installation, unless it is also HIDDEN. DEPENDS lists the components on which this component depends. If this component is selected, then each of the components listed must also be selected. The dependency information is encoded within the installer itself, so that users cannot install inconsistent sets of components. GROUP names the component group of which this component is a part. If not provided, the component will be a standalone component, not part of any component group. Component groups are described with the cpack_add_component_group command, detailed below. INSTALL_TYPES lists the installation types of which this component is a part. When one of these installations types is selected, this component will automatically be selected. Installation types are described with the cpack_add_install_type command, detailed below. DOWNLOADED indicates that this component should be downloaded on-the-fly by the installer, rather than packaged in with the installer itself. For more information, see the cpack_configure_downloads command. ARCHIVE_FILE provides a name for the archive file created by CPack to be used for downloaded components. If not supplied, CPack will create a file with some name based on CPACK_PACKAGE_FILE_NAME and the name of the component. See cpack_configure_downloads for more information. PLIST gives a filename that is passed to pkgbuild with the --component-plist argument when using the productbuild generator. Add component group
Describes a group of related CPack installation components. cpack_add_component_group(groupname [DISPLAY_NAME name] [DESCRIPTION description] [PARENT_GROUP parent] [EXPANDED] [BOLD_TITLE]) The cpack_add_component_group describes a group of installation components, which will be placed together within the listing of options. Typically, component groups allow the user to select/deselect all of the components within a single group via a single group-level option. Use component groups to reduce the complexity of installers with many options. groupname is an arbitrary name used to identify the group in the GROUP argument of the cpack_add_component command, which is used to place a component in a group. The name of the group must not conflict with the name of any component. DISPLAY_NAME is the displayed name of the component group, used in graphical installers to display the component group name. This value can be any string. DESCRIPTION is an extended description of the component group, used in graphical installers to give the user additional information about the components within that group. Descriptions can span multiple lines using \n as the line separator. Typically, these descriptions should be no more than a few lines long. PARENT_GROUP, if supplied, names the parent group of this group. Parent groups are used to establish a hierarchy of groups, providing an arbitrary hierarchy of groups. EXPANDED indicates that, by default, the group should show up as "expanded", so that the user immediately sees all of the components within the group. Otherwise, the group will initially show up as a single entry. BOLD_TITLE indicates that the group title should appear in bold, to call the user's attention to the group. Add installation type
Add a new installation type containing a set of predefined component selections to the graphical installer. cpack_add_install_type(typename [DISPLAY_NAME name]) The cpack_add_install_type command identifies a set of preselected components that represents a common use case for an application. For example, a "Developer" install type might include an application along with its header and library files, while an "End user" install type might just include the application's executable. Each component identifies itself with one or more install types via the INSTALL_TYPES argument to cpack_add_component. DISPLAY_NAME is the displayed name of the install type, which will typically show up in a drop-down box within a graphical installer. This value can be any string. Configure downloads
Configure CPack to download selected components on-the-fly as part of the installation process. cpack_configure_downloads(site [UPLOAD_DIRECTORY dirname] [ALL] [ADD_REMOVE|NO_ADD_REMOVE]) The cpack_configure_downloads command configures installation-time downloads of selected components. For each downloadable component, CPack will create an archive containing the contents of that component, which should be uploaded to the given site. When the user selects that component for installation, the installer will download and extract the component in place. This feature is useful for creating small installers that only download the requested components, saving bandwidth. Additionally, the installers are small enough that they will be installed as part of the normal installation process, and the "Change" button in Windows Add/Remove Programs control panel will allow one to add or remove parts of the application after the original installation. On Windows, the downloaded-components functionality requires the ZipDLL plug-in for NSIS, available at: http://nsis.sourceforge.net/ZipDLL_plug-in On macOS, installers that download components on-the-fly can only be built and installed on system using macOS 10.5 or later. The site argument is a URL where the archives for downloadable components will reside, e.g., https://cmake.org/files/2.6.1/installer/ All of the archives produced by CPack should be uploaded to that location. UPLOAD_DIRECTORY is the local directory where CPack will create the various archives for each of the components. The contents of this directory should be uploaded to a location accessible by the URL given in the site argument. If omitted, CPack will use the directory CPackUploads inside the CMake binary directory to store the generated archives. The ALL flag indicates that all components be downloaded. Otherwise, only those components explicitly marked as DOWNLOADED or that have a specified ARCHIVE_FILE will be downloaded. Additionally, the ALL option implies ADD_REMOVE (unless NO_ADD_REMOVE is specified). ADD_REMOVE indicates that CPack should install a copy of the installer that can be called from Windows' Add/Remove Programs dialog (via the "Modify" button) to change the set of installed components. NO_ADD_REMOVE turns off this behavior. This option is ignored on Mac OS X. CPackIFWNew in version 3.1.This module looks for the location of the command-line utilities supplied with the Qt Installer Framework (QtIFW). The module also defines several commands to control the behavior of the CPack IFW Generator. CommandsThe module defines the following commands:
cpack_ifw_configure_component(<compname> [COMMON] [ESSENTIAL] [VIRTUAL] [FORCED_INSTALLATION] [REQUIRES_ADMIN_RIGHTS] [NAME <name>] [DISPLAY_NAME <display_name>] # Note: Internationalization supported [DESCRIPTION <description>] # Note: Internationalization supported [UPDATE_TEXT <update_text>] [VERSION <version>] [RELEASE_DATE <release_date>] [SCRIPT <script>] [PRIORITY|SORTING_PRIORITY <sorting_priority>] # Note: PRIORITY is deprecated [DEPENDS|DEPENDENCIES <com_id> ...] [AUTO_DEPEND_ON <comp_id> ...] [LICENSES <display_name> <file_path> ...] [DEFAULT <value>] [USER_INTERFACES <file_path> <file_path> ...] [TRANSLATIONS <file_path> <file_path> ...] [REPLACES <comp_id> ...] [CHECKABLE <value>]) This command should be called after cpack_add_component() command.
cpack_ifw_configure_component_group(<groupname> [VIRTUAL] [FORCED_INSTALLATION] [REQUIRES_ADMIN_RIGHTS] [NAME <name>] [DISPLAY_NAME <display_name>] # Note: Internationalization supported [DESCRIPTION <description>] # Note: Internationalization supported [UPDATE_TEXT <update_text>] [VERSION <version>] [RELEASE_DATE <release_date>] [SCRIPT <script>] [PRIORITY|SORTING_PRIORITY <sorting_priority>] # Note: PRIORITY is deprecated [DEPENDS|DEPENDENCIES <com_id> ...] [AUTO_DEPEND_ON <comp_id> ...] [LICENSES <display_name> <file_path> ...] [DEFAULT <value>] [USER_INTERFACES <file_path> <file_path> ...] [TRANSLATIONS <file_path> <file_path> ...] [REPLACES <comp_id> ...] [CHECKABLE <value>]) This command should be called after cpack_add_component_group() command.
cpack_ifw_add_repository(<reponame> [DISABLED] URL <url> [USERNAME <username>] [PASSWORD <password>] [DISPLAY_NAME <display_name>]) This command will also add the <reponame> repository to a variable CPACK_IFW_REPOSITORIES_ALL.
cpack_ifw_update_repository(<reponame> [[ADD|REMOVE] URL <url>]| [REPLACE OLD_URL <old_url> NEW_URL <new_url>]] [USERNAME <username>] [PASSWORD <password>] [DISPLAY_NAME <display_name>]) This command will also add the <reponame> repository to a variable CPACK_IFW_REPOSITORIES_ALL.
cpack_ifw_add_package_resources(<file_path> <file_path> ...) This command will also add the specified files to a variable CPACK_IFW_PACKAGE_RESOURCES. CPackIFWConfigureFileNew in version 3.8.The module defines configure_file() similar command to configure file templates prepared in QtIFW/SDK/Creator style. CommandsThe module defines the following commands:
cpack_ifw_configure_file(<input> <output>) Copies an <input> file to an <output> file and substitutes variable values referenced as %{VAR} or %VAR% in the input file content. Each variable reference will be replaced with the current value of the variable, or the empty string if the variable is not defined. CSharpUtilitiesNew in version 3.8.Functions to make configuration of CSharp/.NET targets easier. A collection of CMake utility functions useful for dealing with CSharp targets for Visual Studio generators from version 2010 and later. The following functions are provided by this module: Main functions
Helper functions
Main functions provided by the module
csharp_set_windows_forms_properties([<file1> [<file2> [...]]])
In the list of all given files for all files ending with .Designer.cs and .resx is searched. For every designer or resource file a file with the same base name but only .cs as extension is searched. If this is found, the VS_CSHARP_<tagname> properties are set as follows:
csharp_set_designer_cs_properties([<file1> [<file2> [...]]])
In the list of all given files for all files ending with .Designer.cs is searched. For every designer file all files with the same base name but different extensions are searched. If a match is found, the source file properties of the designer file are set depending on the extension of the matched file:
NOTE: Because the source file properties of the
.Designer.cs file are set according to the found matches and every
match sets the VS_CSHARP_DependentUpon property, there should only be
one match for each Designer.cs file.
csharp_set_xaml_cs_properties([<file1> [<file2> [...]]])
In the list of all given files for all files ending with .xaml.cs is searched. For every xaml-cs file, a file with the same base name but extension .xaml is searched. If a match is found, the source file properties of the .xaml.cs file are set:
Helper functions which are used by the above ones
csharp_get_filename_keys(OUT [<file1> [<file2> [...]]])
In some way the function applies a canonicalization to the source names. This is necessary to find file matches if the files have been added to the target with different directory prefixes: add_library(lib myfile.cs ${CMAKE_CURRENT_SOURCE_DIR}/myfile.Designer.cs) set_source_files_properties(myfile.Designer.cs PROPERTIES VS_CSHARP_DependentUpon myfile.cs) # this will fail, because in cmake # - ${CMAKE_CURRENT_SOURCE_DIR}/myfile.Designer.cs # - myfile.Designer.cs # are not the same source file. The source file property is not set.
csharp_get_filename_key_base(BASE KEY)
csharp_get_dependentupon_name(NAME FILE)
Actually this is only the filename without any path given at the moment. CTestConfigure a project for testing with CTest/CDashInclude this module in the top CMakeLists.txt file of a project to enable testing with CTest and dashboard submissions to CDash: project(MyProject) ... include(CTest) The module automatically creates a BUILD_TESTING option that selects whether to enable testing support (ON by default). After including the module, use code like: if(BUILD_TESTING) # ... CMake code to create tests ... endif() to creating tests when testing is enabled. To enable submissions to a CDash server, create a CTestConfig.cmake file at the top of the project with content such as: set(CTEST_NIGHTLY_START_TIME "01:00:00 UTC") set(CTEST_SUBMIT_URL "http://my.cdash.org/submit.php?project=MyProject") (the CDash server can provide the file to a project administrator who configures MyProject). Settings in the config file are shared by both this CTest module and the ctest(1) command-line Dashboard Client mode (ctest -S). While building a project for submission to CDash, CTest scans the build output for errors and warnings and reports them with surrounding context from the build log. This generic approach works for all build tools, but does not give details about the command invocation that produced a given problem. One may get more detailed reports by setting the CTEST_USE_LAUNCHERS variable: set(CTEST_USE_LAUNCHERS 1) in the CTestConfig.cmake file. CTestCoverageCollectGCOVNew in version 3.2.This module provides the ctest_coverage_collect_gcov function. This function runs gcov on all .gcda files found in the binary tree and packages the resulting .gcov files into a tar file. This tarball also contains the following:
After generating this tar file, it can be sent to CDash for display with the ctest_submit(CDASH_UPLOAD) command.
ctest_coverage_collect_gcov(TARBALL <tarfile> [SOURCE <source_dir>][BUILD <build_dir>] [GCOV_COMMAND <gcov_command>] [GCOV_OPTIONS <options>...] ) Run gcov and package a tar file for CDash. The options are:
New in version 3.3: Added support for the CTEST_CUSTOM_COVERAGE_EXCLUDE variable. CTestScriptModeThis file is read by ctest in script mode (-S)CTestUseLaunchersSet the RULE_LAUNCH_* global properties when CTEST_USE_LAUNCHERS is on.CTestUseLaunchers is automatically included when you include(CTest). However, it is split out into its own module file so projects can use the CTEST_USE_LAUNCHERS functionality independently. To use launchers, set CTEST_USE_LAUNCHERS to ON in a ctest -S dashboard script, and then also set it in the cache of the configured project. Both cmake and ctest need to know the value of it for the launchers to work properly. CMake needs to know in order to generate proper build rules, and ctest, in order to produce the proper error and warning analysis. For convenience, you may set the ENV variable CTEST_USE_LAUNCHERS_DEFAULT in your ctest -S script, too. Then, as long as your CMakeLists uses include(CTest) or include(CTestUseLaunchers), it will use the value of the ENV variable to initialize a CTEST_USE_LAUNCHERS cache variable. This cache variable initialization only occurs if CTEST_USE_LAUNCHERS is not already defined. New in version 3.8: If CTEST_USE_LAUNCHERS is on in a ctest -S script the ctest_configure command will add -DCTEST_USE_LAUNCHERS:BOOL=TRUE to the cmake command used to configure the project. DartConfigure a project for testing with CTest or old Dart Tcl ClientThis file is the backwards-compatibility version of the CTest module. It supports using the old Dart 1 Tcl client for driving dashboard submissions as well as testing with CTest. This module should be included in the CMakeLists.txt file at the top of a project. Typical usage: include(Dart) if(BUILD_TESTING) # ... testing related CMake code ... endif() The BUILD_TESTING option is created by the Dart module to determine whether testing support should be enabled. The default is ON. DeployQt4Functions to help assemble a standalone Qt4 executable.A collection of CMake utility functions useful for deploying Qt4 executables. The following functions are provided by this module: write_qt4_conf resolve_qt4_paths fixup_qt4_executable install_qt4_plugin_path install_qt4_plugin install_qt4_executable Requires CMake 2.6 or greater because it uses function and PARENT_SCOPE. Also depends on BundleUtilities.cmake. write_qt4_conf(<qt_conf_dir> <qt_conf_contents>) Writes a qt.conf file with the <qt_conf_contents> into <qt_conf_dir>. resolve_qt4_paths(<paths_var> [<executable_path>]) Loop through <paths_var> list and if any don't exist resolve them relative to the <executable_path> (if supplied) or the CMAKE_INSTALL_PREFIX. fixup_qt4_executable(<executable> [<qtplugins> <libs> <dirs> <plugins_dir> <request_qt_conf>]) Copies Qt plugins, writes a Qt configuration file (if needed) and fixes up a Qt4 executable using BundleUtilities so it is standalone and can be drag-and-drop copied to another machine as long as all of the system libraries are compatible. <executable> should point to the executable to be fixed-up. <qtplugins> should contain a list of the names or paths of any Qt plugins to be installed. <libs> will be passed to BundleUtilities and should be a list of any already installed plugins, libraries or executables to also be fixed-up. <dirs> will be passed to BundleUtilities and should contain and directories to be searched to find library dependencies. <plugins_dir> allows an custom plugins directory to be used. <request_qt_conf> will force a qt.conf file to be written even if not needed. install_qt4_plugin_path(plugin executable copy installed_plugin_path_var <plugins_dir> <component> <configurations>) Install (or copy) a resolved <plugin> to the default plugins directory (or <plugins_dir>) relative to <executable> and store the result in <installed_plugin_path_var>. If <copy> is set to TRUE then the plugins will be copied rather than installed. This is to allow this module to be used at CMake time rather than install time. If <component> is set then anything installed will use this COMPONENT. install_qt4_plugin(plugin executable copy installed_plugin_path_var <plugins_dir> <component>) Install (or copy) an unresolved <plugin> to the default plugins directory (or <plugins_dir>) relative to <executable> and store the result in <installed_plugin_path_var>. See documentation of INSTALL_QT4_PLUGIN_PATH. install_qt4_executable(<executable> [<qtplugins> <libs> <dirs> <plugins_dir> <request_qt_conf> <component>]) Installs Qt plugins, writes a Qt configuration file (if needed) and fixes up a Qt4 executable using BundleUtilities so it is standalone and can be drag-and-drop copied to another machine as long as all of the system libraries are compatible. The executable will be fixed-up at install time. <component> is the COMPONENT used for bundle fixup and plugin installation. See documentation of FIXUP_QT4_BUNDLE. ExternalDataManage data files stored outside source treeIntroductionUse this module to unambiguously reference data files stored outside the source tree and fetch them at build time from arbitrary local and remote content-addressed locations. Functions provided by this module recognize arguments with the syntax DATA{<name>} as references to external data, replace them with full paths to local copies of those data, and create build rules to fetch and update the local copies.For example: include(ExternalData) set(ExternalData_URL_TEMPLATES "file:///local/%(algo)/%(hash)" "file:////host/share/%(algo)/%(hash)" "http://data.org/%(algo)/%(hash)") ExternalData_Add_Test(MyData NAME MyTest COMMAND MyExe DATA{MyInput.png} ) ExternalData_Add_Target(MyData) When test MyTest runs the DATA{MyInput.png} argument will be replaced by the full path to a real instance of the data file MyInput.png on disk. If the source tree contains a content link such as MyInput.png.md5 then the MyData target creates a real MyInput.png in the build tree. Module Functions
ExternalData_Expand_Arguments( <target> # Name of data management target <outVar> # Output variable [args...] # Input arguments, DATA{} allowed ) It replaces each DATA{} reference in an argument with the full path of a real data file on disk that will exist after the <target> builds.
ExternalData_Add_Test( <target> # Name of data management target ... # Arguments of add_test(), DATA{} allowed ) It passes its arguments through ExternalData_Expand_Arguments and then invokes the add_test() command using the results.
ExternalData_Add_Target( <target> # Name of data management target [SHOW_PROGRESS <ON|OFF>] # Show progress during the download ) It creates custom commands in the target as necessary to make data files available for each DATA{} reference previously evaluated by other functions provided by this module. Data files may be fetched from one of the URL templates specified in the ExternalData_URL_TEMPLATES variable, or may be found locally in one of the paths specified in the ExternalData_OBJECT_STORES variable. New in version 3.20: The SHOW_PROGRESS argument may be passed to suppress progress information during the download of objects. If not provided, it defaults to OFF for Ninja and Ninja Multi-Config generators and ON otherwise. Typically only one target is needed to manage all external data within a project. Call this function once at the end of configuration after all data references have been processed. Module VariablesThe following variables configure behavior. They should be set before calling any of the functions provided by this module.
Referencing FilesReferencing Single FilesThe DATA{} syntax is literal and the <name> is a full or relative path within the source tree. The source tree must contain either a real data file at <name> or a "content link" at <name><ext> containing a hash of the real file using a hash algorithm corresponding to <ext>. For example, the argument DATA{img.png} may be satisfied by either a real img.png file in the current source directory or a img.png.md5 file containing its MD5 sum.New in version 3.8: Multiple content links of the same name with different hash algorithms are supported (e.g. img.png.sha256 and img.png.sha1) so long as they all correspond to the same real file. This allows objects to be fetched from sources indexed by different hash algorithms. Referencing File SeriesThe DATA{} syntax can be told to fetch a file series using the form DATA{<name>,:}, where the : is literal. If the source tree contains a group of files or content links named like a series then a reference to one member adds rules to fetch all of them. Although all members of a series are fetched, only the file originally named by the DATA{} argument is substituted for it. The default configuration recognizes file series names ending with #.ext, _#.ext, .#.ext, or -#.ext where # is a sequence of decimal digits and .ext is any single extension. Configure it with a regex that parses <number> and <suffix> parts from the end of <name>:ExternalData_SERIES_PARSE = regex of the form (<number>)(<suffix>)$ For more complicated cases set: ExternalData_SERIES_PARSE = regex with at least two () groups ExternalData_SERIES_PARSE_PREFIX = <prefix> regex group number, if any ExternalData_SERIES_PARSE_NUMBER = <number> regex group number ExternalData_SERIES_PARSE_SUFFIX = <suffix> regex group number Configure series number matching with a regex that matches the <number> part of series members named <prefix><number><suffix>: ExternalData_SERIES_MATCH = regex matching <number> in all series members Note that the <suffix> of a series does not include a hash-algorithm extension. Referencing Associated FilesThe DATA{} syntax can alternatively match files associated with the named file and contained in the same directory. Associated files may be specified by options using the syntax DATA{<name>,<opt1>,<opt2>,...}. Each option may specify one file by name or specify a regular expression to match file names using the syntax REGEX:<regex>. For example, the arguments:DATA{MyData/MyInput.mhd,MyInput.img} # File pair DATA{MyData/MyFrames00.png,REGEX:MyFrames[0-9]+\\.png} # Series will pass MyInput.mha and MyFrames00.png on the command line but ensure that the associated files are present next to them. Referencing DirectoriesThe DATA{} syntax may reference a directory using a trailing slash and a list of associated files. The form DATA{<name>/,<opt1>,<opt2>,...} adds rules to fetch any files in the directory that match one of the associated file options. For example, the argument DATA{MyDataDir/,REGEX:.*} will pass the full path to a MyDataDir directory on the command line and ensure that the directory contains files corresponding to every file or content link in the MyDataDir source directory.New in version 3.3: In order to match associated files in subdirectories, specify a RECURSE: option, e.g. DATA{MyDataDir/,RECURSE:,REGEX:.*}. Hash AlgorithmsThe following hash algorithms are supported:%(algo) <ext> Description ------- ----- ----------- MD5 .md5 Message-Digest Algorithm 5, RFC 1321 SHA1 .sha1 US Secure Hash Algorithm 1, RFC 3174 SHA224 .sha224 US Secure Hash Algorithms, RFC 4634 SHA256 .sha256 US Secure Hash Algorithms, RFC 4634 SHA384 .sha384 US Secure Hash Algorithms, RFC 4634 SHA512 .sha512 US Secure Hash Algorithms, RFC 4634 SHA3_224 .sha3-224 Keccak SHA-3 SHA3_256 .sha3-256 Keccak SHA-3 SHA3_384 .sha3-384 Keccak SHA-3 SHA3_512 .sha3-512 Keccak SHA-3 New in version 3.8: Added the SHA3_* hash algorithms. Note that the hashes are used only for unique data identification and download verification. Custom Fetch ScriptsNew in version 3.2.When a data file must be fetched from one of the URL templates specified in the ExternalData_URL_TEMPLATES variable, it is normally downloaded using the file(DOWNLOAD) command. One may specify usage of a custom fetch script by using a URL template of the form ExternalDataCustomScript://<key>/<loc>. The <key> must be a C identifier, and the <loc> must contain the %(algo) and %(hash) placeholders. A variable corresponding to the key, ExternalData_CUSTOM_SCRIPT_<key>, must be set to the full path to a .cmake script file. The script will be included to perform the actual fetch, and provided with the following variables:
The custom fetch script is expected to store fetched content in the file or set a variable:
ExternalProjectCommandsExternal Project Definition
ExternalProject_Add(<name> [<option>...]) The individual steps within the process can be driven independently if required (e.g. for CDash submission) and extra custom steps can be defined, along with the ability to control the step dependencies. The directory structure used for the management of the external project can also be customized. The function supports a large number of options which can be used to tailor the external project behavior.
If a download method is specified, any existing contents
of the source directory may be deleted. Only the URL download method checks
whether this directory is either missing or empty before initiating the
download, stopping with an error if it is not empty. All other download
methods silently discard any previous contents of the source directory.
If any of the above ..._DIR options are not specified, their defaults are computed as follows. If the PREFIX option is given or the EP_PREFIX directory property is set, then an external project is built and installed under the specified prefix: TMP_DIR = <prefix>/tmp STAMP_DIR = <prefix>/src/<name>-stamp DOWNLOAD_DIR = <prefix>/src SOURCE_DIR = <prefix>/src/<name> BINARY_DIR = <prefix>/src/<name>-build INSTALL_DIR = <prefix> LOG_DIR = <STAMP_DIR> Otherwise, if the EP_BASE directory property is set then components of an external project are stored under the specified base: TMP_DIR = <base>/tmp/<name> STAMP_DIR = <base>/Stamp/<name> DOWNLOAD_DIR = <base>/Download/<name> SOURCE_DIR = <base>/Source/<name> BINARY_DIR = <base>/Build/<name> INSTALL_DIR = <base>/Install/<name> LOG_DIR = <STAMP_DIR> If no PREFIX, EP_PREFIX, or EP_BASE is specified, then the default is to set PREFIX to <name>-prefix. Relative paths are interpreted with respect to CMAKE_CURRENT_BINARY_DIR at the point where ExternalProject_Add() is called.
New in version 3.1: Added support for tbz2, .tar.xz, .txz, and .7z extensions.
If GIT_SHALLOW is enabled then GIT_TAG works only with branch names and tags. A commit hash is not allowed.
The variable CMAKE_EP_GIT_REMOTE_UPDATE_STRATEGY can be set to override the default strategy. This variable should not be set by a project, it is intended for the user to set. It is primarily intended for use in continuous integration scripts to ensure that when history is rewritten on a remote branch, the build doesn't end up with unintended changes or failed builds resulting from conflicts during rebase operations.
NOTE: If the CMAKE_INSTALL_MODE environment variable is
set when the main project is built, it will only have an effect if the
following conditions are met:
Note also that ExternalProject does not check whether the CMAKE_INSTALL_MODE environment variable changes from one run to another.
ExternalProject_Add(example ... # Download options, etc. BUILD_COMMAND ${CMAKE_COMMAND} -E echo "Starting $<CONFIG> build" COMMAND ${CMAKE_COMMAND} --build <BINARY_DIR> --config $<CONFIG> COMMAND ${CMAKE_COMMAND} -E echo "$<CONFIG> build complete" ) It should also be noted that each build step is created via a call to ExternalProject_Add_Step(). See that command's documentation for the automatic substitutions that are supported for some options. Obtaining Project Properties
ExternalProject_Get_Property(<name> <prop1> [<prop2>...]) The function stores property values in variables of the same name. Property names correspond to the keyword argument names of ExternalProject_Add(). For example, the source directory might be retrieved like so: ExternalProject_Get_property(myExtProj SOURCE_DIR) message("Source dir of myExtProj = ${SOURCE_DIR}") Explicit Step ManagementThe ExternalProject_Add() function on its own is often sufficient for incorporating an external project into the main build. Certain scenarios require additional work to implement desired behavior, such as adding in a custom step or making steps available as manually triggerable targets. The ExternalProject_Add_Step(), ExternalProject_Add_StepTargets() and ExternalProject_Add_StepDependencies functions provide the lower level control needed to implement such step-level capabilities.
ExternalProject_Add_Step(<name> <step> [<option>...]) <name> is the same as the name passed to the original call to ExternalProject_Add(). The specified <step> must not be one of the pre-defined steps (mkdir, download, update, patch, configure, build, install or test). The supported options are:
The command line, comment, working directory and byproducts of every standard and custom step are processed to replace the tokens <SOURCE_DIR>, <SOURCE_SUBDIR>, <BINARY_DIR>, <INSTALL_DIR> <TMP_DIR>, <DOWNLOAD_DIR> and <DOWNLOADED_FILE> with their corresponding property values defined in the original call to ExternalProject_Add(). New in version 3.3: Token replacement is extended to byproducts. New in version 3.11: The <DOWNLOAD_DIR> substitution token.
ExternalProject_Add_StepTargets(<name> <step1> [<step2>...]) Creating a target for a step allows it to be used as a dependency of another target or to be triggered manually. Having targets for specific steps also allows them to be driven independently of each other by specifying targets on build command lines. For example, you may be submitting to a sub-project based dashboard where you want to drive the configure portion of the build, then submit to the dashboard, followed by the build portion, followed by tests. If you invoke a custom target that depends on a step halfway through the step dependency chain, then all the previous steps will also run to ensure everything is up to date. Internally, ExternalProject_Add() calls ExternalProject_Add_Step() to create each step. If any STEP_TARGETS were specified, then ExternalProject_Add_StepTargets() will also be called after ExternalProject_Add_Step(). Even if a step is not mentioned in the STEP_TARGETS option, ExternalProject_Add_StepTargets() can still be called later to manually define a target for the step. The STEP_TARGETS option for ExternalProject_Add() is generally the easiest way to ensure targets are created for specific steps of interest. For custom steps, ExternalProject_Add_StepTargets() must be called explicitly if a target should also be created for that custom step. An alternative to these two options is to populate the EP_STEP_TARGETS directory property. It acts as a default for the step target options and can save having to repeatedly specify the same set of step targets when multiple external projects are being defined. New in version 3.19: If CMP0114 is set to NEW, step targets are fully responsible for holding the custom commands implementing their steps. The primary target created by ExternalProject_Add depends on the step targets, and the step targets depend on each other. The target-level dependencies match the file-level dependencies used by the custom commands for each step. The targets for steps created with ExternalProject_Add_Step()'s INDEPENDENT option do not depend on the external targets specified by ExternalProject_Add()'s DEPENDS option. The predefined steps mkdir, download, update, and patch are independent. If CMP0114 is not NEW, the following deprecated behavior is available:
ExternalProject_Add_StepDependencies(<name> <step> <target1> [<target2>...]) This function takes care to set both target and file level dependencies and will ensure that parallel builds will not break. It should be used instead of add_dependencies() whenever adding a dependency for some of the step targets generated by the ExternalProject module. ExamplesThe following example shows how to download and build a hypothetical project called FooBar from github:include(ExternalProject) ExternalProject_Add(foobar GIT_REPOSITORY git@github.com:FooCo/FooBar.git GIT_TAG origin/release/1.2.3 ) For the sake of the example, also define a second hypothetical external project called SecretSauce, which is downloaded from a web server. Two URLs are given to take advantage of a faster internal network if available, with a fallback to a slower external server. The project is a typical Makefile project with no configure step, so some of the default commands are overridden. The build is only required to build the sauce target: find_program(MAKE_EXE NAMES gmake nmake make) ExternalProject_Add(secretsauce URL http://intranet.somecompany.com/artifacts/sauce-2.7.tgz https://www.somecompany.com/downloads/sauce-2.7.zip URL_HASH MD5=d41d8cd98f00b204e9800998ecf8427e CONFIGURE_COMMAND "" BUILD_COMMAND ${MAKE_EXE} sauce ) Suppose the build step of secretsauce requires that foobar must already be built. This could be enforced like so: ExternalProject_Add_StepDependencies(secretsauce build foobar) Another alternative would be to create a custom target for foobar's build step and make secretsauce depend on that rather than the whole foobar project. This would mean foobar only needs to be built, it doesn't need to run its install or test steps before secretsauce can be built. The dependency can also be defined along with the secretsauce project: ExternalProject_Add_StepTargets(foobar build) ExternalProject_Add(secretsauce URL http://intranet.somecompany.com/artifacts/sauce-2.7.tgz https://www.somecompany.com/downloads/sauce-2.7.zip URL_HASH MD5=d41d8cd98f00b204e9800998ecf8427e CONFIGURE_COMMAND "" BUILD_COMMAND ${MAKE_EXE} sauce DEPENDS foobar-build ) Instead of calling ExternalProject_Add_StepTargets(), the target could be defined along with the foobar project itself: ExternalProject_Add(foobar GIT_REPOSITORY git@github.com:FooCo/FooBar.git GIT_TAG origin/release/1.2.3 STEP_TARGETS build ) If many external projects should have the same set of step targets, setting a directory property may be more convenient. The build step target could be created automatically by setting the EP_STEP_TARGETS directory property before creating the external projects with ExternalProject_Add(): set_property(DIRECTORY PROPERTY EP_STEP_TARGETS build) Lastly, suppose that secretsauce provides a script called makedoc which can be used to generate its own documentation. Further suppose that the script expects the output directory to be provided as the only parameter and that it should be run from the secretsauce source directory. A custom step and a custom target to trigger the script can be defined like so: ExternalProject_Add_Step(secretsauce docs COMMAND <SOURCE_DIR>/makedoc <BINARY_DIR> WORKING_DIRECTORY <SOURCE_DIR> COMMENT "Building secretsauce docs" ALWAYS TRUE EXCLUDE_FROM_MAIN TRUE ) ExternalProject_Add_StepTargets(secretsauce docs) The custom step could then be triggered from the main build like so: cmake --build . --target secretsauce-docs FeatureSummaryFunctions for generating a summary of enabled/disabled features.These functions can be used to generate a summary of enabled and disabled packages and/or feature for a build tree such as: -- The following OPTIONAL packages have been found: LibXml2 (required version >= 2.4), XML processing lib, <http://xmlsoft.org> * Enables HTML-import in MyWordProcessor * Enables odt-export in MyWordProcessor PNG, A PNG image library., <http://www.libpng.org/pub/png/> * Enables saving screenshots -- The following OPTIONAL packages have not been found: Lua51, The Lua scripting language., <http://www.lua.org> * Enables macros in MyWordProcessor Foo, Foo provides cool stuff. Global Properties
The global property FeatureSummary_PKG_TYPES defines the type of packages used by FeatureSummary. The order in this list is important, the first package type in the list is the least important, the last is the most important. the of a package can only be changed to higher types. The default package types are , RUNTIME, OPTIONAL, RECOMMENDED and REQUIRED, and their importance is RUNTIME < OPTIONAL < RECOMMENDED < REQUIRED.
The global property FeatureSummary_REQUIRED_PKG_TYPES defines which package types are required. If one or more package in this categories has not been found, CMake will abort when calling feature_summary() with the 'FATAL_ON_MISSING_REQUIRED_PACKAGES' option enabled. The default value for this global property is REQUIRED.
The global property FeatureSummary_DEFAULT_PKG_TYPE defines which package type is the default one. When calling feature_summary(), if the user did not set the package type explicitly, the package will be assigned to this category. This value must be one of the types defined in the FeatureSummary_PKG_TYPES global property unless the package type is set for all the packages. The default value for this global property is OPTIONAL.
New in version 3.9. The global property FeatureSummary_<TYPE>_DESCRIPTION can be defined for each type to replace the type name with the specified string whenever the package type is used in an output string. If not set, the string "<TYPE> packages" is used. Functions
feature_summary( [FILENAME <file>] [APPEND] [VAR <variable_name>] [INCLUDE_QUIET_PACKAGES] [FATAL_ON_MISSING_REQUIRED_PACKAGES] [DESCRIPTION "<description>" | DEFAULT_DESCRIPTION] [QUIET_ON_EMPTY] WHAT (ALL | PACKAGES_FOUND | PACKAGES_NOT_FOUND | <TYPE>_PACKAGES_FOUND | <TYPE>_PACKAGES_NOT_FOUND | ENABLED_FEATURES | DISABLED_FEATURES) ) The feature_summary() macro can be used to print information about enabled or disabled packages or features of a project. By default, only the names of the features/packages will be printed and their required version when one was specified. Use set_package_properties() to add more useful information, like e.g. a download URL for the respective package or their purpose in the project. The WHAT option is the only mandatory option. Here you specify what information will be printed:
For each package type <TYPE> defined by the FeatureSummary_PKG_TYPES global property, the following information can also be used:
Changed in version 3.1: With the exception of the ALL value, these values can be combined in order to customize the output. For example: feature_summary(WHAT ENABLED_FEATURES DISABLED_FEATURES) If a FILENAME is given, the information is printed into this file. If APPEND is used, it is appended to this file, otherwise the file is overwritten if it already existed. If the VAR option is used, the information is "printed" into the specified variable. If FILENAME is not used, the information is printed to the terminal. Using the DESCRIPTION option a description or headline can be set which will be printed above the actual content. If only one type of package was requested, no title is printed, unless it is explicitly set using either DESCRIPTION to use a custom string, or DEFAULT_DESCRIPTION to use a default title for the requested type. If INCLUDE_QUIET_PACKAGES is given, packages which have been searched with find_package(... QUIET) will also be listed. By default they are skipped. If FATAL_ON_MISSING_REQUIRED_PACKAGES is given, CMake will abort if a package which is marked as one of the package types listed in the FeatureSummary_REQUIRED_PKG_TYPES global property has not been found. The default value for the FeatureSummary_REQUIRED_PKG_TYPES global property is REQUIRED. New in version 3.9: The DEFAULT_DESCRIPTION option. The FeatureSummary_DEFAULT_PKG_TYPE global property can be modified to change the default package type assigned when not explicitly assigned by the user. New in version 3.8: If the QUIET_ON_EMPTY option is used, if only one type of package was requested, and no packages belonging to that category were found, then no output (including the DESCRIPTION) is printed or added to the VAR variable. Example 1, append everything to a file: include(FeatureSummary) feature_summary(WHAT ALL FILENAME ${CMAKE_BINARY_DIR}/all.log APPEND) Example 2, print the enabled features into the variable enabledFeaturesText, including QUIET packages: include(FeatureSummary) feature_summary(WHAT ENABLED_FEATURES INCLUDE_QUIET_PACKAGES DESCRIPTION "Enabled Features:" VAR enabledFeaturesText) message(STATUS "${enabledFeaturesText}") Example 3, change default package types and print only the categories that are not empty: include(FeatureSummary) set_property(GLOBAL APPEND PROPERTY FeatureSummary_PKG_TYPES BUILD) find_package(FOO) set_package_properties(FOO PROPERTIES TYPE BUILD) feature_summary(WHAT BUILD_PACKAGES_FOUND Description "Build tools found:" QUIET_ON_EMPTY) feature_summary(WHAT BUILD_PACKAGES_NOT_FOUND Description "Build tools not found:" QUIET_ON_EMPTY)
set_package_properties(<name> PROPERTIES [ URL <url> ] [ DESCRIPTION <description> ] [ TYPE (RUNTIME|OPTIONAL|RECOMMENDED|REQUIRED) ] [ PURPOSE <purpose> ] ) Use this macro to set up information about the named package, which can then be displayed via FEATURE_SUMMARY(). This can be done either directly in the Find-module or in the project which uses the module after the find_package() call. The features for which information can be set are added automatically by the find_package() command.
Example for setting the info for a package: find_package(LibXml2) set_package_properties(LibXml2 PROPERTIES DESCRIPTION "A XML processing library." URL "http://xmlsoft.org/") # or set_package_properties(LibXml2 PROPERTIES TYPE RECOMMENDED PURPOSE "Enables HTML-import in MyWordProcessor") # or set_package_properties(LibXml2 PROPERTIES TYPE OPTIONAL PURPOSE "Enables odt-export in MyWordProcessor") find_package(DBUS) set_package_properties(DBUS PROPERTIES TYPE RUNTIME PURPOSE "Necessary to disable the screensaver during a presentation")
add_feature_info(<name> <enabled> <description>) Use this macro to add information about a feature with the given <name>. <enabled> contains whether this feature is enabled or not. It can be a variable or a list of conditions. <description> is a text describing the feature. The information can be displayed using feature_summary() for ENABLED_FEATURES and DISABLED_FEATURES respectively. Changed in version 3.8: <enabled> can be a list of conditions. Example for setting the info for a feature: option(WITH_FOO "Help for foo" ON) add_feature_info(Foo WITH_FOO "The Foo feature provides very cool stuff.") Legacy MacrosThe following macros are provided for compatibility with previous CMake versions:
set_package_info(<name> <description> [ <url> [<purpose>] ]) Use this macro to set up information about the named package, which can then be displayed via feature_summary(). This can be done either directly in the Find-module or in the project which uses the module after the find_package() call. The features for which information can be set are added automatically by the find_package() command.
set_feature_info(<name> <description> [<url>]) Does the same as: set_package_info(<name> <description> <url>)
print_enabled_features() Does the same as feature_summary(WHAT ENABLED_FEATURES DESCRIPTION "Enabled features:")
print_disabled_features() Does the same as feature_summary(WHAT DISABLED_FEATURES DESCRIPTION "Disabled features:") FetchContentNew in version 3.11.OverviewThis module enables populating content at configure time via any method supported by the ExternalProject module. Whereas ExternalProject_Add() downloads at build time, the FetchContent module makes content available immediately, allowing the configure step to use the content in commands like add_subdirectory(), include() or file() operations.Content population details should be defined separately from the command that performs the actual population. This separation ensures that all the dependency details are defined before anything might try to use them to populate content. This is particularly important in more complex project hierarchies where dependencies may be shared between multiple projects. The following shows a typical example of declaring content details for some dependencies and then ensuring they are populated with a separate call: FetchContent_Declare( googletest GIT_REPOSITORY https://github.com/google/googletest.git GIT_TAG 703bd9caab50b139428cea1aaff9974ebee5742e # release-1.10.0 ) FetchContent_Declare( myCompanyIcons URL https://intranet.mycompany.com/assets/iconset_1.12.tar.gz URL_HASH MD5=5588a7b18261c20068beabfb4f530b87 ) FetchContent_MakeAvailable(googletest secret_sauce) The FetchContent_MakeAvailable() command ensures the named dependencies have been populated, either by an earlier call or by populating them itself. When performing the population, it will also add them to the main build, if possible, so that the main build can use the populated projects' targets, etc. See the command's documentation for how these steps are performed. When using a hierarchical project arrangement, projects at higher levels in the hierarchy are able to override the declared details of content specified anywhere lower in the project hierarchy. The first details to be declared for a given dependency take precedence, regardless of where in the project hierarchy that occurs. Similarly, the first call that tries to populate a dependency "wins", with subsequent populations reusing the result of the first instead of repeating the population again. See the Examples which demonstrate this scenario. In some cases, the main project may need to have more precise control over the population, or it may be required to explicitly define the population steps in a way that cannot be captured by the declared details alone. For such situations, the lower level FetchContent_GetProperties() and FetchContent_Populate() commands can be used. These lack the richer features provided by FetchContent_MakeAvailable() though, so their direct use should be considered a last resort. The typical pattern of such custom steps looks like this: # NOTE: Where possible, prefer to use FetchContent_MakeAvailable() # instead of custom logic like this # Check if population has already been performed FetchContent_GetProperties(depname) if(NOT depname_POPULATED) # Fetch the content using previously declared details FetchContent_Populate(depname) # Set custom variables, policies, etc. # ... # Bring the populated content into the build add_subdirectory(${depname_SOURCE_DIR} ${depname_BINARY_DIR}) endif() The FetchContent module also supports defining and populating content in a single call, with no check for whether the content has been populated elsewhere already. This should not be done in projects, but may be appropriate for populating content in CMake's script mode. See FetchContent_Populate() for details. Commands
FetchContent_Declare(<name> <contentOptions>...) The FetchContent_Declare() function records the options that describe how to populate the specified content. If such details have already been recorded earlier in this project (regardless of where in the project hierarchy), this and all later calls for the same content <name> are ignored. This "first to record, wins" approach is what allows hierarchical projects to have parent projects override content details of child projects. The content <name> can be any string without spaces, but good practice would be to use only letters, numbers and underscores. The name will be treated case-insensitively and it should be obvious for the content it represents, often being the name of the child project or the value given to its top level project() command (if it is a CMake project). For well-known public projects, the name should generally be the official name of the project. Choosing an unusual name makes it unlikely that other projects needing that same content will use the same name, leading to the content being populated multiple times. The <contentOptions> can be any of the download, update or patch options that the ExternalProject_Add() command understands. The configure, build, install and test steps are explicitly disabled and therefore options related to them will be ignored. The SOURCE_SUBDIR option is an exception, see FetchContent_MakeAvailable() for details on how that affects behavior. In most cases, <contentOptions> will just be a couple of options defining the download method and method-specific details like a commit tag or archive hash. For example: FetchContent_Declare( googletest GIT_REPOSITORY https://github.com/google/googletest.git GIT_TAG 703bd9caab50b139428cea1aaff9974ebee5742e # release-1.10.0 ) FetchContent_Declare( myCompanyIcons URL https://intranet.mycompany.com/assets/iconset_1.12.tar.gz URL_HASH MD5=5588a7b18261c20068beabfb4f530b87 ) FetchContent_Declare( myCompanyCertificates SVN_REPOSITORY svn+ssh://svn.mycompany.com/srv/svn/trunk/certs SVN_REVISION -r12345 ) Where contents are being fetched from a remote location and you do not control that server, it is advisable to use a hash for GIT_TAG rather than a branch or tag name. A commit hash is more secure and helps to confirm that the downloaded contents are what you expected. Changed in version 3.14: Commands for the download, update or patch steps can access the terminal. This may be needed for things like password prompts or real-time display of command progress. New in version 3.22: The CMAKE_TLS_VERIFY, CMAKE_TLS_CAINFO, CMAKE_NETRC and CMAKE_NETRC_FILE variables now provide the defaults for their corresponding content options, just like they do for ExternalProject_Add(). Previously, these variables were ignored by the FetchContent module.
FetchContent_MakeAvailable(<name1> [<name2>...]) This command ensures that each of the named dependencies are populated and potentially added to the build by the time it returns. It iterates over the list, and for each dependency, the following logic is applied:
Projects should aim to declare the details of all dependencies they might use before they call FetchContent_MakeAvailable() for any of them. This ensures that if any of the dependencies are also sub-dependencies of one or more of the others, the main project still controls the details that will be used (because it will declare them first before the dependencies get a chance to). In the following code samples, assume that the uses_other dependency also uses FetchContent to add the other dependency internally: # WRONG: Should declare all details first FetchContent_Declare(uses_other ...) FetchContent_MakeAvailable(uses_other) FetchContent_Declare(other ...) # Will be ignored, uses_other beat us to it FetchContent_MakeAvailable(other) # Would use details declared by uses_other # CORRECT: All details declared first, so they will take priority FetchContent_Declare(uses_other ...) FetchContent_Declare(other ...) FetchContent_MakeAvailable(uses_other other)
Where possible, prefer to use
FetchContent_MakeAvailable() instead of implementing population
manually with this command.
FetchContent_Populate(<name>) In most cases, the only argument given to FetchContent_Populate() is the <name>. When used this way, the command assumes the content details have been recorded by an earlier call to FetchContent_Declare(). The details are stored in a global property, so they are unaffected by things like variable or directory scope. Therefore, it doesn't matter where in the project the details were previously declared, as long as they have been declared before the call to FetchContent_Populate(). Those saved details are then used to construct a call to ExternalProject_Add() in a private sub-build to perform the content population immediately. The implementation of ExternalProject_Add() ensures that if the content has already been populated in a previous CMake run, that content will be reused rather than repopulating them again. For the common case where population involves downloading content, the cost of the download is only paid once. An internal global property records when a particular content population request has been processed. If FetchContent_Populate() is called more than once for the same content name within a configure run, the second call will halt with an error. Projects can and should check whether content population has already been processed with the FetchContent_GetProperties() command before calling FetchContent_Populate(). FetchContent_Populate() will set three variables in the scope of the caller:
The main use case for the <lowercaseName>_SOURCE_DIR and <lowercaseName>_BINARY_DIR variables is to call add_subdirectory() immediately after population: FetchContent_Populate(FooBar) add_subdirectory(${foobar_SOURCE_DIR} ${foobar_BINARY_DIR}) The values of the three variables can also be retrieved from anywhere in the project hierarchy using the FetchContent_GetProperties() command. The FetchContent_Populate() command also supports a syntax allowing the content details to be specified directly rather than using any saved details. This is more low-level and use of this form is generally to be avoided in favor of using saved content details as outlined above. Nevertheless, in certain situations it can be useful to invoke the content population as an isolated operation (typically as part of implementing some other higher level feature or when using CMake in script mode): FetchContent_Populate( <name> [QUIET] [SUBBUILD_DIR <subBuildDir>] [SOURCE_DIR <srcDir>] [BINARY_DIR <binDir>] ... ) This form has a number of key differences to that where only <name> is provided:
The <lowercaseName>_SOURCE_DIR and <lowercaseName>_BINARY_DIR variables are still returned to the caller, but since these locations are not stored as global properties when this form is used, they are only available to the calling scope and below rather than the entire project hierarchy. No <lowercaseName>_POPULATED variable is set in the caller's scope with this form. The supported options for FetchContent_Populate() are the same as those for FetchContent_Declare(). Those few options shown just above are either specific to FetchContent_Populate() or their behavior is slightly modified from how ExternalProject_Add() treats them:
In addition to the above explicit options, any other unrecognized options are passed through unmodified to ExternalProject_Add() to perform the download, patch and update steps. The following options are explicitly prohibited (they are disabled by the FetchContent_Populate() command):
If using FetchContent_Populate() within CMake's script mode, be aware that the implementation sets up a sub-build which therefore requires a CMake generator and build tool to be available. If these cannot be found by default, then the CMAKE_GENERATOR and/or CMAKE_MAKE_PROGRAM variables will need to be set appropriately on the command line invoking the script. New in version 3.18: Added support for the DOWNLOAD_NO_EXTRACT option.
FetchContent_GetProperties( <name> [SOURCE_DIR <srcDirVar>] [BINARY_DIR <binDirVar>] [POPULATED <doneVar>] ) The SOURCE_DIR, BINARY_DIR and POPULATED options can be used to specify which properties should be retrieved. Each option accepts a value which is the name of the variable in which to store that property. Most of the time though, only <name> is given, in which case the call will then set the same variables as a call to FetchContent_MakeAvailable(name) or FetchContent_Populate(name). This command is rarely needed when using FetchContent_MakeAvailable(). It is more commonly used as part of implementing the following pattern with FetchContent_Populate(), which ensures that the relevant variables will always be defined regardless of whether or not the population has been performed elsewhere in the project already: # Check if population has already been performed FetchContent_GetProperties(depname) if(NOT depname_POPULATED) # Fetch the content using previously declared details FetchContent_Populate(depname) # Set custom variables, policies, etc. # ... # Bring the populated content into the build add_subdirectory(${depname_SOURCE_DIR} ${depname_BINARY_DIR}) endif() VariablesA number of cache variables can influence the behavior where details from a FetchContent_Declare() call are used to populate content. The variables are all intended for the developer to customize behavior and should not normally be set by the project.
In addition to the above cache variables, the following cache variables are also defined for each content name:
ExamplesThis first fairly straightforward example ensures that some popular testing frameworks are available to the main build:include(FetchContent) FetchContent_Declare( googletest GIT_REPOSITORY https://github.com/google/googletest.git GIT_TAG 703bd9caab50b139428cea1aaff9974ebee5742e # release-1.10.0 ) FetchContent_Declare( Catch2 GIT_REPOSITORY https://github.com/catchorg/Catch2.git GIT_TAG de6fe184a9ac1a06895cdd1c9b437f0a0bdf14ad # v2.13.4 ) # After the following call, the CMake targets defined by googletest and # Catch2 will be available to the rest of the build FetchContent_MakeAvailable(googletest Catch2) If the sub-project's CMakeLists.txt file is not at the top level of its source tree, the SOURCE_SUBDIR option can be used to tell FetchContent where to find it. The following example shows how to use that option and it also sets a variable which is meaningful to the subproject before pulling it into the main build: include(FetchContent) FetchContent_Declare( protobuf GIT_REPOSITORY https://github.com/protocolbuffers/protobuf.git GIT_TAG ae50d9b9902526efd6c7a1907d09739f959c6297 # v3.15.0 SOURCE_SUBDIR cmake ) set(protobuf_BUILD_TESTS OFF) FetchContent_MakeAvailable(protobuf) In more complex project hierarchies, the dependency relationships can be more complicated. Consider a hierarchy where projA is the top level project and it depends directly on projects projB and projC. Both projB and projC can be built standalone and they also both depend on another project projD. projB additionally depends on projE. This example assumes that all five projects are available on a company git server. The CMakeLists.txt of each project might have sections like the following: projA: include(FetchContent) FetchContent_Declare( projB GIT_REPOSITORY git@mycompany.com:git/projB.git GIT_TAG 4a89dc7e24ff212a7b5167bef7ab079d ) FetchContent_Declare( projC GIT_REPOSITORY git@mycompany.com:git/projC.git GIT_TAG 4ad4016bd1d8d5412d135cf8ceea1bb9 ) FetchContent_Declare( projD GIT_REPOSITORY git@mycompany.com:git/projD.git GIT_TAG origin/integrationBranch ) FetchContent_Declare( projE GIT_REPOSITORY git@mycompany.com:git/projE.git GIT_TAG v2.3-rc1 ) # Order is important, see notes in the discussion further below FetchContent_MakeAvailable(projD projB projC) projB: include(FetchContent) FetchContent_Declare( projD GIT_REPOSITORY git@mycompany.com:git/projD.git GIT_TAG 20b415f9034bbd2a2e8216e9a5c9e632 ) FetchContent_Declare( projE GIT_REPOSITORY git@mycompany.com:git/projE.git GIT_TAG 68e20f674a48be38d60e129f600faf7d ) FetchContent_MakeAvailable(projD projE) projC: include(FetchContent) FetchContent_Declare( projD GIT_REPOSITORY git@mycompany.com:git/projD.git GIT_TAG 7d9a17ad2c962aa13e2fbb8043fb6b8a ) # This particular version of projD requires workarounds FetchContent_GetProperties(projD) if(NOT projd_POPULATED) FetchContent_Populate(projD) # Copy an additional/replacement file into the populated source file(COPY someFile.c DESTINATION ${projd_SOURCE_DIR}/src) add_subdirectory(${projd_SOURCE_DIR} ${projd_BINARY_DIR}) endif() A few key points should be noted in the above:
Projects don't always need to add the populated content to the build. Sometimes the project just wants to make the downloaded content available at a predictable location. The next example ensures that a set of standard company toolchain files (and potentially even the toolchain binaries themselves) is available early enough to be used for that same build. cmake_minimum_required(VERSION 3.14) include(FetchContent) FetchContent_Declare( mycom_toolchains URL https://intranet.mycompany.com//toolchains_1.3.2.tar.gz ) FetchContent_MakeAvailable(mycom_toolchains) project(CrossCompileExample) The project could be configured to use one of the downloaded toolchains like so: cmake -DCMAKE_TOOLCHAIN_FILE=_deps/mycom_toolchains-src/toolchain_arm.cmake /path/to/src When CMake processes the CMakeLists.txt file, it will download and unpack the tarball into _deps/mycompany_toolchains-src relative to the build directory. The CMAKE_TOOLCHAIN_FILE variable is not used until the project() command is reached, at which point CMake looks for the named toolchain file relative to the build directory. Because the tarball has already been downloaded and unpacked by then, the toolchain file will be in place, even the very first time that cmake is run in the build directory. Lastly, the following example demonstrates how one might download and unpack a firmware tarball using CMake's script mode. The call to FetchContent_Populate() specifies all the content details and the unpacked firmware will be placed in a firmware directory below the current working directory. getFirmware.cmake: # NOTE: Intended to be run in script mode with cmake -P include(FetchContent) FetchContent_Populate( firmware URL https://mycompany.com/assets/firmware-1.23-arm.tar.gz URL_HASH MD5=68247684da89b608d466253762b0ff11 SOURCE_DIR firmware ) FindPackageHandleStandardArgsThis module provides functions intended to be used in Find Modules implementing find_package(<PackageName>) calls.
find_package_handle_standard_args(<PackageName> (DEFAULT_MSG|<custom-failure-message>) <required-var>... ) find_package_handle_standard_args(<PackageName> [FOUND_VAR <result-var>] [REQUIRED_VARS <required-var>...] [VERSION_VAR <version-var>] [HANDLE_VERSION_RANGE] [HANDLE_COMPONENTS] [CONFIG_MODE] [NAME_MISMATCHED] [REASON_FAILURE_MESSAGE <reason-failure-message>] [FAIL_MESSAGE <custom-failure-message>] ) The <PackageName>_FOUND variable will be set to TRUE if all the variables <required-var>... are valid and any optional constraints are satisfied, and FALSE otherwise. A success or failure message may be displayed based on the results and on whether the REQUIRED and/or QUIET option was given to the find_package() call. The options are:
Example for the simple signature: find_package_handle_standard_args(LibXml2 DEFAULT_MSG LIBXML2_LIBRARY LIBXML2_INCLUDE_DIR) The LibXml2 package is considered to be found if both LIBXML2_LIBRARY and LIBXML2_INCLUDE_DIR are valid. Then also LibXml2_FOUND is set to TRUE. If it is not found and REQUIRED was used, it fails with a message(FATAL_ERROR), independent whether QUIET was used or not. If it is found, success will be reported, including the content of the first <required-var>. On repeated CMake runs, the same message will not be printed again. NOTE: If <PackageName> does not match
CMAKE_FIND_PACKAGE_NAME for the calling module, a warning that there is
a mismatch is given. The FPHSA_NAME_MISMATCHED variable may be set to
bypass the warning if using the old signature and the NAME_MISMATCHED
argument using the new signature. To avoid forcing the caller to require newer
versions of CMake for usage, the variable's value will be used if defined when
the NAME_MISMATCHED argument is not passed for the new signature (but
using both is an error)..
Example for the full signature: find_package_handle_standard_args(LibArchive REQUIRED_VARS LibArchive_LIBRARY LibArchive_INCLUDE_DIR VERSION_VAR LibArchive_VERSION) In this case, the LibArchive package is considered to be found if both LibArchive_LIBRARY and LibArchive_INCLUDE_DIR are valid. Also the version of LibArchive will be checked by using the version contained in LibArchive_VERSION. Since no FAIL_MESSAGE is given, the default messages will be printed. Another example for the full signature: find_package(Automoc4 QUIET NO_MODULE HINTS /opt/automoc4) find_package_handle_standard_args(Automoc4 CONFIG_MODE) In this case, a FindAutmoc4.cmake module wraps a call to find_package(Automoc4 NO_MODULE) and adds an additional search directory for automoc4. Then the call to find_package_handle_standard_args produces a proper success/failure message.
find_package_check_version(<version> <result-var> [HANDLE_VERSION_RANGE] [RESULT_MESSAGE_VARIABLE <message-var>] ) The <result-var> will hold a boolean value giving the result of the check. The options are:
Example for the usage: find_package_check_version(1.2.3 result HANDLE_VERSION_RANGE RESULT_MESSAGE_VARIABLE reason) if (result) message (STATUS "${reason}") else() message (FATAL_ERROR "${reason}") endif() FindPackageMessagefind_package_message(<name> "message for user" "find result details") This function is intended to be used in FindXXX.cmake modules files. It will print a message once for each unique find result. This is useful for telling the user where a package was found. The first argument specifies the name (XXX) of the package. The second argument specifies the message to display. The third argument lists details about the find result so that if they change the message will be displayed again. The macro also obeys the QUIET argument to the find_package command. Example: if(X11_FOUND) find_package_message(X11 "Found X11: ${X11_X11_LIB}" "[${X11_X11_LIB}][${X11_INCLUDE_DIR}]") else() ... endif() FortranCInterfaceFortran/C Interface DetectionThis module automatically detects the API by which C and Fortran languages interact. Module VariablesVariables that indicate if the mangling is found:
This module also provides the following variables to specify the detected mangling, though a typical use case does not need to reference them and can use the Module Functions below.
Module Functions
FortranCInterface_HEADER(<file> [MACRO_NAMESPACE <macro-ns>] [SYMBOL_NAMESPACE <ns>] [SYMBOLS [<module>:]<function> ...]) It generates in <file> definitions of the following macros: #define FortranCInterface_GLOBAL (name,NAME) ... #define FortranCInterface_GLOBAL_(name,NAME) ... #define FortranCInterface_MODULE (mod,name, MOD,NAME) ... #define FortranCInterface_MODULE_(mod,name, MOD,NAME) ... These macros mangle four categories of Fortran symbols, respectively:
If mangling for a category is not known, its macro is left undefined. All macros require raw names in both lower case and upper case. The options are:
<function> ==> #define <ns><function> ... <module>:<function> ==> #define <ns><module>_<function> ... If the mangling for some symbol is not known then no preprocessor definition is created, and a warning is displayed.
FortranCInterface_VERIFY([CXX] [QUIET]) It tests whether a simple test executable using Fortran and C (and C++ when the CXX option is given) compiles and links successfully. The result is stored in the cache entry FortranCInterface_VERIFIED_C (or FortranCInterface_VERIFIED_CXX if CXX is given) as a boolean. If the check fails and QUIET is not given the function terminates with a fatal error message describing the problem. The purpose of this check is to stop a build early for incompatible compiler combinations. The test is built in the Release configuration. Example Usageinclude(FortranCInterface) FortranCInterface_HEADER(FC.h MACRO_NAMESPACE "FC_") This creates a "FC.h" header that defines mangling macros FC_GLOBAL(), FC_GLOBAL_(), FC_MODULE(), and FC_MODULE_(). include(FortranCInterface) FortranCInterface_HEADER(FCMangle.h MACRO_NAMESPACE "FC_" SYMBOL_NAMESPACE "FC_" SYMBOLS mysub mymod:my_sub) This creates a "FCMangle.h" header that defines the same FC_*() mangling macros as the previous example plus preprocessor symbols FC_mysub and FC_mymod_my_sub. Additional ManglingsFortranCInterface is aware of possible GLOBAL and MODULE manglings for many Fortran compilers, but it also provides an interface to specify new possible manglings. Set the variables:FortranCInterface_GLOBAL_SYMBOLS FortranCInterface_MODULE_SYMBOLS before including FortranCInterface to specify manglings of the symbols MySub, My_Sub, MyModule:MySub, and My_Module:My_Sub. For example, the code: set(FortranCInterface_GLOBAL_SYMBOLS mysub_ my_sub__ MYSUB_) # ^^^^^ ^^^^^^ ^^^^^ set(FortranCInterface_MODULE_SYMBOLS __mymodule_MOD_mysub __my_module_MOD_my_sub) # ^^^^^^^^ ^^^^^ ^^^^^^^^^ ^^^^^^ include(FortranCInterface) tells FortranCInterface to try given GLOBAL and MODULE manglings. (The carets point at raw symbol names for clarity in this example but are not needed.) GenerateExportHeaderFunction for generation of export macros for librariesThis module provides the function GENERATE_EXPORT_HEADER(). New in version 3.12: Added support for C projects. Previous versions supported C++ project only. The GENERATE_EXPORT_HEADER function can be used to generate a file suitable for preprocessor inclusion which contains EXPORT macros to be used in library classes: GENERATE_EXPORT_HEADER( LIBRARY_TARGET [BASE_NAME <base_name>] [EXPORT_MACRO_NAME <export_macro_name>] [EXPORT_FILE_NAME <export_file_name>] [DEPRECATED_MACRO_NAME <deprecated_macro_name>] [NO_EXPORT_MACRO_NAME <no_export_macro_name>] [INCLUDE_GUARD_NAME <include_guard_name>] [STATIC_DEFINE <static_define>] [NO_DEPRECATED_MACRO_NAME <no_deprecated_macro_name>] [DEFINE_NO_DEPRECATED] [PREFIX_NAME <prefix_name>] [CUSTOM_CONTENT_FROM_VARIABLE <variable>] ) The target properties CXX_VISIBILITY_PRESET and VISIBILITY_INLINES_HIDDEN can be used to add the appropriate compile flags for targets. See the documentation of those target properties, and the convenience variables CMAKE_CXX_VISIBILITY_PRESET and CMAKE_VISIBILITY_INLINES_HIDDEN. By default GENERATE_EXPORT_HEADER() generates macro names in a file name determined by the name of the library. This means that in the simplest case, users of GenerateExportHeader will be equivalent to: set(CMAKE_CXX_VISIBILITY_PRESET hidden) set(CMAKE_VISIBILITY_INLINES_HIDDEN 1) add_library(somelib someclass.cpp) generate_export_header(somelib) install(TARGETS somelib DESTINATION ${LIBRARY_INSTALL_DIR}) install(FILES someclass.h ${PROJECT_BINARY_DIR}/somelib_export.h DESTINATION ${INCLUDE_INSTALL_DIR} ) And in the ABI header files: #include "somelib_export.h" class SOMELIB_EXPORT SomeClass { ... }; The CMake fragment will generate a file in the ${CMAKE_CURRENT_BINARY_DIR} called somelib_export.h containing the macros SOMELIB_EXPORT, SOMELIB_NO_EXPORT, SOMELIB_DEPRECATED, SOMELIB_DEPRECATED_EXPORT and SOMELIB_DEPRECATED_NO_EXPORT. They will be followed by content taken from the variable specified by the CUSTOM_CONTENT_FROM_VARIABLE option, if any. The resulting file should be installed with other headers in the library. The BASE_NAME argument can be used to override the file name and the names used for the macros: add_library(somelib someclass.cpp) generate_export_header(somelib BASE_NAME other_name ) Generates a file called other_name_export.h containing the macros OTHER_NAME_EXPORT, OTHER_NAME_NO_EXPORT and OTHER_NAME_DEPRECATED etc. The BASE_NAME may be overridden by specifying other options in the function. For example: add_library(somelib someclass.cpp) generate_export_header(somelib EXPORT_MACRO_NAME OTHER_NAME_EXPORT ) creates the macro OTHER_NAME_EXPORT instead of SOMELIB_EXPORT, but other macros and the generated file name is as default: add_library(somelib someclass.cpp) generate_export_header(somelib DEPRECATED_MACRO_NAME KDE_DEPRECATED ) creates the macro KDE_DEPRECATED instead of SOMELIB_DEPRECATED. If LIBRARY_TARGET is a static library, macros are defined without values. If the same sources are used to create both a shared and a static library, the uppercased symbol ${BASE_NAME}_STATIC_DEFINE should be used when building the static library: add_library(shared_variant SHARED ${lib_SRCS}) add_library(static_variant ${lib_SRCS}) generate_export_header(shared_variant BASE_NAME libshared_and_static) set_target_properties(static_variant PROPERTIES COMPILE_FLAGS -DLIBSHARED_AND_STATIC_STATIC_DEFINE) This will cause the export macros to expand to nothing when building the static library. If DEFINE_NO_DEPRECATED is specified, then a macro ${BASE_NAME}_NO_DEPRECATED will be defined This macro can be used to remove deprecated code from preprocessor output: option(EXCLUDE_DEPRECATED "Exclude deprecated parts of the library" FALSE) if (EXCLUDE_DEPRECATED) set(NO_BUILD_DEPRECATED DEFINE_NO_DEPRECATED) endif() generate_export_header(somelib ${NO_BUILD_DEPRECATED}) And then in somelib: class SOMELIB_EXPORT SomeClass { public: #ifndef SOMELIB_NO_DEPRECATED SOMELIB_DEPRECATED void oldMethod(); #endif }; #ifndef SOMELIB_NO_DEPRECATED void SomeClass::oldMethod() { } #endif If PREFIX_NAME is specified, the argument will be used as a prefix to all generated macros. For example: generate_export_header(somelib PREFIX_NAME VTK_) Generates the macros VTK_SOMELIB_EXPORT etc. New in version 3.1: Library target can be an OBJECT library. New in version 3.7: Added the CUSTOM_CONTENT_FROM_VARIABLE option. New in version 3.11: Added the INCLUDE_GUARD_NAME option. ADD_COMPILER_EXPORT_FLAGS( [<output_variable>] ) Deprecated since version 3.0: Set the target properties CXX_VISIBILITY_PRESET and VISIBILITY_INLINES_HIDDEN instead. The ADD_COMPILER_EXPORT_FLAGS function adds -fvisibility=hidden to CMAKE_CXX_FLAGS if supported, and is a no-op on Windows which does not need extra compiler flags for exporting support. You may optionally pass a single argument to ADD_COMPILER_EXPORT_FLAGS that will be populated with the CXX_FLAGS required to enable visibility support for the compiler/architecture in use. GetPrerequisitesDeprecated since version 3.16: Use file(GET_RUNTIME_DEPENDENCIES) instead.Functions to analyze and list executable file prerequisites. This module provides functions to list the .dll, .dylib or .so files that an executable or shared library file depends on. (Its prerequisites.) It uses various tools to obtain the list of required shared library files: dumpbin (Windows) objdump (MinGW on Windows) ldd (Linux/Unix) otool (Mac OSX) Changed in version 3.16: The tool specified by CMAKE_OBJDUMP will be used, if set. The following functions are provided by this module: get_prerequisites list_prerequisites list_prerequisites_by_glob gp_append_unique is_file_executable gp_item_default_embedded_path (projects can override with gp_item_default_embedded_path_override) gp_resolve_item (projects can override with gp_resolve_item_override) gp_resolved_file_type (projects can override with gp_resolved_file_type_override) gp_file_type GET_PREREQUISITES(<target> <prerequisites_var> <exclude_system> <recurse> <exepath> <dirs> [<rpaths>]) Get the list of shared library files required by <target>. The list in the variable named <prerequisites_var> should be empty on first entry to this function. On exit, <prerequisites_var> will contain the list of required shared library files. <target> is the full path to an executable file. <prerequisites_var> is the name of a CMake variable to contain the results. <exclude_system> must be 0 or 1 indicating whether to include or exclude "system" prerequisites. If <recurse> is set to 1 all prerequisites will be found recursively, if set to 0 only direct prerequisites are listed. <exepath> is the path to the top level executable used for @executable_path replacement on the Mac. <dirs> is a list of paths where libraries might be found: these paths are searched first when a target without any path info is given. Then standard system locations are also searched: PATH, Framework locations, /usr/lib... New in version 3.14: The variable GET_PREREQUISITES_VERBOSE can be set to true to enable verbose output. LIST_PREREQUISITES(<target> [<recurse> [<exclude_system> [<verbose>]]]) Print a message listing the prerequisites of <target>. <target> is the name of a shared library or executable target or the full path to a shared library or executable file. If <recurse> is set to 1 all prerequisites will be found recursively, if set to 0 only direct prerequisites are listed. <exclude_system> must be 0 or 1 indicating whether to include or exclude "system" prerequisites. With <verbose> set to 0 only the full path names of the prerequisites are printed, set to 1 extra information will be displayed. LIST_PREREQUISITES_BY_GLOB(<glob_arg> <glob_exp>) Print the prerequisites of shared library and executable files matching a globbing pattern. <glob_arg> is GLOB or GLOB_RECURSE and <glob_exp> is a globbing expression used with "file(GLOB" or "file(GLOB_RECURSE" to retrieve a list of matching files. If a matching file is executable, its prerequisites are listed. Any additional (optional) arguments provided are passed along as the optional arguments to the list_prerequisites calls. GP_APPEND_UNIQUE(<list_var> <value>) Append <value> to the list variable <list_var> only if the value is not already in the list. IS_FILE_EXECUTABLE(<file> <result_var>) Return 1 in <result_var> if <file> is a binary executable, 0 otherwise. GP_ITEM_DEFAULT_EMBEDDED_PATH(<item> <default_embedded_path_var>) Return the path that others should refer to the item by when the item is embedded inside a bundle. Override on a per-project basis by providing a project-specific gp_item_default_embedded_path_override function. GP_RESOLVE_ITEM(<context> <item> <exepath> <dirs> <resolved_item_var> [<rpaths>]) Resolve an item into an existing full path file. Override on a per-project basis by providing a project-specific gp_resolve_item_override function. GP_RESOLVED_FILE_TYPE(<original_file> <file> <exepath> <dirs> <type_var> [<rpaths>]) Return the type of <file> with respect to <original_file>. String describing type of prerequisite is returned in variable named <type_var>. Use <exepath> and <dirs> if necessary to resolve non-absolute <file> values -- but only for non-embedded items. Possible types are: system local embedded other Override on a per-project basis by providing a project-specific gp_resolved_file_type_override function. GP_FILE_TYPE(<original_file> <file> <type_var>) Return the type of <file> with respect to <original_file>. String describing type of prerequisite is returned in variable named <type_var>. Possible types are: system local embedded other GNUInstallDirsDefine GNU standard installation directoriesProvides install directory variables as defined by the GNU Coding Standards. Result VariablesInclusion of this module defines the following variables:CMAKE_INSTALL_<dir> Destination for files of a given type. This value may be
passed to the DESTINATION options of install() commands for the
corresponding file type. It should typically be a path relative to the
installation prefix so that it can be converted to an absolute path in a
relocatable way (see CMAKE_INSTALL_FULL_<dir>). However, an
absolute path is also allowed.
CMAKE_INSTALL_FULL_<dir> The absolute path generated from the corresponding
CMAKE_INSTALL_<dir> value. If the value is not already an
absolute path, an absolute path is constructed typically by prepending the
value of the CMAKE_INSTALL_PREFIX variable. However, there are some
special cases as documented below.
where <dir> is one of:
If the includer does not define a value the above-shown default will be used and the value will appear in the cache for editing by the user. Special CasesNew in version 3.4.The following values of CMAKE_INSTALL_PREFIX are special: / For <dir> other than the SYSCONFDIR,
LOCALSTATEDIR and RUNSTATEDIR, the value of
CMAKE_INSTALL_<dir> is prefixed with usr/ if it is not
user-specified as an absolute path. For example, the INCLUDEDIR value
include becomes usr/include. This is required by the GNU
Coding Standards, which state:
When building the complete GNU system, the prefix will be
empty and /usr will be a symbolic link to /.
/usr For <dir> equal to SYSCONFDIR,
LOCALSTATEDIR or RUNSTATEDIR, the
CMAKE_INSTALL_FULL_<dir> is computed by prepending just /
to the value of CMAKE_INSTALL_<dir> if it is not user-specified
as an absolute path. For example, the SYSCONFDIR value etc
becomes /etc. This is required by the GNU Coding
Standards.
/opt/... For <dir> equal to SYSCONFDIR,
LOCALSTATEDIR or RUNSTATEDIR, the
CMAKE_INSTALL_FULL_<dir> is computed by appending the
prefix to the value of CMAKE_INSTALL_<dir> if it is not
user-specified as an absolute path. For example, the SYSCONFDIR value
etc becomes /etc/opt/.... This is defined by the Filesystem
Hierarchy Standard.
Macros
GNUInstallDirs_get_absolute_install_dir(absvar var dirname) New in version 3.7. Set the given variable absvar to the absolute path contained within the variable var. This is to allow the computation of an absolute path, accounting for all the special cases documented above. While this macro is used to compute the various CMAKE_INSTALL_FULL_<dir> variables, it is exposed publicly to allow users who create additional path variables to also compute absolute paths where necessary, using the same logic. dirname is the directory name to get, e.g. BINDIR. Changed in version 3.20: Added the <dirname> parameter. Previous versions of CMake passed this value through the variable ${dir}. GoogleTestNew in version 3.9.This module defines functions to help use the Google Test infrastructure. Two mechanisms for adding tests are provided. gtest_add_tests() has been around for some time, originally via find_package(GTest). gtest_discover_tests() was introduced in CMake 3.10. The (older) gtest_add_tests() scans source files to identify tests. This is usually effective, with some caveats, including in cross-compiling environments, and makes setting additional properties on tests more convenient. However, its handling of parameterized tests is less comprehensive, and it requires re-running CMake to detect changes to the list of tests. The (newer) gtest_discover_tests() discovers tests by asking the compiled test executable to enumerate its tests. This is more robust and provides better handling of parameterized tests, and does not require CMake to be re-run when tests change. However, it may not work in a cross-compiling environment, and setting test properties is less convenient. More details can be found in the documentation of the respective functions. Both commands are intended to replace use of add_test() to register tests, and will create a separate CTest test for each Google Test test case. Note that this is in some cases less efficient, as common set-up and tear-down logic cannot be shared by multiple test cases executing in the same instance. However, it provides more fine-grained pass/fail information to CTest, which is usually considered as more beneficial. By default, the CTest test name is the same as the Google Test name (i.e. suite.testcase); see also TEST_PREFIX and TEST_SUFFIX.
gtest_add_tests(TARGET target [SOURCES src1...] [EXTRA_ARGS arg1...] [WORKING_DIRECTORY dir] [TEST_PREFIX prefix] [TEST_SUFFIX suffix] [SKIP_DEPENDENCY] [TEST_LIST outVar] ) gtest_add_tests attempts to identify tests by scanning source files. Although this is generally effective, it uses only a basic regular expression match, which can be defeated by atypical test declarations, and is unable to fully "split" parameterized tests. Additionally, it requires that CMake be re-run to discover any newly added, removed or renamed tests (by default, this means that CMake is re-run when any test source file is changed, but see SKIP_DEPENDENCY). However, it has the advantage of declaring tests at CMake time, which somewhat simplifies setting additional properties on tests, and always works in a cross-compiling environment. The options are:
Usage example: include(GoogleTest) add_executable(FooTest FooUnitTest.cxx) gtest_add_tests(TARGET FooTest TEST_SUFFIX .noArgs TEST_LIST noArgsTests ) gtest_add_tests(TARGET FooTest EXTRA_ARGS --someArg someValue TEST_SUFFIX .withArgs TEST_LIST withArgsTests ) set_tests_properties(${noArgsTests} PROPERTIES TIMEOUT 10) set_tests_properties(${withArgsTests} PROPERTIES TIMEOUT 20) For backward compatibility, the following form is also supported: gtest_add_tests(exe args files...)
include(GoogleTest) set(FooTestArgs --foo 1 --bar 2) add_executable(FooTest FooUnitTest.cxx) gtest_add_tests(FooTest "${FooTestArgs}" AUTO)
gtest_discover_tests(target [EXTRA_ARGS arg1...] [WORKING_DIRECTORY dir] [TEST_PREFIX prefix] [TEST_SUFFIX suffix] [TEST_FILTER expr] [NO_PRETTY_TYPES] [NO_PRETTY_VALUES] [PROPERTIES name1 value1...] [TEST_LIST var] [DISCOVERY_TIMEOUT seconds] [XML_OUTPUT_DIR dir] [DISCOVERY_MODE <POST_BUILD|PRE_TEST>] ) New in version 3.10. gtest_discover_tests() sets up a post-build command on the test executable that generates the list of tests by parsing the output from running the test with the --gtest_list_tests argument. Compared to the source parsing approach of gtest_add_tests(), this ensures that the full list of tests, including instantiations of parameterized tests, is obtained. Since test discovery occurs at build time, it is not necessary to re-run CMake when the list of tests changes. However, it requires that CROSSCOMPILING_EMULATOR is properly set in order to function in a cross-compiling environment. Additionally, setting properties on tests is somewhat less convenient, since the tests are not available at CMake time. Additional test properties may be assigned to the set of tests as a whole using the PROPERTIES option. If more fine-grained test control is needed, custom content may be provided through an external CTest script using the TEST_INCLUDE_FILES directory property. The set of discovered tests is made accessible to such a script via the <target>_TESTS variable. The options are:
In CMake versions 3.10.1 and 3.10.2, this option was
called TIMEOUT. This clashed with the TIMEOUT test property,
which is one of the common properties that would be set with the
PROPERTIES keyword, usually leading to legal but unintended behavior.
The keyword was changed to DISCOVERY_TIMEOUT in CMake 3.10.3 to address
this problem. The ambiguous behavior of the TIMEOUT keyword in 3.10.1
and 3.10.2 has not been preserved.
InstallRequiredSystemLibrariesInclude this module to search for compiler-provided system runtime libraries and add install rules for them. Some optional variables may be set prior to including the module to adjust behavior:
New in version 3.10: Support for installing Intel compiler runtimes. ProcessorCountProcessorCount(var)Determine the number of processors/cores and save value in ${var} Sets the variable named ${var} to the number of physical cores available on the machine if the information can be determined. Otherwise it is set to 0. Currently this functionality is implemented for AIX, cygwin, FreeBSD, HPUX, Linux, macOS, QNX, Sun and Windows. Changed in version 3.15: On Linux, returns the container CPU count instead of the host CPU count. This function is guaranteed to return a positive integer (>=1) if it succeeds. It returns 0 if there's a problem determining the processor count. Example use, in a ctest -S dashboard script: include(ProcessorCount) ProcessorCount(N) if(NOT N EQUAL 0) set(CTEST_BUILD_FLAGS -j${N}) set(ctest_test_args ${ctest_test_args} PARALLEL_LEVEL ${N}) endif() This function is intended to offer an approximation of the value of the number of compute cores available on the current machine, such that you may use that value for parallel building and parallel testing. It is meant to help utilize as much of the machine as seems reasonable. Of course, knowledge of what else might be running on the machine simultaneously should be used when deciding whether to request a machine's full capacity all for yourself. SelectLibraryConfigurationsselect_library_configurations(basename) This macro takes a library base name as an argument, and will choose good values for the variables basename_LIBRARY basename_LIBRARIES basename_LIBRARY_DEBUG basename_LIBRARY_RELEASE depending on what has been found and set. If only basename_LIBRARY_RELEASE is defined, basename_LIBRARY will be set to the release value, and basename_LIBRARY_DEBUG will be set to basename_LIBRARY_DEBUG-NOTFOUND. If only basename_LIBRARY_DEBUG is defined, then basename_LIBRARY will take the debug value, and basename_LIBRARY_RELEASE will be set to basename_LIBRARY_RELEASE-NOTFOUND. If the generator supports configuration types, then basename_LIBRARY and basename_LIBRARIES will be set with debug and optimized flags specifying the library to be used for the given configuration. If no build type has been set or the generator in use does not support configuration types, then basename_LIBRARY and basename_LIBRARIES will take only the release value, or the debug value if the release one is not set. SquishTestScriptThis script launches a GUI test using Squish. You should not call the script directly; instead, you should access it via the SQUISH_ADD_TEST macro that is defined in FindSquish.cmake.This script starts the Squish server, launches the test on the client, and finally stops the squish server. If any of these steps fail (including if the tests do not pass) then a fatal error is raised. TestBigEndianDeprecated since version 3.20: Supserseded by the CMAKE_<LANG>_BYTE_ORDER variable.Check if the target architecture is big endian or little endian.
test_big_endian(<var>) Stores in variable <var> either 1 or 0 indicating whether the target architecture is big or little endian. TestForANSIForScopeCheck for ANSI for scope supportCheck if the compiler restricts the scope of variables declared in a for-init-statement to the loop body. CMAKE_NO_ANSI_FOR_SCOPE - holds result TestForANSIStreamHeadersTest for compiler support of ANSI stream headers iostream, etc.check if the compiler supports the standard ANSI iostream header (without the .h) CMAKE_NO_ANSI_STREAM_HEADERS - defined by the results TestForSSTREAMTest for compiler support of ANSI sstream headercheck if the compiler supports the standard ANSI sstream header CMAKE_NO_ANSI_STRING_STREAM - defined by the results TestForSTDNamespaceTest for std:: namespace supportcheck if the compiler supports std:: on stl classes CMAKE_NO_STD_NAMESPACE - defined by the results UseEcosThis module defines variables and macros required to build eCos application.This file contains the following macros: ECOS_ADD_INCLUDE_DIRECTORIES() - add the eCos include dirs ECOS_ADD_EXECUTABLE(name source1 ... sourceN ) - create an eCos executable ECOS_ADJUST_DIRECTORY(VAR source1 ... sourceN ) - adjusts the path of the source files and puts the result into VAR Macros for selecting the toolchain: ECOS_USE_ARM_ELF_TOOLS() - enable the ARM ELF toolchain for the directory where it is called ECOS_USE_I386_ELF_TOOLS() - enable the i386 ELF toolchain for the directory where it is called ECOS_USE_PPC_EABI_TOOLS() - enable the PowerPC toolchain for the directory where it is called It contains the following variables: ECOS_DEFINITIONS ECOSCONFIG_EXECUTABLE ECOS_CONFIG_FILE - defaults to ecos.ecc, if your eCos configuration file has a different name, adjust this variable for internal use only: ECOS_ADD_TARGET_LIB UseJavaThis file provides support for Java. It is assumed that FindJava has already been loaded. See FindJava for information on how to load Java into your CMake project.SynopsisCreating and Installing JARS add_jar (<target_name> [SOURCES] <source1> [<source2>...] ...) install_jar (<target_name> DESTINATION <destination> [COMPONENT <component>]) install_jni_symlink (<target_name> DESTINATION <destination> [COMPONENT <component>]) Header Generation create_javah ((TARGET <target> | GENERATED_FILES <VAR>) CLASSES <class>... ...) Exporting JAR Targets install_jar_exports (TARGETS <jars>... FILE <filename> DESTINATION <destination> ...) export_jars (TARGETS <jars>... [NAMESPACE <namespace>] FILE <filename>) Finding JARs find_jar (<VAR> NAMES <name1> [<name2>...] [PATHS <path1> [<path2>... ENV <var>]] ...) Creating Java Documentation create_javadoc (<VAR> (PACKAGES <pkg1> [<pkg2>...] | FILES <file1> [<file2>...]) ...) Creating And Installing JARs
add_jar(<target_name> [SOURCES] <source1> [<source2>...] [<resource1>...] [RESOURCES NAMESPACE <ns1> <resource1>... [NAMESPACE <nsX> <resourceX>...]... ] [INCLUDE_JARS <jar1> [<jar2>...]] [ENTRY_POINT <entry>] [VERSION <version>] [MANIFEST <manifest>] [OUTPUT_NAME <name>] [OUTPUT_DIR <dir>] [GENERATE_NATIVE_HEADERS <target> [DESTINATION (<dir>|INSTALL <dir> [BUILD <dir>])]] ) This command creates a <target_name>.jar. It compiles the given <source> files and adds the given <resource> files to the jar file. Source files can be java files or listing files (prefixed by @). If only resource files are given then just a jar file is created.
RESOURCES NAMESPACE "/com/my/namespace" "a/path/to/resource.txt" results in a resource accessible via /com/my/namespace/resource.txt within the jar. Resources may be added without adjusting the namespace by adding them to the list of SOURCES (original behavior), in this case, resource paths must be relative to CMAKE_CURRENT_SOURCE_DIR. Adding resources without using the RESOURCES parameter in out of source builds will almost certainly result in confusion. NOTE: Adding resources via the SOURCES parameter relies
upon a hard-coded list of file extensions which are tested to determine
whether they compile (e.g. File.java). SOURCES files which match the
extensions are compiled. Files which do not match are treated as resources. To
include uncompiled resources matching those file extensions use the
RESOURCES parameter.
add_jar(shibboleet shibbotleet.java VERSION 1.2.0)
find_package(JNI) add_jar(foo foo.java GENERATE_NATIVE_HEADERS foo-native) add_library(bar bar.cpp) target_link_libraries(bar PRIVATE foo-native) New in version 3.20: DESTINATION sub-option now supports the possibility to specify different output directories for BUILD and INSTALL steps. If BUILD directory is not specified, a default directory will be used. To export the interface target generated by GENERATE_NATIVE_HEADERS option, sub-option INSTALL of DESTINATION is required: add_jar(foo foo.java GENERATE_NATIVE_HEADERS foo-native DESTINATION INSTALL include) install(TARGETS foo-native EXPORT native) install(DIRECTORY "$<TARGET_PROPERTY:foo-native,NATIVE_HEADERS_DIRECTORY>/" DESTINATION include) install(EXPORT native DESTINATION /to/export NAMESPACE foo) Some variables can be set to customize the behavior of add_jar() as well as the java compiler:
set(CMAKE_JAR_CLASSES_PREFIX com/redhat/foo) add_jar(foo foo.java) set(CMAKE_JAR_CLASSES_PREFIX com/redhat/bar) add_jar(bar bar.java) The add_jar() function sets the following target properties on <target_name>:
install_jar(<target_name> <destination>) install_jar(<target_name> DESTINATION <destination> [COMPONENT <component>]) This command installs the <target_name> file to the given <destination>. It should be called in the same scope as add_jar() or it will fail. New in version 3.4: The second signature with DESTINATION and COMPONENT options.
The install_jar() command sets the following target properties on <target_name>:
install_jni_symlink(<target_name> <destination>) install_jni_symlink(<target_name> DESTINATION <destination> [COMPONENT <component>]) This command installs the <target_name> JNI symlinks to the given <destination>. It should be called in the same scope as add_jar() or it will fail. New in version 3.4: The second signature with DESTINATION and COMPONENT options.
Utilize the following commands to create a JNI symbolic link: set(CMAKE_JNI_TARGET TRUE) add_jar(shibboleet shibbotleet.java VERSION 1.2.0) install_jar(shibboleet ${LIB_INSTALL_DIR}/shibboleet) install_jni_symlink(shibboleet ${JAVA_LIB_INSTALL_DIR}) Header Generation
create_javah(TARGET <target> | GENERATED_FILES <VAR> CLASSES <class>... [CLASSPATH <classpath>...] [DEPENDS <depend>...] [OUTPUT_NAME <path>|OUTPUT_DIR <path>] ) Deprecated since version 3.11: This command will no longer be supported starting with version 10 of the JDK due to the suppression of javah tool. The add_jar(GENERATE_NATIVE_HEADERS) command should be used instead. Create C header files from java classes. These files provide the connective glue that allow your Java and C code to interact. There are two main signatures for create_javah(). The first signature returns generated files through variable specified by the GENERATED_FILES option. For example: create_javah(GENERATED_FILES files_headers CLASSES org.cmake.HelloWorld CLASSPATH hello.jar ) The second signature for create_javah() creates a target which encapsulates header files generation. E.g. create_javah(TARGET target_headers CLASSES org.cmake.HelloWorld CLASSPATH hello.jar ) Both signatures share same options.
Exporting JAR Targets
install_jar_exports(TARGETS <jars>... [NAMESPACE <namespace>] FILE <filename> DESTINATION <destination> [COMPONENT <component>]) This command installs a target export file <filename> for the named jar targets to the given <destination> directory. Its function is similar to that of install(EXPORT).
export_jars(TARGETS <jars>... [NAMESPACE <namespace>] FILE <filename>) This command writes a target export file <filename> for the named <jars> targets. Its function is similar to that of export().
Finding JARs
find_jar(<VAR> <name> | NAMES <name1> [<name2>...] [PATHS <path1> [<path2>... ENV <var>]] [VERSIONS <version1> [<version2>]] [DOC "cache documentation string"] ) This command is used to find a full path to the named jar. A cache entry named by <VAR> is created to store the result of this command. If the full path to a jar is found the result is stored in the variable and the search will not repeated unless the variable is cleared. If nothing is found, the result will be <VAR>-NOTFOUND, and the search will be attempted again next time find_jar() is invoked with the same variable.
Creating Java Documentation
create_javadoc(<VAR> (PACKAGES <pkg1> [<pkg2>...] | FILES <file1> [<file2>...]) [SOURCEPATH <sourcepath>] [CLASSPATH <classpath>] [INSTALLPATH <install path>] [DOCTITLE <the documentation title>] [WINDOWTITLE <the title of the document>] [AUTHOR (TRUE|FALSE)] [USE (TRUE|FALSE)] [VERSION (TRUE|FALSE)] ) The create_javadoc() command can be used to create java documentation. There are two main signatures for create_javadoc(). The first signature works with package names on a path with source files: create_javadoc(my_example_doc PACKAGES com.example.foo com.example.bar SOURCEPATH "${CMAKE_CURRENT_SOURCE_DIR}" CLASSPATH ${CMAKE_JAVA_INCLUDE_PATH} WINDOWTITLE "My example" DOCTITLE "<h1>My example</h1>" AUTHOR TRUE USE TRUE VERSION TRUE ) The second signature for create_javadoc() works on a given list of files: create_javadoc(my_example_doc FILES java/A.java java/B.java CLASSPATH ${CMAKE_JAVA_INCLUDE_PATH} WINDOWTITLE "My example" DOCTITLE "<h1>My example</h1>" AUTHOR TRUE USE TRUE VERSION TRUE ) Both signatures share most of the options. For more details please read the javadoc manpage.
UseSWIGThis file provides support for SWIG. It is assumed that FindSWIG module has already been loaded.Defines the following command for use with SWIG:
swig_add_library(<name> [TYPE <SHARED|MODULE|STATIC|USE_BUILD_SHARED_LIBS>] LANGUAGE <language> [NO_PROXY] [OUTPUT_DIR <directory>] [OUTFILE_DIR <directory>] SOURCES <file>... ) Targets created with the swig_add_library command have the same capabilities as targets created with the add_library() command, so those targets can be used with any command expecting a target (e.g. target_link_libraries()). Changed in version 3.13: This command creates a target with the specified <name> when policy CMP0078 is set to NEW. Otherwise, the legacy behavior will choose a different target name and store it in the SWIG_MODULE_<name>_REAL_NAME variable. Changed in version 3.15: Alternate library name (set with the OUTPUT_NAME property, for example) will be passed on to Python and CSharp wrapper libraries. Changed in version 3.21: Generated library use standard naming conventions for CSharp language when policy CMP0122 is set to NEW. Otherwise, the legacy behavior is applied. NOTE: For multi-config generators, this module does not support
configuration-specific files generated by SWIG. All build
configurations must result in the same generated source file.
NOTE: For Makefile Generators, if, for some sources, the
USE_SWIG_DEPENDENCIES property is FALSE, swig_add_library
does not track file dependencies, so depending on the
<name>_swig_compilation custom target is required for targets
which require the swig-generated files to exist. Other generators may
depend on the source files that would be generated by SWIG.
NOTE: If UseSWIG_MODULE_VERSION is set to 2, it is
strongly recommended to use a dedicated directory unique to the target
when either the OUTPUT_DIR option or the CMAKE_SWIG_OUTDIR
variable are specified. The output directory contents are erased as part of
the target build, so to prevent interference between targets or losing other
important files, each target should have its own dedicated output
directory.
swig_link_libraries(<name> <item>...) This command has same capabilities as target_link_libraries() command. NOTE: If variable UseSWIG_TARGET_NAME_PREFERENCE is set
to STANDARD, this command is deprecated and
target_link_libraries() command must be used instead.
Source file properties on module files must be set before the invocation of the swig_add_library command to specify special behavior of SWIG and ensure generated files will receive the required settings.
set_property(SOURCE mymod.i PROPERTY CPLUSPLUS ON) swig_add_library(mymod LANGUAGE python SOURCES mymod.i)
set_property(SOURCE mymod.i PROPERTY SWIG_MODULE_NAME mymod_realname) Changed in version 3.14: If policy CMP0086 is set to NEW, -module <module_name> is passed to SWIG compiler.
Target library properties can be set to apply same configuration to all SWIG input files.
set (UseSWIG_TARGET_NAME_PREFERENCE STANDARD) swig_add_library(mymod LANGUAGE python SOURCES mymod.i) set_property(TARGET mymod PROPERTY SWIG_COMPILE_DEFINITIONS MY_DEF1 MY_DEF2) set_property(TARGET mymod PROPERTY SWIG_COMPILE_OPTIONS -bla -blb)
The following target properties are output properties and can be used to get information about support files generated by SWIG interface compilation.
set (UseSWIG_TARGET_NAME_PREFERENCE STANDARD) swig_add_library(mymod LANGUAGE python SOURCES mymod.i) get_property(support_files TARGET mymod PROPERTY SWIG_SUPPORT_FILES) NOTE: Only most principal support files are listed. In case
some advanced features of SWIG are used (for example %template),
associated support files may not be listed. Prefer to use the
SWIG_SUPPORT_FILES_DIRECTORY property to handle support files.
When source property OUTPUT_DIR is defined,
multiple directories can be specified as part of
SWIG_SUPPORT_FILES_DIRECTORY.
Some variables can be set to customize the behavior of swig_add_library as well as SWIG:
set(SWIG_SOURCE_FILE_EXTENSIONS ".i" ".swg")
UsewxWidgetsConvenience include for using wxWidgets library.Determines if wxWidgets was FOUND and sets the appropriate libs, incdirs, flags, etc. INCLUDE_DIRECTORIES and LINK_DIRECTORIES are called. USAGE # Note that for MinGW users the order of libs is important! find_package(wxWidgets REQUIRED net gl core base) include(${wxWidgets_USE_FILE}) # and for each of your dependent executable/library targets: target_link_libraries(<YourTarget> ${wxWidgets_LIBRARIES}) DEPRECATED LINK_LIBRARIES is not called in favor of adding dependencies per target. AUTHOR Jan Woetzel <jw -at- mip.informatik.uni-kiel.de> FIND MODULESThese modules search for third-party software. They are normally called through the find_package() command.FindALSAFind Advanced Linux Sound Architecture (ALSA)Find the alsa libraries (asound) IMPORTED TargetsNew in version 3.12.This module defines IMPORTED target ALSA::ALSA, if ALSA has been found. Result VariablesThis module defines the following variables:
Cache variablesThe following cache variables may also be set:
FindArmadilloFind the Armadillo C++ library. Armadillo is a library for linear algebra & scientific computing.New in version 3.18: Support for linking wrapped libraries directly (ARMA_DONT_USE_WRAPPER). Using Armadillo: find_package(Armadillo REQUIRED) include_directories(${ARMADILLO_INCLUDE_DIRS}) add_executable(foo foo.cc) target_link_libraries(foo ${ARMADILLO_LIBRARIES}) This module sets the following variables: ARMADILLO_FOUND - set to true if the library is found ARMADILLO_INCLUDE_DIRS - list of required include directories ARMADILLO_LIBRARIES - list of libraries to be linked ARMADILLO_VERSION_MAJOR - major version number ARMADILLO_VERSION_MINOR - minor version number ARMADILLO_VERSION_PATCH - patch version number ARMADILLO_VERSION_STRING - version number as a string (ex: "1.0.4") ARMADILLO_VERSION_NAME - name of the version (ex: "Antipodean Antileech") FindASPELLTry to find ASPELLOnce done this will define ASPELL_FOUND - system has ASPELL ASPELL_EXECUTABLE - the ASPELL executable ASPELL_INCLUDE_DIR - the ASPELL include directory ASPELL_LIBRARIES - The libraries needed to use ASPELL ASPELL_DEFINITIONS - Compiler switches required for using ASPELL FindAVIFileLocate AVIFILE library and include pathsAVIFILE (http://avifile.sourceforge.net/) is a set of libraries for i386 machines to use various AVI codecs. Support is limited beyond Linux. Windows provides native AVI support, and so doesn't need this library. This module defines AVIFILE_INCLUDE_DIR, where to find avifile.h , etc. AVIFILE_LIBRARIES, the libraries to link against AVIFILE_DEFINITIONS, definitions to use when compiling AVIFILE_FOUND, If false, don't try to use AVIFILE FindBacktraceFind provider for backtrace(3).Checks if OS supports backtrace(3) via either libc or custom library. This module defines the following variables:
The following cache variables are also available to set or use:
Typical usage is to generate of header file using configure_file() with the contents like the following: #cmakedefine01 Backtrace_FOUND #if Backtrace_FOUND # include <${Backtrace_HEADER}> #endif And then reference that generated header file in actual source. FindBISONFind bison executable and provide a macro to generate custom build rules.The module defines the following variables:
The minimum required version of bison can be specified using the standard CMake syntax, e.g. find_package(BISON 2.1.3). If bison is found, the module defines the macro: BISON_TARGET(<Name> <YaccInput> <CodeOutput> [COMPILE_FLAGS <flags>] [DEFINES_FILE <file>] [VERBOSE [<file>]] [REPORT_FILE <file>] ) which will create a custom rule to generate a parser. <YaccInput> is the path to a yacc file. <CodeOutput> is the name of the source file generated by bison. A header file is also be generated, and contains the token list. Changed in version 3.14: When CMP0088 is set to NEW, bison runs in the CMAKE_CURRENT_BINARY_DIR directory. The options are:
The macro defines the following variables:
Example usage: find_package(BISON) BISON_TARGET(MyParser parser.y ${CMAKE_CURRENT_BINARY_DIR}/parser.cpp DEFINES_FILE ${CMAKE_CURRENT_BINARY_DIR}/parser.h) add_executable(Foo main.cpp ${BISON_MyParser_OUTPUTS}) FindBLASFind Basic Linear Algebra Subprograms (BLAS) libraryThis module finds an installed Fortran library that implements the BLAS linear-algebra interface. At least one of the C, CXX, or Fortran languages must be enabled. Input VariablesThe following variables may be set to influence this module's behavior:
Imported targetsThis module defines the following IMPORTED targets:
Result VariablesThis module defines the following variables:
BLAS/LAPACK Vendors
IBMESSL, IBMESSL_SMP IBM Engineering and Scientific Subroutine Library
Intel MKLTo use the Intel MKL implementation of BLAS, a project must enable at least one of the C or CXX languages. Set BLA_VENDOR to an Intel MKL variant either on the command-line as -DBLA_VENDOR=Intel10_64lp or in project code:set(BLA_VENDOR Intel10_64lp) find_package(BLAS) In order to build a project using Intel MKL, and end user must first establish an Intel MKL environment:
. /opt/intel/oneapi/setvars.sh Or, source the MKL component environment script: . /opt/intel/oneapi/mkl/latest/env/vars.sh
. /opt/intel/bin/compilervars.sh intel64 Or, source the MKL component environment script: . /opt/intel/mkl/bin/mklvars.sh intel64 The above environment scripts set the MKLROOT environment variable to the top of the MKL installation. They also add the location of the runtime libraries to the dynamic library loader environment variable for your platform (e.g. LD_LIBRARY_PATH). This is necessary for programs linked against MKL to run. NOTE: As of Intel oneAPI 2021.2, loading only the MKL component
does not make all of its dependencies available. In particular, the
iomp5 library must be available separately, or provided by also loading
the compiler component environment:
. /opt/intel/oneapi/compiler/latest/env/vars.sh FindBoostFind Boost include dirs and librariesUse this module by invoking find_package() with the form: find_package(Boost [version] [EXACT] # Minimum or EXACT version e.g. 1.67.0 [REQUIRED] # Fail with error if Boost is not found [COMPONENTS <libs>...] # Boost libraries by their canonical name # e.g. "date_time" for "libboost_date_time" [OPTIONAL_COMPONENTS <libs>...] # Optional Boost libraries by their canonical name) ) # e.g. "date_time" for "libboost_date_time" This module finds headers and requested component libraries OR a CMake package configuration file provided by a "Boost CMake" build. For the latter case skip to the Boost CMake section below. New in version 3.7: bzip2 and zlib components (Windows only). New in version 3.11: The OPTIONAL_COMPONENTS option. New in version 3.13: stacktrace_* components. New in version 3.19: bzip2 and zlib components on all platforms. Result VariablesThis module defines the following variables:
New in version 3.15: The Boost_VERSION_<PART> variables. Cache variablesSearch results are saved persistently in CMake cache entries:
New in version 3.3: Per-configuration variables Boost_LIBRARY_DIR_RELEASE and Boost_LIBRARY_DIR_DEBUG. HintsThis module reads hints about search locations from variables:
Users may set these hints or results as CACHE entries. Projects should not read these entries directly but instead use the above result variables. Note that some hint names start in upper-case BOOST. One may specify these as environment variables if they are not specified as CMake variables or cache entries. This module first searches for the Boost header files using the above hint variables (excluding BOOST_LIBRARYDIR) and saves the result in Boost_INCLUDE_DIR. Then it searches for requested component libraries using the above hints (excluding BOOST_INCLUDEDIR and Boost_ADDITIONAL_VERSIONS), "lib" directories near Boost_INCLUDE_DIR, and the library name configuration settings below. It saves the library directories in Boost_LIBRARY_DIR_DEBUG and Boost_LIBRARY_DIR_RELEASE and individual library locations in Boost_<COMPONENT>_LIBRARY_DEBUG and Boost_<COMPONENT>_LIBRARY_RELEASE. When one changes settings used by previous searches in the same build tree (excluding environment variables) this module discards previous search results affected by the changes and searches again. Imported TargetsNew in version 3.5.This module defines the following IMPORTED targets:
Implicit dependencies such as Boost::filesystem requiring Boost::system will be automatically detected and satisfied, even if system is not specified when using find_package() and if Boost::system is not added to target_link_libraries(). If using Boost::thread, then Threads::Threads will also be added automatically. It is important to note that the imported targets behave differently than variables created by this module: multiple calls to find_package(Boost) in the same directory or sub-directories with different options (e.g. static or shared) will not override the values of the targets created by the first call. Other VariablesBoost libraries come in many variants encoded in their file name. Users or projects may tell this module which variant to find by setting variables:
Other variables one may set to control this module are:
On Visual Studio and Borland compilers Boost headers request automatic linking to corresponding libraries. This requires matching libraries to be linked explicitly or available in the link library search path. In this case setting Boost_USE_STATIC_LIBS to OFF may not achieve dynamic linking. Boost automatic linking typically requests static libraries with a few exceptions (such as Boost.Python). Use: add_definitions(${Boost_LIB_DIAGNOSTIC_DEFINITIONS}) to ask Boost to report information about automatic linking requests. ExamplesFind Boost headers only:find_package(Boost 1.36.0) if(Boost_FOUND) include_directories(${Boost_INCLUDE_DIRS}) add_executable(foo foo.cc) endif() Find Boost libraries and use imported targets: find_package(Boost 1.56 REQUIRED COMPONENTS date_time filesystem iostreams) add_executable(foo foo.cc) target_link_libraries(foo Boost::date_time Boost::filesystem Boost::iostreams) Find Boost Python 3.6 libraries and use imported targets: find_package(Boost 1.67 REQUIRED COMPONENTS python36 numpy36) add_executable(foo foo.cc) target_link_libraries(foo Boost::python36 Boost::numpy36) Find Boost headers and some static (release only) libraries: set(Boost_USE_STATIC_LIBS ON) # only find static libs set(Boost_USE_DEBUG_LIBS OFF) # ignore debug libs and set(Boost_USE_RELEASE_LIBS ON) # only find release libs set(Boost_USE_MULTITHREADED ON) set(Boost_USE_STATIC_RUNTIME OFF) find_package(Boost 1.66.0 COMPONENTS date_time filesystem system ...) if(Boost_FOUND) include_directories(${Boost_INCLUDE_DIRS}) add_executable(foo foo.cc) target_link_libraries(foo ${Boost_LIBRARIES}) endif() Boost CMakeIf Boost was built using the boost-cmake project or from Boost 1.70.0 on it provides a package configuration file for use with find_package's config mode. This module looks for the package configuration file called BoostConfig.cmake or boost-config.cmake and stores the result in CACHE entry Boost_DIR. If found, the package configuration file is loaded and this module returns with no further action. See documentation of the Boost CMake package configuration for details on what it provides.Set Boost_NO_BOOST_CMAKE to ON, to disable the search for boost-cmake. FindBulletTry to find the Bullet physics engineThis module defines the following variables BULLET_FOUND - Was bullet found BULLET_INCLUDE_DIRS - the Bullet include directories BULLET_LIBRARIES - Link to this, by default it includes all bullet components (Dynamics, Collision, LinearMath, & SoftBody) This module accepts the following variables BULLET_ROOT - Can be set to bullet install path or Windows build path FindBZip2Try to find BZip2IMPORTED TargetsNew in version 3.12.This module defines IMPORTED target BZip2::BZip2, if BZip2 has been found. Result VariablesThis module defines the following variables:
Cache variablesThe following cache variables may also be set:
FindCABLEFind CABLEThis module finds if CABLE is installed and determines where the include files and libraries are. This code sets the following variables: CABLE the path to the cable executable CABLE_TCL_LIBRARY the path to the Tcl wrapper library CABLE_INCLUDE_DIR the path to the include directory To build Tcl wrappers, you should add shared library and link it to ${CABLE_TCL_LIBRARY}. You should also add ${CABLE_INCLUDE_DIR} as an include directory. FindCoin3DFind Coin3D (Open Inventor)Coin3D is an implementation of the Open Inventor API. It provides data structures and algorithms for 3D visualization. This module defines the following variables COIN3D_FOUND - system has Coin3D - Open Inventor COIN3D_INCLUDE_DIRS - where the Inventor include directory can be found COIN3D_LIBRARIES - Link to this to use Coin3D FindCUDAToolkitNew in version 3.17.This script locates the NVIDIA CUDA toolkit and the associated libraries, but does not require the CUDA language be enabled for a given project. This module does not search for the NVIDIA CUDA Samples. New in version 3.19: QNX support. Search BehaviorThe CUDA Toolkit search behavior uses the following order:
When multiple CUDA Toolkits are installed in the default
location of a system (e.g., both /usr/local/cuda-9.0 and
/usr/local/cuda-10.0 exist but the /usr/local/cuda symbolic link
does not exist), this package is marked as not found.
There are too many factors involved in making an automatic decision in the presence of multiple CUDA Toolkits being installed. In this situation, users are encouraged to either (1) set CUDAToolkit_ROOT or (2) ensure that the correct nvcc executable shows up in $PATH for find_program() to find. Arguments
Options
Imported targetsAn imported target named CUDA::toolkit is provided.This module defines IMPORTED targets for each of the following libraries that are part of the CUDAToolkit:
CUDA Runtime LibraryThe CUDA Runtime library (cudart) are what most applications will typically need to link against to make any calls such as cudaMalloc, and cudaFree.Targets Created:
CUDA Driver LibraryThe CUDA Driver library (cuda) are used by applications that use calls such as cuMemAlloc, and cuMemFree. This is generally used by advancedTargets Created:
cuBLASThe cuBLAS library.Targets Created:
cuFFTThe cuFFT library.Targets Created:
cuRANDThe cuRAND library.Targets Created:
cuSOLVERThe cuSOLVER library.Targets Created:
cuSPARSEThe cuSPARSE library.Targets Created:
cuptiThe NVIDIA CUDA Profiling Tools Interface.Targets Created:
NPPThe NPP libraries.Targets Created:
nvBLASThe nvBLAS libraries. This is a shared library only.Targets Created:
nvGRAPHThe nvGRAPH library. Removed starting in CUDA 11.0Targets Created:
nvJPEGThe nvJPEG library. Introduced in CUDA 10.Targets Created:
nvRTCThe nvRTC (Runtime Compilation) library. This is a shared library only.Targets Created:
nvidia-MLThe NVIDIA Management Library. This is a shared library only.Targets Created:
nvToolsExtThe NVIDIA Tools Extension. This is a shared library only.Targets Created:
OpenCLThe NVIDIA OpenCL Library. This is a shared library only.Targets Created:
cuLIBOSThe cuLIBOS library is a backend thread abstraction layer library which is static only. The CUDA::cublas_static, CUDA::cusparse_static, CUDA::cufft_static, CUDA::curand_static, and (when implemented) NPP libraries all automatically have this dependency linked.Target Created:
Note: direct usage of this target by consumers should not be necessary. Result variables
FindCupsFind the Common UNIX Printing System (CUPS).Set CUPS_REQUIRE_IPP_DELETE_ATTRIBUTE to TRUE if you need a version which features this function (i.e. at least 1.1.19) Imported targetsNew in version 3.15.This module defines IMPORTED target Cups::Cups, if Cups has been found. Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
FindCURLFind the native CURL headers and libraries.New in version 3.14: This module accept optional COMPONENTS to check supported features and protocols: PROTOCOLS: ICT FILE FTP FTPS GOPHER HTTP HTTPS IMAP IMAPS LDAP LDAPS POP3 POP3S RTMP RTSP SCP SFTP SMB SMBS SMTP SMTPS TELNET TFTP FEATURES: SSL IPv6 UnixSockets libz AsynchDNS IDN GSS-API PSL SPNEGO Kerberos NTLM NTLM_WB TLS-SRP HTTP2 HTTPS-proxy IMPORTED TargetsNew in version 3.12.This module defines IMPORTED target CURL::libcurl, if curl has been found. Result VariablesThis module defines the following variables:
New in version 3.13: Debug and Release variants are found separately. CURL CMakeNew in version 3.17.If CURL was built using the CMake buildsystem then it provides its own CURLConfig.cmake file for use with the find_package() command's config mode. This module looks for this file and, if found, returns its results with no further action. Set CURL_NO_CURL_CMAKE to ON to disable this search. FindCursesFind the curses or ncurses include file and library.Result VariablesThis module defines the following variables:
Set CURSES_NEED_NCURSES to TRUE before the find_package(Curses) call if NCurses functionality is required. New in version 3.10: Set CURSES_NEED_WIDE to TRUE before the find_package(Curses) call if unicode functionality is required. Backward CompatibilityThe following variable are provided for backward compatibility:
FindCVSFind the Concurrent Versions System (CVS).The module defines the following variables: CVS_EXECUTABLE - path to cvs command line client CVS_FOUND - true if the command line client was found Example usage: find_package(CVS) if(CVS_FOUND) message("CVS found: ${CVS_EXECUTABLE}") endif() FindCxxTestFind CxxTest unit testing framework.Find the CxxTest suite and declare a helper macro for creating unit tests and integrating them with CTest. For more details on CxxTest see http://cxxtest.tigris.org INPUT Variables CXXTEST_USE_PYTHON [deprecated since 1.3] Only used in the case both Python & Perl are detected on the system to control which CxxTest code generator is used. Valid only for CxxTest version 3. NOTE: In older versions of this Find Module, this variable controlled if the Python test generator was used instead of the Perl one, regardless of which scripting language the user had installed. CXXTEST_TESTGEN_ARGS (since CMake 2.8.3) Specify a list of options to pass to the CxxTest code generator. If not defined, --error-printer is passed. OUTPUT Variables CXXTEST_FOUND True if the CxxTest framework was found CXXTEST_INCLUDE_DIRS Where to find the CxxTest include directory CXXTEST_PERL_TESTGEN_EXECUTABLE The perl-based test generator CXXTEST_PYTHON_TESTGEN_EXECUTABLE The python-based test generator CXXTEST_TESTGEN_EXECUTABLE (since CMake 2.8.3) The test generator that is actually used (chosen using user preferences and interpreters found in the system) CXXTEST_TESTGEN_INTERPRETER (since CMake 2.8.3) The full path to the Perl or Python executable on the system, on platforms where the script cannot be executed using its shebang line. MACROS for optional use by CMake users: CXXTEST_ADD_TEST(<test_name> <gen_source_file> <input_files_to_testgen...>) Creates a CxxTest runner and adds it to the CTest testing suite Parameters: test_name The name of the test gen_source_file The generated source filename to be generated by CxxTest input_files_to_testgen The list of header files containing the CxxTest::TestSuite's to be included in this runner #============== Example Usage: find_package(CxxTest) if(CXXTEST_FOUND) include_directories(${CXXTEST_INCLUDE_DIR}) enable_testing() CXXTEST_ADD_TEST(unittest_foo foo_test.cc ${CMAKE_CURRENT_SOURCE_DIR}/foo_test.h) target_link_libraries(unittest_foo foo) # as needed endif() This will (if CxxTest is found): 1. Invoke the testgen executable to autogenerate foo_test.cc in the binary tree from "foo_test.h" in the current source directory. 2. Create an executable and test called unittest_foo. #============= Example foo_test.h: #include <cxxtest/TestSuite.h> class MyTestSuite : public CxxTest::TestSuite { public: void testAddition( void ) { TS_ASSERT( 1 + 1 > 1 ); TS_ASSERT_EQUALS( 1 + 1, 2 ); } }; FindCygwinFind Cygwin, a POSIX-compatible environment that runs natively on Microsoft WindowsFindDartFind DARTThis module looks for the dart testing software and sets DART_ROOT to point to where it found it. FindDCMTKFind DICOM ToolKit (DCMTK) libraries and applicationsThe module defines the following variables: DCMTK_INCLUDE_DIRS - Directories to include to use DCMTK DCMTK_LIBRARIES - Files to link against to use DCMTK DCMTK_FOUND - If false, don't try to use DCMTK DCMTK_DIR - (optional) Source directory for DCMTK CompatibilityThis module is able to find a version of DCMTK that does or does not export a DCMTKConfig.cmake file. It applies a two step process:
Recent DCMTK provides a DCMTKConfig.cmake package configuration file. To exclusively use the package configuration file (recommended when possible), pass the NO_MODULE option to find_package(). For example, find_package(DCMTK NO_MODULE). This requires official DCMTK snapshot 3.6.1_20140617 or newer. Until all clients update to the more recent DCMTK, build systems will need to support different versions of DCMTK. On any given system, the following combinations of DCMTK versions could be considered:
(*) See Troubleshooting section.
Legend: NA ...............: Means that no System or Local DCMTK
is available
[ ] DCMTKConfig ..: Means that the version of DCMTK does NOT export a DCMTKConfig.cmake file. [X] DCMTKConfig ..: Means that the version of DCMTK exports a DCMTKConfig.cmake file. TroubleshootingWhat to do if my project finds a different version of DCMTK?Remove DCMTK entry from the CMake cache per find_package() documentation. FindDevILThis module locates the developer's image library. http://openil.sourceforge.net/IMPORTED TargetsNew in version 3.21.This module defines the IMPORTED targets:
Result VariablesThis module sets:
FindDoxygenDoxygen is a documentation generation tool (see http://www.doxygen.org). This module looks for Doxygen and some optional tools it supports:
New in version 3.9: These tools are available as components in the find_package() command. For example: # Require dot, treat the other components as optional find_package(Doxygen REQUIRED dot OPTIONAL_COMPONENTS mscgen dia) The following variables are defined by this module:
New in version 3.9: The module defines IMPORTED targets for Doxygen and each component found. These can be used as part of custom commands, etc. and should be preferred over old-style (and now deprecated) variables like DOXYGEN_EXECUTABLE. The following import targets are defined if their corresponding executable could be found (the component import targets will only be defined if that component was requested): Doxygen::doxygen Doxygen::dot Doxygen::mscgen Doxygen::dia Functions
doxygen_add_docs(targetName [filesOrDirs...] [ALL] [USE_STAMP_FILE] [WORKING_DIRECTORY dir] [COMMENT comment]) The function constructs a Doxyfile and defines a custom target that runs Doxygen on that generated file. The listed files and directories are used as the INPUT of the generated Doxyfile and they can contain wildcards. Any files that are listed explicitly will also be added as SOURCES of the custom target so they will show up in an IDE project's source list. So that relative input paths work as expected, by default the working directory of the Doxygen command will be the current source directory (i.e. CMAKE_CURRENT_SOURCE_DIR). This can be overridden with the WORKING_DIRECTORY option to change the directory used as the relative base point. Note also that Doxygen's default behavior is to strip the working directory from relative paths in the generated documentation (see the STRIP_FROM_PATH Doxygen config option for details). If provided, the optional comment will be passed as the COMMENT for the add_custom_target() command used to create the custom target internally. New in version 3.12: If ALL is set, the target will be added to the default build target. New in version 3.16: If USE_STAMP_FILE is set, the custom command defined by this function will create a stamp file with the name <targetName>.stamp in the current binary directory whenever doxygen is re-run. With this option present, all items in <filesOrDirs> must be files (i.e. no directories, symlinks or wildcards) and each of the files must exist at the time doxygen_add_docs() is called. An error will be raised if any of the items listed is missing or is not a file when USE_STAMP_FILE is given. A dependency will be created on each of the files so that doxygen will only be re-run if one of the files is updated. Without the USE_STAMP_FILE option, doxygen will always be re-run if the <targetName> target is built regardless of whether anything listed in <filesOrDirs> has changed. The contents of the generated Doxyfile can be customized by setting CMake variables before calling doxygen_add_docs(). Any variable with a name of the form DOXYGEN_<tag> will have its value substituted for the corresponding <tag> configuration option in the Doxyfile. See the Doxygen documentation for the full list of supported configuration options. Some of Doxygen's defaults are overridden to provide more appropriate behavior for a CMake project. Each of the following will be explicitly set unless the variable already has a value before doxygen_add_docs() is called (with some exceptions noted):
*/.git/* */.svn/* */.hg/* */CMakeFiles/* */_CPack_Packages/* DartConfiguration.tcl CMakeLists.txt CMakeCache.txt
To change any of these defaults or override any other Doxygen config option, set relevant variables before calling doxygen_add_docs(). For example: set(DOXYGEN_GENERATE_HTML NO) set(DOXYGEN_GENERATE_MAN YES) doxygen_add_docs( doxygen ${PROJECT_SOURCE_DIR} COMMENT "Generate man pages" ) A number of Doxygen config options accept lists of values, but Doxygen requires them to be separated by whitespace. CMake variables hold lists as a string with items separated by semi-colons, so a conversion needs to be performed. The doxygen_add_docs() command specifically checks the following Doxygen config options and will convert their associated CMake variable's contents into the required form if set. CMake variables are named DOXYGEN_<name> for the Doxygen settings specified here. ABBREVIATE_BRIEF ALIASES CITE_BIB_FILES DIAFILE_DIRS DOTFILE_DIRS DOT_FONTPATH ENABLED_SECTIONS EXAMPLE_PATH EXAMPLE_PATTERNS EXCLUDE EXCLUDE_PATTERNS EXCLUDE_SYMBOLS EXPAND_AS_DEFINED EXTENSION_MAPPING EXTRA_PACKAGES EXTRA_SEARCH_MAPPINGS FILE_PATTERNS FILTER_PATTERNS FILTER_SOURCE_PATTERNS HTML_EXTRA_FILES HTML_EXTRA_STYLESHEET IGNORE_PREFIX IMAGE_PATH INCLUDE_FILE_PATTERNS INCLUDE_PATH INPUT LATEX_EXTRA_FILES LATEX_EXTRA_STYLESHEET MATHJAX_EXTENSIONS MSCFILE_DIRS PLANTUML_INCLUDE_PATH PREDEFINED QHP_CUST_FILTER_ATTRS QHP_SECT_FILTER_ATTRS STRIP_FROM_INC_PATH STRIP_FROM_PATH TAGFILES TCL_SUBST The following single value Doxygen options will be quoted automatically if they contain at least one space: CHM_FILE DIA_PATH DOCBOOK_OUTPUT DOCSET_FEEDNAME DOCSET_PUBLISHER_NAME DOT_FONTNAME DOT_PATH EXTERNAL_SEARCH_ID FILE_VERSION_FILTER GENERATE_TAGFILE HHC_LOCATION HTML_FOOTER HTML_HEADER HTML_OUTPUT HTML_STYLESHEET INPUT_FILTER LATEX_FOOTER LATEX_HEADER LATEX_OUTPUT LAYOUT_FILE MAN_OUTPUT MAN_SUBDIR MATHJAX_CODEFILE MSCGEN_PATH OUTPUT_DIRECTORY PERL_PATH PLANTUML_JAR_PATH PROJECT_BRIEF PROJECT_LOGO PROJECT_NAME QCH_FILE QHG_LOCATION QHP_CUST_FILTER_NAME QHP_VIRTUAL_FOLDER RTF_EXTENSIONS_FILE RTF_OUTPUT RTF_STYLESHEET_FILE SEARCHDATA_FILE USE_MDFILE_AS_MAINPAGE WARN_FORMAT WARN_LOGFILE XML_OUTPUT New in version 3.11: There are situations where it may be undesirable for a particular config option to be automatically quoted by doxygen_add_docs(), such as ALIASES which may need to include its own embedded quoting. The DOXYGEN_VERBATIM_VARS variable can be used to specify a list of Doxygen variables (including the leading DOXYGEN_ prefix) which should not be quoted. The project is then responsible for ensuring that those variables' values make sense when placed directly in the Doxygen input file. In the case of list variables, list items are still separated by spaces, it is only the automatic quoting that is skipped. For example, the following allows doxygen_add_docs() to apply quoting to DOXYGEN_PROJECT_BRIEF, but not each item in the DOXYGEN_ALIASES list (bracket syntax can also be used to make working with embedded quotes easier): set(DOXYGEN_PROJECT_BRIEF "String with spaces") set(DOXYGEN_ALIASES [[somealias="@some_command param"]] "anotherAlias=@foobar" ) set(DOXYGEN_VERBATIM_VARS DOXYGEN_ALIASES) The resultant Doxyfile will contain the following lines: PROJECT_BRIEF = "String with spaces" ALIASES = somealias="@some_command param" anotherAlias=@foobar Deprecated Result VariablesDeprecated since version 3.9.For compatibility with previous versions of CMake, the following variables are also defined but they are deprecated and should no longer be used:
Deprecated Hint VariablesDeprecated since version 3.9.
FindEnvModulesNew in version 3.15.Locate an environment module implementation and make commands available to CMake scripts to use them. This is compatible with both Lua-based Lmod and TCL-based EnvironmentModules. This module is intended for the use case of setting up the compiler and library environment within a CTest Script (ctest -S). It can also be used in a CMake Script (cmake -P). NOTE: The loaded environment will not survive past the end of
the calling process. Do not use this module in project code
(CMakeLists.txt files) to load a compiler environment; it will not be
available during the build. Instead load the environment manually before
running CMake or using the generated build system.
Example Usageset(CTEST_BUILD_NAME "CrayLinux-CrayPE-Cray-dynamic") set(CTEST_BUILD_CONFIGURATION Release) set(CTEST_BUILD_FLAGS "-k -j8") set(CTEST_CMAKE_GENERATOR "Unix Makefiles") ... find_package(EnvModules REQUIRED) env_module(purge) env_module(load modules) env_module(load craype) env_module(load PrgEnv-cray) env_module(load craype-knl) env_module(load cray-mpich) env_module(load cray-libsci) set(ENV{CRAYPE_LINK_TYPE} dynamic) ... Result VariablesThis module will set the following variables in your project:
Cache VariablesThe following cache variable will be set:
Environment Variables
Provided FunctionsThis defines the following CMake functions for interacting with environment modules:
env_module(cmd arg1 ... argN) env_module( COMMAND cmd arg1 ... argN [OUTPUT_VARIABLE <out-var>] [RESULT_VARIABLE <ret-var>] ) The options are:
env_module_swap(out_mod in_mod [OUTPUT_VARIABLE <out-var>] [RESULT_VARIABLE <ret-var>] ) This is functionally equivalent to the module swap out_mod in_mod shell command. The options are:
env_module_list(<out-var>) This is functionally equivalent to the module list shell command. The result is stored in <out-var> as a properly formatted CMake semicolon-separated list variable.
env_module_avail([<mod-prefix>] <out-var>) This is functionally equivalent to the module avail <mod-prefix> shell command. The result is stored in <out-var> as a properly formatted CMake semicolon-separated list variable. FindEXPATFind the native Expat headers and library. Expat is a stream-oriented XML parser library written in C.Imported TargetsNew in version 3.10.This module defines the following IMPORTED targets:
Result VariablesThis module will set the following variables in your project:
FindFLEXFind Fast Lexical Analyzer (Flex) executable and provides a macro to generate custom build rulesThe module defines the following variables: FLEX_FOUND - True is flex executable is found FLEX_EXECUTABLE - the path to the flex executable FLEX_VERSION - the version of flex FLEX_LIBRARIES - The flex libraries FLEX_INCLUDE_DIRS - The path to the flex headers The minimum required version of flex can be specified using the standard syntax, e.g. find_package(FLEX 2.5.13) If flex is found on the system, the module provides the macro: FLEX_TARGET(Name FlexInput FlexOutput [COMPILE_FLAGS <string>] [DEFINES_FILE <string>] ) which creates a custom command to generate the FlexOutput file from the FlexInput file. Name is an alias used to get details of this custom command. If COMPILE_FLAGS option is specified, the next parameter is added to the flex command line. New in version 3.5: If flex is configured to output a header file, the DEFINES_FILE option may be used to specify its name. Changed in version 3.17: When CMP0098 is set to NEW, flex runs in the CMAKE_CURRENT_BINARY_DIR directory. The macro defines the following variables: FLEX_${Name}_DEFINED - true is the macro ran successfully FLEX_${Name}_OUTPUTS - the source file generated by the custom rule, an alias for FlexOutput FLEX_${Name}_INPUT - the flex source file, an alias for ${FlexInput} FLEX_${Name}_OUTPUT_HEADER - the header flex output, if any. Flex scanners often use tokens defined by Bison: the code generated by Flex depends of the header generated by Bison. This module also defines a macro: ADD_FLEX_BISON_DEPENDENCY(FlexTarget BisonTarget) which adds the required dependency between a scanner and a parser where FlexTarget and BisonTarget are the first parameters of respectively FLEX_TARGET and BISON_TARGET macros. ==================================================================== Example: find_package(BISON) find_package(FLEX) BISON_TARGET(MyParser parser.y ${CMAKE_CURRENT_BINARY_DIR}/parser.cpp) FLEX_TARGET(MyScanner lexer.l ${CMAKE_CURRENT_BINARY_DIR}/lexer.cpp) ADD_FLEX_BISON_DEPENDENCY(MyScanner MyParser) include_directories(${CMAKE_CURRENT_BINARY_DIR}) add_executable(Foo Foo.cc ${BISON_MyParser_OUTPUTS} ${FLEX_MyScanner_OUTPUTS} ) target_link_libraries(Foo ${FLEX_LIBRARIES}) ==================================================================== FindFLTKFind the Fast Light Toolkit (FLTK) libraryInput VariablesBy default this module will search for all of the FLTK components and add them to the FLTK_LIBRARIES variable. You can limit the components which get placed in FLTK_LIBRARIES by defining one or more of the following three options:
FLTK is composed also by a binary tool. You can set the following option:
Result VariablesThe following variables will be defined:
Cache VariablesThe following cache variables are also available to set or use:
New in version 3.11: Debug and Release variants are found separately and use per-configuration variables. FindFLTK2Find the native FLTK 2.0 includes and libraryThe following settings are defined FLTK2_FLUID_EXECUTABLE, where to find the Fluid tool FLTK2_WRAP_UI, This enables the FLTK2_WRAP_UI command FLTK2_INCLUDE_DIR, where to find include files FLTK2_LIBRARIES, list of fltk2 libraries FLTK2_FOUND, Don't use FLTK2 if false. The following settings should not be used in general. FLTK2_BASE_LIBRARY = the full path to fltk2.lib FLTK2_GL_LIBRARY = the full path to fltk2_gl.lib FLTK2_IMAGES_LIBRARY = the full path to fltk2_images.lib FindFontconfigNew in version 3.14.Find Fontconfig headers and library. Imported Targets
Result VariablesThis will define the following variables in your project:
FindFreetypeFind the FreeType font renderer includes and library.Imported TargetsNew in version 3.10.This module defines the following IMPORTED target:
Result VariablesThis module will set the following variables in your project:
New in version 3.7: Debug and Release variants are found separately. HintsThe user may set the environment variable FREETYPE_DIR to the root directory of a Freetype installation.FindGCCXMLFind the GCC-XML front-end executable.This module will define the following variables: GCCXML - the GCC-XML front-end executable. FindGDALFind Geospatial Data Abstraction Library (GDAL).IMPORTED TargetsNew in version 3.14.This module defines IMPORTED target GDAL::GDAL if GDAL has been found. Result VariablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
HintsSet GDAL_DIR or GDAL_ROOT in the environment to specify the GDAL installation prefix.The following variables may be set to modify the search strategy:
FindGettextFind GNU gettext toolsThis module looks for the GNU gettext tools. This module defines the following values: GETTEXT_MSGMERGE_EXECUTABLE: the full path to the msgmerge tool. GETTEXT_MSGFMT_EXECUTABLE: the full path to the msgfmt tool. GETTEXT_FOUND: True if gettext has been found. GETTEXT_VERSION_STRING: the version of gettext found (since CMake 2.8.8) Additionally it provides the following macros: GETTEXT_CREATE_TRANSLATIONS ( outputFile [ALL] file1 ... fileN ) This will create a target "translations" which will convert the given input po files into the binary output mo file. If the ALL option is used, the translations will also be created when building the default target. GETTEXT_PROCESS_POT_FILE( <potfile> [ALL] [INSTALL_DESTINATION <destdir>] LANGUAGES <lang1> <lang2> ... ) Process the given pot file to mo files. If INSTALL_DESTINATION is given then automatically install rules will be created, the language subdirectory will be taken into account (by default use share/locale/). If ALL is specified, the pot file is processed when building the all target. It creates a custom target "potfile". GETTEXT_PROCESS_PO_FILES( <lang> [ALL] [INSTALL_DESTINATION <dir>] PO_FILES <po1> <po2> ... ) Process the given po files to mo files for the given language. If INSTALL_DESTINATION is given then automatically install rules will be created, the language subdirectory will be taken into account (by default use share/locale/). If ALL is specified, the po files are processed when building the all target. It creates a custom target "pofiles". New in version 3.2: If you wish to use the Gettext library (libintl), use FindIntl. FindGIFThis finds the Graphics Interchange Format (GIF) library (giflib)Imported targetsThis module defines the following IMPORTED target:
Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
HintsGIF_DIR is an environment variable that would correspond to the ./configure --prefix=$GIF_DIR.FindGitThe module defines the following variables:
New in version 3.14: The module defines the following IMPORTED targets (when CMAKE_ROLE is PROJECT):
Example usage: find_package(Git) if(Git_FOUND) message("Git found: ${GIT_EXECUTABLE}") endif() FindGLEWFind the OpenGL Extension Wrangler Library (GLEW)Input VariablesThe following variables may be set to influence this module's behavior:
Imported TargetsNew in version 3.1.This module defines the following Imported Targets:
Result VariablesThis module defines the following variables:
New in version 3.7: Debug and Release variants are found separately. FindGLUTFind OpenGL Utility Toolkit (GLUT) library and include files.IMPORTED TargetsNew in version 3.1.This module defines the IMPORTED targets:
Result VariablesThis module sets the following variables:GLUT_INCLUDE_DIR, where to find GL/glut.h, etc. GLUT_LIBRARIES, the libraries to link against GLUT_FOUND, If false, do not try to use GLUT. Also defined, but not for general use are: GLUT_glut_LIBRARY = the full path to the glut library. GLUT_Xmu_LIBRARY = the full path to the Xmu library. GLUT_Xi_LIBRARY = the full path to the Xi Library. New in version 3.13: Debug and Release variants are found separately. FindGnuplotthis module looks for gnuplotOnce done this will define GNUPLOT_FOUND - system has Gnuplot GNUPLOT_EXECUTABLE - the Gnuplot executable GNUPLOT_VERSION_STRING - the version of Gnuplot found (since CMake 2.8.8) GNUPLOT_VERSION_STRING will not work for old versions like 3.7.1. FindGnuTLSFind the GNU Transport Layer Security library (gnutls)IMPORTED TargetsNew in version 3.16.This module defines IMPORTED target GnuTLS::GnuTLS, if gnutls has been found. Result Variables
FindGSLNew in version 3.2.Find the native GNU Scientific Library (GSL) includes and libraries. The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It is free software under the GNU General Public License. Imported TargetsIf GSL is found, this module defines the following IMPORTED targets:GSL::gsl - The main GSL library. GSL::gslcblas - The CBLAS support library used by GSL. Result VariablesThis module will set the following variables in your project:GSL_FOUND - True if GSL found on the local system GSL_INCLUDE_DIRS - Location of GSL header files. GSL_LIBRARIES - The GSL libraries. GSL_VERSION - The version of the discovered GSL install. HintsSet GSL_ROOT_DIR to a directory that contains a GSL installation.This script expects to find libraries at $GSL_ROOT_DIR/lib and the GSL headers at $GSL_ROOT_DIR/include/gsl. The library directory may optionally provide Release and Debug folders. If available, the libraries named gsld, gslblasd or cblasd are recognized as debug libraries. For Unix-like systems, this script will use $GSL_ROOT_DIR/bin/gsl-config (if found) to aid in the discovery of GSL. Cache VariablesThis module may set the following variables depending on platform and type of GSL installation discovered. These variables may optionally be set to help this module find the correct files:GSL_CBLAS_LIBRARY - Location of the GSL CBLAS library. GSL_CBLAS_LIBRARY_DEBUG - Location of the debug GSL CBLAS library (if any). GSL_CONFIG_EXECUTABLE - Location of the ``gsl-config`` script (if any). GSL_LIBRARY - Location of the GSL library. GSL_LIBRARY_DEBUG - Location of the debug GSL library (if any). FindGTestLocate the Google C++ Testing Framework.New in version 3.20: Upstream GTestConfig.cmake is used if possible. Imported targetsNew in version 3.20: This module defines the following IMPORTED targets:
Deprecated since version 3.20: For backwards compatibility, this module defines additionally the following deprecated IMPORTED targets (available since 3.5):
Result variablesThis module will set the following variables in your project:
The library variables below are set as normal variables. These contain debug/optimized keywords when a debugging library is found.
Cache variablesThe following cache variables may also be set:
Example usageenable_testing() find_package(GTest REQUIRED) add_executable(foo foo.cc) target_link_libraries(foo GTest::gtest GTest::gtest_main) add_test(AllTestsInFoo foo) Deeper integration with CTestSee GoogleTest for information on the gtest_add_tests() and gtest_discover_tests() commands.Changed in version 3.9: Previous CMake versions defined gtest_add_tests() macro in this module. FindGTKFind GTK, glib and GTKGLAreaGTK_INCLUDE_DIR - Directories to include to use GTK GTK_LIBRARIES - Files to link against to use GTK GTK_FOUND - GTK was found GTK_GL_FOUND - GTK's GL features were found FindGTK2Find the GTK2 widget libraries and several of its other optional components like gtkmm, glade, and glademm.Specify one or more of the following components as you call this find module. See example below.
Imported TargetsThis module defines the following IMPORTED targets (subject to component selection):GTK2::atk, GTK2::atkmm, GTK2::cairo, GTK2::cairomm, GTK2::gdk_pixbuf, GTK2::gdk, GTK2::gdkmm, GTK2::gio, GTK2::giomm, GTK2::glade, GTK2::glademm, GTK2::glib, GTK2::glibmm, GTK2::gmodule, GTK2::gobject, GTK2::gthread, GTK2::gtk, GTK2::gtkmm, GTK2::harfbuzz, GTK2::pango, GTK2::pangocairo, GTK2::pangoft2, GTK2::pangomm, GTK2::pangoxft, GTK2::sigc. New in version 3.16.7: Added the GTK2::harfbuzz target. Result VariablesThe following variables will be defined for your use
New in version 3.5: When GTK2_USE_IMPORTED_TARGETS is set to TRUE, GTK2_LIBRARIES will list imported targets instead of library paths. Input VariablesOptional variables you can define prior to calling this module:
Example UsageCall find_package() once. Here are some examples to pick from:Require GTK 2.6 or later: find_package(GTK2 2.6 REQUIRED gtk) Require GTK 2.10 or later and Glade: find_package(GTK2 2.10 REQUIRED gtk glade) Search for GTK/GTKMM 2.8 or later: find_package(GTK2 2.8 COMPONENTS gtk gtkmm) Use the results: if(GTK2_FOUND) include_directories(${GTK2_INCLUDE_DIRS}) add_executable(mygui mygui.cc) target_link_libraries(mygui ${GTK2_LIBRARIES}) endif() FindHDF5Find Hierarchical Data Format (HDF5), a library for reading and writing self describing array data.This module invokes the HDF5 wrapper compiler that should be installed alongside HDF5. Depending upon the HDF5 Configuration, the wrapper compiler is called either h5cc or h5pcc. If this succeeds, the module will then call the compiler with the show argument to see what flags are used when compiling an HDF5 client application. The module will optionally accept the COMPONENTS argument. If no COMPONENTS are specified, then the find module will default to finding only the HDF5 C library. If one or more COMPONENTS are specified, the module will attempt to find the language bindings for the specified components. The valid components are C, CXX, Fortran, HL. HL refers to the "high-level" HDF5 functions for C and Fortran. If the COMPONENTS argument is not given, the module will attempt to find only the C bindings. For example, to use Fortran HDF5 and HDF5-HL functions, do: find_package(HDF5 COMPONENTS Fortran HL). This module will read the variable HDF5_USE_STATIC_LIBRARIES to determine whether or not to prefer a static link to a dynamic link for HDF5 and all of it's dependencies. To use this feature, make sure that the HDF5_USE_STATIC_LIBRARIES variable is set before the call to find_package. New in version 3.10: Support for HDF5_USE_STATIC_LIBRARIES on Windows. Both the serial and parallel HDF5 wrappers are considered and the first directory to contain either one will be used. In the event that both appear in the same directory the serial version is preferentially selected. This behavior can be reversed by setting the variable HDF5_PREFER_PARALLEL to TRUE. In addition to finding the includes and libraries required to compile an HDF5 client application, this module also makes an effort to find tools that come with the HDF5 distribution that may be useful for regression testing. Result VariablesThis module will set the following variables in your project:
Available components are: C CXX Fortran and HL. For each enabled language binding, a corresponding HDF5_${LANG}_LIBRARIES variable, and potentially HDF5_${LANG}_DEFINITIONS, will be defined. If the HL component is enabled, then an HDF5_${LANG}_HL_LIBRARIES will also be defined. With all components enabled, the following variables will be defined:
With all components enabled, the following targets will be defined:
HintsThe following variables can be set to guide the search for HDF5 libraries and includes:
FindHgExtract information from a mercurial working copy.The module defines the following variables: HG_EXECUTABLE - path to mercurial command line client (hg) HG_FOUND - true if the command line client was found HG_VERSION_STRING - the version of mercurial found New in version 3.1: If the command line client executable is found the following macro is defined: HG_WC_INFO(<dir> <var-prefix>) Hg_WC_INFO extracts information of a mercurial working copy at a given location. This macro defines the following variables: <var-prefix>_WC_CHANGESET - current changeset <var-prefix>_WC_REVISION - current revision Example usage: find_package(Hg) if(HG_FOUND) message("hg found: ${HG_EXECUTABLE}") HG_WC_INFO(${PROJECT_SOURCE_DIR} Project) message("Current revision is ${Project_WC_REVISION}") message("Current changeset is ${Project_WC_CHANGESET}") endif() FindHSPELLTry to find Hebrew spell-checker (Hspell) and morphology engine.Once done this will define HSPELL_FOUND - system has Hspell HSPELL_INCLUDE_DIR - the Hspell include directory HSPELL_LIBRARIES - The libraries needed to use Hspell HSPELL_DEFINITIONS - Compiler switches required for using Hspell HSPELL_VERSION_STRING - The version of Hspell found (x.y) HSPELL_MAJOR_VERSION - the major version of Hspell HSPELL_MINOR_VERSION - The minor version of Hspell FindHTMLHelpThis module looks for Microsoft HTML Help CompilerIt defines: HTML_HELP_COMPILER : full path to the Compiler (hhc.exe) HTML_HELP_INCLUDE_PATH : include path to the API (htmlhelp.h) HTML_HELP_LIBRARY : full path to the library (htmlhelp.lib) FindIceNew in version 3.1.Find the ZeroC Internet Communication Engine (ICE) programs, libraries and datafiles. This module supports multiple components. Components can include any of: Freeze, Glacier2, Ice, IceBox, IceDB, IceDiscovery, IceGrid, IceLocatorDiscovery, IcePatch, IceSSL, IceStorm, IceUtil, IceXML, or Slice. Ice 3.7 and later also include C++11-specific components: Glacier2++11, Ice++11, IceBox++11, IceDiscovery++11 IceGrid, IceLocatorDiscovery++11, IceSSL++11, IceStorm++11 Note that the set of supported components is Ice version-specific. New in version 3.4: Imported targets for components and most EXECUTABLE variables. New in version 3.7: Debug and Release variants are found separately. New in version 3.10: Ice 3.7 support, including new components, programs and the Nuget package. This module reports information about the Ice installation in several variables. General variables: Ice_VERSION - Ice release version Ice_FOUND - true if the main programs and libraries were found Ice_LIBRARIES - component libraries to be linked Ice_INCLUDE_DIRS - the directories containing the Ice headers Ice_SLICE_DIRS - the directories containing the Ice slice interface definitions Imported targets: Ice::<C> Where <C> is the name of an Ice component, for example Ice::Glacier2 or Ice++11. Ice slice programs are reported in: Ice_SLICE2CONFLUENCE_EXECUTABLE - path to slice2confluence executable Ice_SLICE2CPP_EXECUTABLE - path to slice2cpp executable Ice_SLICE2CS_EXECUTABLE - path to slice2cs executable Ice_SLICE2FREEZEJ_EXECUTABLE - path to slice2freezej executable Ice_SLICE2FREEZE_EXECUTABLE - path to slice2freeze executable Ice_SLICE2HTML_EXECUTABLE - path to slice2html executable Ice_SLICE2JAVA_EXECUTABLE - path to slice2java executable Ice_SLICE2JS_EXECUTABLE - path to slice2js executable Ice_SLICE2MATLAB_EXECUTABLE - path to slice2matlab executable Ice_SLICE2OBJC_EXECUTABLE - path to slice2objc executable Ice_SLICE2PHP_EXECUTABLE - path to slice2php executable Ice_SLICE2PY_EXECUTABLE - path to slice2py executable Ice_SLICE2RB_EXECUTABLE - path to slice2rb executable New in version 3.14: Variables for slice2confluence and slice2matlab. Ice programs are reported in: Ice_GLACIER2ROUTER_EXECUTABLE - path to glacier2router executable Ice_ICEBOX_EXECUTABLE - path to icebox executable Ice_ICEBOXXX11_EXECUTABLE - path to icebox++11 executable Ice_ICEBOXADMIN_EXECUTABLE - path to iceboxadmin executable Ice_ICEBOXD_EXECUTABLE - path to iceboxd executable Ice_ICEBOXNET_EXECUTABLE - path to iceboxnet executable Ice_ICEBRIDGE_EXECUTABLE - path to icebridge executable Ice_ICEGRIDADMIN_EXECUTABLE - path to icegridadmin executable Ice_ICEGRIDDB_EXECUTABLE - path to icegriddb executable Ice_ICEGRIDNODE_EXECUTABLE - path to icegridnode executable Ice_ICEGRIDNODED_EXECUTABLE - path to icegridnoded executable Ice_ICEGRIDREGISTRY_EXECUTABLE - path to icegridregistry executable Ice_ICEGRIDREGISTRYD_EXECUTABLE - path to icegridregistryd executable Ice_ICEPATCH2CALC_EXECUTABLE - path to icepatch2calc executable Ice_ICEPATCH2CLIENT_EXECUTABLE - path to icepatch2client executable Ice_ICEPATCH2SERVER_EXECUTABLE - path to icepatch2server executable Ice_ICESERVICEINSTALL_EXECUTABLE - path to iceserviceinstall executable Ice_ICESTORMADMIN_EXECUTABLE - path to icestormadmin executable Ice_ICESTORMDB_EXECUTABLE - path to icestormdb executable Ice_ICESTORMMIGRATE_EXECUTABLE - path to icestormmigrate executable Ice db programs (Windows only; standard system versions on all other platforms) are reported in: Ice_DB_ARCHIVE_EXECUTABLE - path to db_archive executable Ice_DB_CHECKPOINT_EXECUTABLE - path to db_checkpoint executable Ice_DB_DEADLOCK_EXECUTABLE - path to db_deadlock executable Ice_DB_DUMP_EXECUTABLE - path to db_dump executable Ice_DB_HOTBACKUP_EXECUTABLE - path to db_hotbackup executable Ice_DB_LOAD_EXECUTABLE - path to db_load executable Ice_DB_LOG_VERIFY_EXECUTABLE - path to db_log_verify executable Ice_DB_PRINTLOG_EXECUTABLE - path to db_printlog executable Ice_DB_RECOVER_EXECUTABLE - path to db_recover executable Ice_DB_STAT_EXECUTABLE - path to db_stat executable Ice_DB_TUNER_EXECUTABLE - path to db_tuner executable Ice_DB_UPGRADE_EXECUTABLE - path to db_upgrade executable Ice_DB_VERIFY_EXECUTABLE - path to db_verify executable Ice_DUMPDB_EXECUTABLE - path to dumpdb executable Ice_TRANSFORMDB_EXECUTABLE - path to transformdb executable Ice component libraries are reported in: Ice_<C>_FOUND - ON if component was found Ice_<C>_LIBRARIES - libraries for component Note that <C> is the uppercased name of the component. This module reads hints about search results from: Ice_HOME - the root of the Ice installation The environment variable ICE_HOME may also be used; the Ice_HOME variable takes precedence. NOTE: On Windows, Ice 3.7.0 and later provide libraries via the
NuGet package manager. Appropriate NuGet packages will be searched for using
CMAKE_PREFIX_PATH, or alternatively Ice_HOME may be set to the
location of a specific NuGet package to restrict the search.
The following cache variables may also be set: Ice_<P>_EXECUTABLE - the path to executable <P> Ice_INCLUDE_DIR - the directory containing the Ice headers Ice_SLICE_DIR - the directory containing the Ice slice interface definitions Ice_<C>_LIBRARY - the library for component <C> NOTE: In most cases none of the above variables will require
setting, unless multiple Ice versions are available and a specific version is
required. On Windows, the most recent version of Ice will be found through the
registry. On Unix, the programs, headers and libraries will usually be in
standard locations, but Ice_SLICE_DIRS might not be automatically detected
(commonly known locations are searched). All the other variables are defaulted
using Ice_HOME, if set. It's possible to set Ice_HOME and selectively specify
alternative locations for the other components; this might be required for
e.g. newer versions of Visual Studio if the heuristics are not sufficient to
identify the correct programs and libraries for the specific Visual Studio
version.
Other variables one may set to control this module are: Ice_DEBUG - Set to ON to enable debug output from FindIce. FindIconvNew in version 3.11.This module finds the iconv() POSIX.1 functions on the system. These functions might be provided in the regular C library or externally in the form of an additional library. The following variables are provided to indicate iconv support:
Additionally, the following IMPORTED target is being provided:
The following cache variables may also be set:
NOTE: On POSIX platforms, iconv might be part of the C library
and the cache variables Iconv_INCLUDE_DIR and Iconv_LIBRARY
might be empty.
NOTE: Some libiconv implementations don't embed the version
number in their header files. In this case the variables Iconv_VERSION*
will be empty.
FindIcotoolFind icotoolThis module looks for icotool. Convert and create Win32 icon and cursor files. This module defines the following values: ICOTOOL_EXECUTABLE: the full path to the icotool tool. ICOTOOL_FOUND: True if icotool has been found. ICOTOOL_VERSION_STRING: the version of icotool found. FindICUNew in version 3.7.Find the International Components for Unicode (ICU) libraries and programs. This module supports multiple components. Components can include any of: data, i18n, io, le, lx, test, tu and uc. Note that on Windows data is named dt and i18n is named in; any of the names may be used, and the appropriate platform-specific library name will be automatically selected. New in version 3.11: Added support for static libraries on Windows. This module reports information about the ICU installation in several variables. General variables: ICU_VERSION - ICU release version ICU_FOUND - true if the main programs and libraries were found ICU_LIBRARIES - component libraries to be linked ICU_INCLUDE_DIRS - the directories containing the ICU headers Imported targets: ICU::<C> Where <C> is the name of an ICU component, for example ICU::i18n; <C> is lower-case. ICU programs are reported in: ICU_GENCNVAL_EXECUTABLE - path to gencnval executable ICU_ICUINFO_EXECUTABLE - path to icuinfo executable ICU_GENBRK_EXECUTABLE - path to genbrk executable ICU_ICU-CONFIG_EXECUTABLE - path to icu-config executable ICU_GENRB_EXECUTABLE - path to genrb executable ICU_GENDICT_EXECUTABLE - path to gendict executable ICU_DERB_EXECUTABLE - path to derb executable ICU_PKGDATA_EXECUTABLE - path to pkgdata executable ICU_UCONV_EXECUTABLE - path to uconv executable ICU_GENCFU_EXECUTABLE - path to gencfu executable ICU_MAKECONV_EXECUTABLE - path to makeconv executable ICU_GENNORM2_EXECUTABLE - path to gennorm2 executable ICU_GENCCODE_EXECUTABLE - path to genccode executable ICU_GENSPREP_EXECUTABLE - path to gensprep executable ICU_ICUPKG_EXECUTABLE - path to icupkg executable ICU_GENCMN_EXECUTABLE - path to gencmn executable ICU component libraries are reported in: ICU_<C>_FOUND - ON if component was found; ``<C>`` is upper-case. ICU_<C>_LIBRARIES - libraries for component; ``<C>`` is upper-case. ICU datafiles are reported in: ICU_MAKEFILE_INC - Makefile.inc ICU_PKGDATA_INC - pkgdata.inc This module reads hints about search results from: ICU_ROOT - the root of the ICU installation The environment variable ICU_ROOT may also be used; the ICU_ROOT variable takes precedence. The following cache variables may also be set: ICU_<P>_EXECUTABLE - the path to executable <P>; ``<P>`` is upper-case. ICU_INCLUDE_DIR - the directory containing the ICU headers ICU_<C>_LIBRARY - the library for component <C>; ``<C>`` is upper-case. NOTE: In most cases none of the above variables will require
setting, unless multiple ICU versions are available and a specific version is
required.
Other variables one may set to control this module are: ICU_DEBUG - Set to ON to enable debug output from FindICU. FindImageMagickFind ImageMagick binary suite.New in version 3.9: Added support for ImageMagick 7. This module will search for a set of ImageMagick tools specified as components in the find_package() call. Typical components include, but are not limited to (future versions of ImageMagick might have additional components not listed here): animate compare composite conjure convert display identify import mogrify montage stream If no component is specified in the find_package() call, then it only searches for the ImageMagick executable directory. This code defines the following variables: ImageMagick_FOUND - TRUE if all components are found. ImageMagick_EXECUTABLE_DIR - Full path to executables directory. ImageMagick_<component>_FOUND - TRUE if <component> is found. ImageMagick_<component>_EXECUTABLE - Full path to <component> executable. ImageMagick_VERSION_STRING - the version of ImageMagick found (since CMake 2.8.8) ImageMagick_VERSION_STRING will not work for old versions like 5.2.3. There are also components for the following ImageMagick APIs: Magick++ MagickWand MagickCore For these components the following variables are set: ImageMagick_FOUND - TRUE if all components are found. ImageMagick_INCLUDE_DIRS - Full paths to all include dirs. ImageMagick_LIBRARIES - Full paths to all libraries. ImageMagick_<component>_FOUND - TRUE if <component> is found. ImageMagick_<component>_INCLUDE_DIRS - Full path to <component> include dirs. ImageMagick_<component>_LIBRARIES - Full path to <component> libraries. Example Usages: find_package(ImageMagick) find_package(ImageMagick COMPONENTS convert) find_package(ImageMagick COMPONENTS convert mogrify display) find_package(ImageMagick COMPONENTS Magick++) find_package(ImageMagick COMPONENTS Magick++ convert) Note that the standard find_package() features are supported (i.e., QUIET, REQUIRED, etc.). FindIntlNew in version 3.2.Find the Gettext libintl headers and libraries. This module reports information about the Gettext libintl installation in several variables.
New in version 3.20: This module defines IMPORTED target Intl::Intl. The following cache variables may also be set:
NOTE: On some platforms, such as Linux with GNU libc, the
gettext functions are present in the C standard library and libintl is not
required. Intl_LIBRARIES will be empty in this case.
NOTE: Some libintl implementations don't embed the version
number in their header files. In this case the variables Intl_VERSION*
will be empty.
NOTE: If you wish to use the Gettext tools (msgmerge,
msgfmt, etc.), use FindGettext.
FindITKThis module no longer exists.This module existed in versions of CMake prior to 3.1, but became only a thin wrapper around find_package(ITK NO_MODULE) to provide compatibility for projects using long-outdated conventions. Now find_package(ITK) will search for ITKConfig.cmake directly. FindJasperFind the Jasper JPEG2000 library.IMPORTED Targets
Result VariablesThis module defines the following variables:
Cache variablesThe following cache variables may also be set:
FindJavaFind JavaThis module finds if Java is installed and determines where the include files and libraries are. The caller may set variable JAVA_HOME to specify a Java installation prefix explicitly. See also the FindJNI module to find Java Native Interface (JNI). New in version 3.10: Added support for Java 9+ version parsing. Specify one or more of the following components as you call this find module. See example below. Runtime = Java Runtime Environment used to execute Java byte-compiled applications Development = Development tools (java, javac, javah, jar and javadoc), includes Runtime component IdlJ = Interface Description Language (IDL) to Java compiler JarSigner = Signer and verifier tool for Java Archive (JAR) files This module sets the following result variables: Java_JAVA_EXECUTABLE = the full path to the Java runtime Java_JAVAC_EXECUTABLE = the full path to the Java compiler Java_JAVAH_EXECUTABLE = the full path to the Java header generator Java_JAVADOC_EXECUTABLE = the full path to the Java documentation generator Java_IDLJ_EXECUTABLE = the full path to the Java idl compiler Java_JAR_EXECUTABLE = the full path to the Java archiver Java_JARSIGNER_EXECUTABLE = the full path to the Java jar signer Java_VERSION_STRING = Version of java found, eg. 1.6.0_12 Java_VERSION_MAJOR = The major version of the package found. Java_VERSION_MINOR = The minor version of the package found. Java_VERSION_PATCH = The patch version of the package found. Java_VERSION_TWEAK = The tweak version of the package found (after '_') Java_VERSION = This is set to: $major[.$minor[.$patch[.$tweak]]] New in version 3.4: Added the Java_IDLJ_EXECUTABLE and Java_JARSIGNER_EXECUTABLE variables. The minimum required version of Java can be specified using the find_package() syntax, e.g. find_package(Java 1.8) NOTE: ${Java_VERSION} and ${Java_VERSION_STRING} are not guaranteed to be identical. For example some java version may return: Java_VERSION_STRING = 1.8.0_17 and Java_VERSION = 1.8.0.17 another example is the Java OEM, with: Java_VERSION_STRING = 1.8.0-oem and Java_VERSION = 1.8.0 For these components the following variables are set: Java_FOUND - TRUE if all components are found. Java_<component>_FOUND - TRUE if <component> is found. Example Usages: find_package(Java) find_package(Java 1.8 REQUIRED) find_package(Java COMPONENTS Runtime) find_package(Java COMPONENTS Development) FindJNIFind Java Native Interface (JNI) libraries.JNI enables Java code running in a Java Virtual Machine (JVM) to call and be called by native applications and libraries written in other languages such as C, C++. This module finds if Java is installed and determines where the include files and libraries are. It also determines what the name of the library is. The caller may set variable JAVA_HOME to specify a Java installation prefix explicitly. Result VariablesThis module sets the following result variables:
Cache VariablesThe following cache variables are also available to set or use:
FindJPEGFind the Joint Photographic Experts Group (JPEG) library (libjpeg)Imported targetsNew in version 3.12.This module defines the following IMPORTED targets:
Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
New in version 3.12: Debug and Release variand are found separately. Obsolete variables
FindKDE3Find the KDE3 include and library dirs, KDE preprocessors and define a some macrosThis module defines the following variables:
The following user adjustable options are provided:
It also adds the following macros (from KDE3Macros.cmake) SRCS_VAR is always the variable which contains the list of source files for your application or library. KDE3_AUTOMOC(file1 ... fileN) Call this if you want to have automatic moc file handling. This means if you include "foo.moc" in the source file foo.cpp a moc file for the header foo.h will be created automatically. You can set the property SKIP_AUTOMAKE using set_source_files_properties() to exclude some files in the list from being processed. KDE3_ADD_MOC_FILES(SRCS_VAR file1 ... fileN ) If you don't use the KDE3_AUTOMOC() macro, for the files listed here moc files will be created (named "foo.moc.cpp") KDE3_ADD_DCOP_SKELS(SRCS_VAR header1.h ... headerN.h ) Use this to generate DCOP skeletions from the listed headers. KDE3_ADD_DCOP_STUBS(SRCS_VAR header1.h ... headerN.h ) Use this to generate DCOP stubs from the listed headers. KDE3_ADD_UI_FILES(SRCS_VAR file1.ui ... fileN.ui ) Use this to add the Qt designer ui files to your application/library. KDE3_ADD_KCFG_FILES(SRCS_VAR file1.kcfgc ... fileN.kcfgc ) Use this to add KDE kconfig compiler files to your application/library. KDE3_INSTALL_LIBTOOL_FILE(target) This will create and install a simple libtool file for the given target. KDE3_ADD_EXECUTABLE(name file1 ... fileN ) Currently identical to add_executable(), may provide some advanced features in the future. KDE3_ADD_KPART(name [WITH_PREFIX] file1 ... fileN ) Create a KDE plugin (KPart, kioslave, etc.) from the given source files. If WITH_PREFIX is given, the resulting plugin will have the prefix "lib", otherwise it won't. It creates and installs an appropriate libtool la-file. KDE3_ADD_KDEINIT_EXECUTABLE(name file1 ... fileN ) Create a KDE application in the form of a module loadable via kdeinit. A library named kdeinit_<name> will be created and a small executable which links to it. The option KDE3_ENABLE_FINAL to enable all-in-one compilation is no longer supported. Author: Alexander Neundorf <neundorf@kde.org> FindKDE4Find KDE4 and provide all necessary variables and macros to compile software for it. It looks for KDE 4 in the following directories in the given order:CMAKE_INSTALL_PREFIX KDEDIRS /usr/local Please look in FindKDE4Internal.cmake and KDE4Macros.cmake for more information. They are installed with the KDE 4 libraries in $KDEDIRS/share/apps/cmake/modules/. Author: Alexander Neundorf <neundorf@kde.org> FindLAPACKFind Linear Algebra PACKage (LAPACK) libraryThis module finds an installed Fortran library that implements the LAPACK linear-algebra interface. At least one of the C, CXX, or Fortran languages must be enabled. Input VariablesThe following variables may be set to influence this module's behavior:
Imported targetsThis module defines the following IMPORTED targets:
Result VariablesThis module defines the following variables:
Intel MKLTo use the Intel MKL implementation of LAPACK, a project must enable at least one of the C or CXX languages. Set BLA_VENDOR to an Intel MKL variant either on the command-line as -DBLA_VENDOR=Intel10_64lp or in project code:set(BLA_VENDOR Intel10_64lp) find_package(LAPACK) In order to build a project using Intel MKL, and end user must first establish an Intel MKL environment. See the FindBLAS module section on Intel MKL for details. FindLATEXFind LaTeXThis module finds an installed LaTeX and determines the location of the compiler. Additionally the module looks for Latex-related software like BibTeX. New in version 3.2: Component processing; support for htlatex, pdftops, Biber, xindy, XeLaTeX, LuaLaTeX. This module sets the following result variables: LATEX_FOUND: whether found Latex and requested components LATEX_<component>_FOUND: whether found <component> LATEX_COMPILER: path to the LaTeX compiler PDFLATEX_COMPILER: path to the PdfLaTeX compiler XELATEX_COMPILER: path to the XeLaTeX compiler LUALATEX_COMPILER: path to the LuaLaTeX compiler BIBTEX_COMPILER: path to the BibTeX compiler BIBER_COMPILER: path to the Biber compiler MAKEINDEX_COMPILER: path to the MakeIndex compiler XINDY_COMPILER: path to the xindy compiler DVIPS_CONVERTER: path to the DVIPS converter DVIPDF_CONVERTER: path to the DVIPDF converter PS2PDF_CONVERTER: path to the PS2PDF converter PDFTOPS_CONVERTER: path to the pdftops converter LATEX2HTML_CONVERTER: path to the LaTeX2Html converter HTLATEX_COMPILER: path to the htlatex compiler Possible components are: PDFLATEX XELATEX LUALATEX BIBTEX BIBER MAKEINDEX XINDY DVIPS DVIPDF PS2PDF PDFTOPS LATEX2HTML HTLATEX Example Usages: find_package(LATEX) find_package(LATEX COMPONENTS PDFLATEX) find_package(LATEX COMPONENTS BIBTEX PS2PDF) FindLibArchiveFind libarchive library and headers. Libarchive is multi-format archive and compression library.The module defines the following variables: LibArchive_FOUND - true if libarchive was found LibArchive_INCLUDE_DIRS - include search path LibArchive_LIBRARIES - libraries to link LibArchive_VERSION - libarchive 3-component version number The module defines the following IMPORTED targets: LibArchive::LibArchive - target for linking against libarchive New in version 3.6: Support for new libarchive 3.2 version string format. FindLibinputNew in version 3.14.Find libinput headers and library. Imported Targets
Result VariablesThis will define the following variables in your project:
FindLibLZMAFind LZMA compression algorithm headers and library.Imported TargetsNew in version 3.14.This module defines IMPORTED target LibLZMA::LibLZMA, if liblzma has been found. Result variablesThis module will set the following variables in your project:
FindLibXml2Find the XML processing library (libxml2).IMPORTED TargetsNew in version 3.12.The following IMPORTED targets may be defined:
Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
FindLibXsltFind the XSL Transformations, Extensible Stylesheet Language Transformations (XSLT) library (LibXslt)IMPORTED TargetsNew in version 3.18.The following IMPORTED targets may be defined:
Result variablesThis module will set the following variables in your project:LIBXSLT_FOUND - system has LibXslt LIBXSLT_INCLUDE_DIR -
the LibXslt include directory LIBXSLT_LIBRARIES - Link these to LibXslt
LIBXSLT_DEFINITIONS - Compiler switches required for using LibXslt
LIBXSLT_VERSION_STRING - version of LibXslt found (since CMake 2.8.8)
Additionally, the following two variables are set (but not required for using xslt):
FindLTTngUSTNew in version 3.6.Find Linux Trace Toolkit Next Generation (LTTng-UST) library. Imported targetThis module defines the following IMPORTED target:
Result variablesThis module sets the following
FindLuaLocate Lua library.New in version 3.18: Support for Lua 5.4. This module defines: :: LUA_FOUND - if false, do not try to link to Lua
LUA_LIBRARIES - both lua and lualib LUA_INCLUDE_DIR - where to find lua.h
LUA_VERSION_STRING - the version of Lua found LUA_VERSION_MAJOR - the major
version of Lua LUA_VERSION_MINOR - the minor version of Lua LUA_VERSION_PATCH
- the patch version of Lua
Note that the expected include convention is #include "lua.h" and not #include <lua/lua.h> This is because, the lua location is not standardized and may exist in locations other than lua/ FindLua50Locate Lua library. This module defines::: LUA50_FOUND, if false, do not try to link to Lua
LUA_LIBRARIES, both lua and lualib LUA_INCLUDE_DIR, where to find lua.h and
lualib.h (and probably lauxlib.h)
Note that the expected include convention is #include "lua.h" and not #include <lua/lua.h> This is because, the lua location is not standardized and may exist in locations other than lua/ FindLua51Locate Lua library. This module defines::: LUA51_FOUND, if false, do not try to link to Lua
LUA_LIBRARIES LUA_INCLUDE_DIR, where to find lua.h LUA_VERSION_STRING, the
version of Lua found (since CMake 2.8.8)
Note that the expected include convention is #include "lua.h" and not #include <lua/lua.h> This is because, the lua location is not standardized and may exist in locations other than lua/ FindMatlabFinds Matlab or Matlab Compiler Runtime (MCR) and provides Matlab tools, libraries and compilers to CMake.This package primary purpose is to find the libraries associated with Matlab or the MCR in order to be able to build Matlab extensions (mex files). It can also be used:
New in version 3.12: Added Matlab Compiler Runtime (MCR) support. The module supports the following components:
New in version 3.7: Added the MAT_LIBRARY component. New in version 3.13: Added the ENGINE_LIBRARY, DATAARRAY_LIBRARY and MCC_COMPILER components. Changed in version 3.14: Removed the MX_LIBRARY, ENGINE_LIBRARY and DATAARRAY_LIBRARY components. These libraries are found unconditionally. NOTE: The version given to the find_package() directive
is the Matlab version, which should not be confused with the Matlab
release name (eg. R2014). The
matlab_get_version_from_release_name() and
matlab_get_release_name_from_version() provide a mapping between the
release name and the version.
The variable Matlab_ROOT_DIR may be specified in order to give the path of the desired Matlab version. Otherwise, the behavior is platform specific:
Additional information is provided when MATLAB_FIND_DEBUG is set. When a Matlab/MCR installation is found automatically and the MATLAB_VERSION is not given, the version is queried from Matlab directly (on Windows this may pop up a Matlab window) or from the MCR installation. The mapping of the release names and the version of Matlab is performed by defining pairs (name, version). The variable MATLAB_ADDITIONAL_VERSIONS may be provided before the call to the find_package() in order to handle additional versions. A Matlab scripts can be added to the set of tests using the matlab_add_unit_test(). By default, the Matlab unit test framework will be used (>= 2013a) to run this script, but regular .m files returning an exit code can be used as well (0 indicating a success). Module Input VariablesUsers or projects may set the following variables to configure the module behavior:
Imported targetsNew in version 3.22.This module defines the following IMPORTED targets:
Variables defined by the moduleResult variables
Cached variables
Provided macros
Provided functions
Known issues
Reference
set(MATLAB_ADDITIONAL_VERSIONS "release_name1=corresponding_version1" "release_name2=corresponding_version2" ... ) Example: set(MATLAB_ADDITIONAL_VERSIONS "R2013b=8.2" "R2013a=8.1" "R2012b=8.0") The order of entries in this list matters when several versions of Matlab are installed. The priority is set according to the ordering in this list.
Only the versions are provided. No check is made over the
existence of the installation referenced in the registry,
matlab_get_all_valid_matlab_roots_from_registry( matlab_versions matlab_roots)
matlab_get_mex_suffix( matlab_root mex_suffix)
matlab_get_version_from_matlab_run( matlab_binary_path matlab_list_versions)
matlab_add_unit_test( NAME <name> UNITTEST_FILE matlab_file_containing_unittest.m [CUSTOM_TEST_COMMAND matlab_command_to_run_as_test] [UNITTEST_PRECOMMAND matlab_command_to_run] [TIMEOUT timeout] [ADDITIONAL_PATH path1 [path2 ...]] [MATLAB_ADDITIONAL_STARTUP_OPTIONS option1 [option2 ...]] [TEST_ARGS arg1 [arg2 ...]] [NO_UNITTEST_FRAMEWORK] ) The function arguments are:
matlab_add_mex( NAME <name> [EXECUTABLE | MODULE | SHARED] SRC src1 [src2 ...] [OUTPUT_NAME output_name] [DOCUMENTATION file.txt] [LINK_TO target1 target2 ...] [R2017b | R2018a] [EXCLUDE_FROM_ALL] [...] )
The documentation file is not processed and should be in the following format: % This is the documentation function ret = mex_target_output_name(input1) FindMFCFind Microsoft Foundation Class Library (MFC) on WindowsFind the native MFC - i.e. decide if an application can link to the MFC libraries. MFC_FOUND - Was MFC support found You don't need to include anything or link anything to use it. FindMotifTry to find Motif (or lesstif)Once done this will define: MOTIF_FOUND - system has MOTIF MOTIF_INCLUDE_DIR - include paths to use Motif MOTIF_LIBRARIES - Link these to use Motif FindMPEGFind the native MPEG includes and libraryThis module defines MPEG_INCLUDE_DIR, where to find MPEG.h, etc. MPEG_LIBRARIES, the libraries required to use MPEG. MPEG_FOUND, If false, do not try to use MPEG. also defined, but not for general use are MPEG_mpeg2_LIBRARY, where to find the MPEG library. MPEG_vo_LIBRARY, where to find the vo library. FindMPEG2Find the native MPEG2 includes and libraryThis module defines MPEG2_INCLUDE_DIR, path to mpeg2dec/mpeg2.h, etc. MPEG2_LIBRARIES, the libraries required to use MPEG2. MPEG2_FOUND, If false, do not try to use MPEG2. also defined, but not for general use are MPEG2_mpeg2_LIBRARY, where to find the MPEG2 library. MPEG2_vo_LIBRARY, where to find the vo library. FindMPIFind a Message Passing Interface (MPI) implementation.The Message Passing Interface (MPI) is a library used to write high-performance distributed-memory parallel applications, and is typically deployed on a cluster. MPI is a standard interface (defined by the MPI forum) for which many implementations are available. New in version 3.10: Major overhaul of the module: many new variables, per-language components, support for a wider variety of runtimes. Variables for using MPIThe module exposes the components C, CXX, MPICXX and Fortran. Each of these controls the various MPI languages to search for. The difference between CXX and MPICXX is that CXX refers to the MPI C API being usable from C++, whereas MPICXX refers to the MPI-2 C++ API that was removed again in MPI-3.Depending on the enabled components the following variables will be set:
This module will set the following variables per language in your project, where <lang> is one of C, CXX, or Fortran:
New in version 3.9: Additionally, the following IMPORTED targets are defined:
The following variables indicating which bindings are present will be defined:
If possible, the MPI version will be determined by this module. The facilities to detect the MPI version were introduced with MPI-1.2, and therefore cannot be found for older MPI versions.
Note that there's no variable for the C bindings being accessible through mpi.h, since the MPI standards always have required this binding to work in both C and C++ code. For running MPI programs, the module sets the following variables
Variables for locating MPIThis module performs a four step search for an MPI implementation:
For controlling the MPIEXEC_EXECUTABLE step, the following variables may be set:
For controlling the compiler wrapper step, the following variables may be set:
In order to control the guessing step, the following variable may be set:
Each of the search steps may be skipped with the following control variables:
Additionally, the following control variable is available to change search behavior:
If the find procedure fails for a variable MPI_<lang>_WORKS, then the settings detected by or passed to the module did not work and even a simple MPI test program failed to compile. If all of these parameters were not sufficient to find the right MPI implementation, a user may disable the entire autodetection process by specifying both a list of libraries in MPI_<lang>_LIBRARIES and a list of include directories in MPI_<lang>_ADDITIONAL_INCLUDE_DIRS. Any other variable may be set in addition to these two. The module will then validate the MPI settings and store the settings in the cache. Cache variables for MPIThe variable MPI_<lang>_INCLUDE_DIRS will be assembled from the following variables. For C and CXX:
For Fortran:
For all languages the following variables are additionally considered:
The variable MPI_<lang>_LIBRARIES will be assembled from the following variables:
Usage of mpiexecWhen using MPIEXEC_EXECUTABLE to execute MPI applications, you should typically use all of the MPIEXEC_EXECUTABLE flags as follows:${MPIEXEC_EXECUTABLE} ${MPIEXEC_NUMPROC_FLAG} ${MPIEXEC_MAX_NUMPROCS} ${MPIEXEC_PREFLAGS} EXECUTABLE ${MPIEXEC_POSTFLAGS} ARGS where EXECUTABLE is the MPI program, and ARGS are the arguments to pass to the MPI program. Advanced variables for using MPIThe module can perform some advanced feature detections upon explicit request.Important notice: The following checks cannot be performed without executing an MPI test program. Consider the special considerations for the behavior of try_run() during cross compilation. Moreover, running an MPI program can cause additional issues, like a firewall notification on some systems. You should only enable these detections if you absolutely need the information. If the following variables are set to true, the respective search will be performed:
Backward CompatibilityDeprecated since version 3.10.For backward compatibility with older versions of FindMPI, these variables are set: MPI_COMPILER MPI_LIBRARY MPI_EXTRA_LIBRARY MPI_COMPILE_FLAGS MPI_INCLUDE_PATH MPI_LINK_FLAGS MPI_LIBRARIES In new projects, please use the MPI_<lang>_XXX equivalents. Additionally, the following variables are deprecated:
FindMsysNew in version 3.21.Find MSYS, a POSIX-compatible environment that runs natively on Microsoft Windows FindODBCNew in version 3.12.Find an Open Database Connectivity (ODBC) include directory and library. On Windows, when building with Visual Studio, this module assumes the ODBC library is provided by the available Windows SDK. On Unix, this module allows to search for ODBC library provided by unixODBC or iODBC implementations of ODBC API. This module reads hint about location of the config program:
Otherwise, this module tries to find the config program, first from unixODBC, then from iODBC. If no config program found, this module searches for ODBC header and library in list of known locations. Imported targetsThis module defines the following IMPORTED targets:
Result variables
Cache variablesFor users who wish to edit and control the module behavior, this module reads hints about search locations from the following variables:
These variables should not be used directly by project code. LimitationsOn Windows, this module does not search for iODBC. On Unix, there is no way to prefer unixODBC over iODBC, or vice versa, other than providing the config program location using the ODBC_CONFIG. This module does not allow to search for a specific ODBC driver.FindOpenACCNew in version 3.10.Detect OpenACC support by the compiler. This module can be used to detect OpenACC support in a compiler. If the compiler supports OpenACC, the flags required to compile with OpenACC support are returned in variables for the different languages. Currently, only NVHPC, PGI, GNU and Cray compilers are supported. Imported TargetsNew in version 3.16.The module provides IMPORTED targets:
VariablesThis module will set the following variables per language in your project, where <lang> is one of C, CXX, or Fortran:
The module will also try to provide the OpenACC version variables:
The specification date is formatted as given in the OpenACC standard: yyyymm where yyyy and mm represents the year and month of the OpenACC specification implemented by the <lang> compiler. Input VariablesOpenACC_ACCEL_TARGET=<target> If set, will the correct target accelerator flag set to the <target> will be returned with OpenACC_<lang>_FLAGS.FindOpenALFinds Open Audio Library (OpenAL).Projects using this module should use #include "al.h" to include the OpenAL header file, not #include <AL/al.h>. The reason for this is that the latter is not entirely portable. Windows/Creative Labs does not by default put their headers in AL/ and macOS uses the convention <OpenAL/al.h>. HintsEnvironment variable $OPENALDIR can be used to set the prefix of OpenAL installation to be found.By default on macOS, system framework is search first. In other words, OpenAL is searched in the following order:
Result VariablesThis module defines the following variables:
FindOpenCLNew in version 3.1.Finds Open Computing Language (OpenCL) New in version 3.10: Detection of OpenCL 2.1 and 2.2. IMPORTED TargetsNew in version 3.7.This module defines IMPORTED target OpenCL::OpenCL, if OpenCL has been found. Result VariablesThis module defines the following variables:OpenCL_FOUND - True if OpenCL was found OpenCL_INCLUDE_DIRS - include directories for OpenCL OpenCL_LIBRARIES - link against this library to use OpenCL OpenCL_VERSION_STRING - Highest supported OpenCL version (eg. 1.2) OpenCL_VERSION_MAJOR - The major version of the OpenCL implementation OpenCL_VERSION_MINOR - The minor version of the OpenCL implementation The module will also define two cache variables: OpenCL_INCLUDE_DIR - the OpenCL include directory OpenCL_LIBRARY - the path to the OpenCL library FindOpenGLFindModule for OpenGL and OpenGL Utility Library (GLU).Changed in version 3.2: X11 is no longer added as a dependency on Unix/Linux systems. New in version 3.10: GLVND support on Linux. See the Linux-specific section below. Optional COMPONENTSNew in version 3.10.This module respects several optional COMPONENTS: EGL, GLX, and OpenGL. There are corresponding import targets for each of these flags. IMPORTED TargetsNew in version 3.8.This module defines the IMPORTED targets:
New in version 3.10: Additionally, the following GLVND-specific library targets are defined:
Result VariablesThis module sets the following variables:
New in version 3.10: Variables for GLVND-specific libraries OpenGL, EGL and GLX. Cache variablesThe following cache variables may also be set:
New in version 3.10: Variables for GLVND-specific libraries OpenGL, EGL and GLX. Linux-specificSome Linux systems utilize GLVND as a new ABI for OpenGL. GLVND separates context libraries from OpenGL itself; OpenGL lives in "libOpenGL", and contexts are defined in "libGLX" or "libEGL". GLVND is currently the only way to get OpenGL 3+ functionality via EGL in a manner portable across vendors. Projects may use GLVND explicitly with target OpenGL::OpenGL and either OpenGL::GLX or OpenGL::EGL.Projects may use the OpenGL::GL target (or OPENGL_LIBRARIES variable) to use legacy GL interfaces. These will use the legacy GL library located by OPENGL_gl_LIBRARY, if available. If OPENGL_gl_LIBRARY is empty or not found and GLVND is available, the OpenGL::GL target will use GLVND OpenGL::OpenGL and OpenGL::GLX (and the OPENGL_LIBRARIES variable will use the corresponding libraries). Thus, for non-EGL-based Linux targets, the OpenGL::GL target is most portable. A OpenGL_GL_PREFERENCE variable may be set to specify the preferred way to provide legacy GL interfaces in case multiple choices are available. The value may be one of:
For EGL targets the client must rely on GLVND support on the user's system. Linking should use the OpenGL::OpenGL OpenGL::EGL targets. Using GLES* libraries is theoretically possible in place of OpenGL::OpenGL, but this module does not currently support that; contributions welcome. OPENGL_egl_LIBRARY and OPENGL_EGL_INCLUDE_DIRS are defined in the case of GLVND. For non-GLVND Linux and other systems these are left undefined. macOS-SpecificOn OSX FindOpenGL defaults to using the framework version of OpenGL. People will have to change the cache values of OPENGL_glu_LIBRARY and OPENGL_gl_LIBRARY to use OpenGL with X11 on OSX.FindOpenMPFinds Open Multi-Processing (OpenMP) support.This module can be used to detect OpenMP support in a compiler. If the compiler supports OpenMP, the flags required to compile with OpenMP support are returned in variables for the different languages. The variables may be empty if the compiler does not need a special flag to support OpenMP. New in version 3.5: Clang support. VariablesNew in version 3.10: The module exposes the components C, CXX, and Fortran. Each of these controls the various languages to search OpenMP support for.Depending on the enabled components the following variables will be set:
This module will set the following variables per language in your project, where <lang> is one of C, CXX, or Fortran:
For linking with OpenMP code written in <lang>, the following variables are provided:
Additionally, the module provides IMPORTED targets:
Specifically for Fortran, the module sets the following variables:
The module will also try to provide the OpenMP version variables:
The specification date is formatted as given in the OpenMP standard: yyyymm where yyyy and mm represents the year and month of the OpenMP specification implemented by the <lang> compiler. For some compilers, it may be necessary to add a header search path to find the relevant OpenMP headers. This location may be language-specific. Where this is needed, the module may attempt to find the location, but it can be provided directly by setting the OpenMP_<lang>_INCLUDE_DIR cache variable. Note that this variable is an _input_ control to the module. Project code should use the OpenMP_<lang>_INCLUDE_DIRS _output_ variable if it needs to know what include directories are needed. FindOpenSceneGraphFind OpenSceneGraph (3D graphics application programming interface)This module searches for the OpenSceneGraph core "osg" library as well as FindOpenThreads, and whatever additional COMPONENTS (nodekits) that you specify. See http://www.openscenegraph.org NOTE: To use this module effectively you must either require CMake >= 2.6.3 with cmake_minimum_required(VERSION 2.6.3) or download and place FindOpenThreads, Findosg functions, Findosg and Find<etc>.cmake files into your CMAKE_MODULE_PATH.
This module accepts the following variables (note mixed case) OpenSceneGraph_DEBUG - Enable debugging output OpenSceneGraph_MARK_AS_ADVANCED - Mark cache variables as advanced automatically The following environment variables are also respected for finding the OSG and it's various components. CMAKE_PREFIX_PATH can also be used for this (see find_library() CMake documentation).
[CMake 2.8.10]: The CMake variable OSG_DIR can now be used as well to influence detection, instead of needing to specify an environment variable. This module defines the following output variables: OPENSCENEGRAPH_FOUND - Was the OSG and all of the specified components found? OPENSCENEGRAPH_VERSION - The version of the OSG which was found OPENSCENEGRAPH_INCLUDE_DIRS - Where to find the headers OPENSCENEGRAPH_LIBRARIES - The OSG libraries ================================== Example Usage: find_package(OpenSceneGraph 2.0.0 REQUIRED osgDB osgUtil) # libOpenThreads & libosg automatically searched include_directories(${OPENSCENEGRAPH_INCLUDE_DIRS}) add_executable(foo foo.cc) target_link_libraries(foo ${OPENSCENEGRAPH_LIBRARIES}) FindOpenSSLFind the OpenSSL encryption library.This module finds an installed OpenSSL library and determines its version. New in version 3.19: When a version is requested, it can be specified as a simple value or as a range. For a detailed description of version range usage and capabilities, refer to the find_package() command. New in version 3.18: Support for OpenSSL 3.0. Optional COMPONENTSNew in version 3.12.This module supports two optional COMPONENTS: Crypto and SSL. Both components have associated imported targets, as described below. Imported TargetsNew in version 3.4.This module defines the following IMPORTED targets:
NOTE: Due to how INTERFACE_SOURCES are consumed by the consuming target, unless you certainly know what you are doing, it is always preferred to link OpenSSL::applink target as PRIVATE and to make sure that this target is linked at most once for the whole dependency graph of any library or executable: target_link_libraries(myTarget PRIVATE OpenSSL::applink) Otherwise you would probably encounter unexpected random problems when building and linking, as both the ISO C and the ISO C++ standard claims almost nothing about what a link process should be. Result VariablesThis module will set the following variables in your project:
HintsSet OPENSSL_ROOT_DIR to the root directory of an OpenSSL installation.New in version 3.4: Set OPENSSL_USE_STATIC_LIBS to TRUE to look for static libraries. New in version 3.5: Set OPENSSL_MSVC_STATIC_RT set TRUE to choose the MT version of the lib. FindOpenThreadsOpenThreads is a C++ based threading library. Its largest userbase seems to OpenSceneGraph so you might notice I accept OSGDIR as an environment path. I consider this part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module.Locate OpenThreads This module defines OPENTHREADS_LIBRARY OPENTHREADS_FOUND, if false, do not try to link to OpenThreads OPENTHREADS_INCLUDE_DIR, where to find the headers $OPENTHREADS_DIR is an environment variable that would correspond to the ./configure --prefix=$OPENTHREADS_DIR used in building osg. [CMake 2.8.10]: The CMake variables OPENTHREADS_DIR or OSG_DIR can now be used as well to influence detection, instead of needing to specify an environment variable. Created by Eric Wing. FindosgNOTE: It is highly recommended that you use the new FindOpenSceneGraph.cmake introduced in CMake 2.6.3 and not use this Find module directly.This is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules. Locate osg This module defines OSG_FOUND - Was the Osg found? OSG_INCLUDE_DIR - Where to find the headers OSG_LIBRARIES - The libraries to link against for the OSG (use this) OSG_LIBRARY - The OSG library OSG_LIBRARY_DEBUG - The OSG debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. Findosg_functionsThis CMake file contains two macros to assist with searching for OSG libraries and nodekits. Please see FindOpenSceneGraph.cmake for full documentation.FindosgAnimationThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgAnimation This module defines OSGANIMATION_FOUND - Was osgAnimation found? OSGANIMATION_INCLUDE_DIR - Where to find the headers OSGANIMATION_LIBRARIES - The libraries to link against for the OSG (use this) OSGANIMATION_LIBRARY - The OSG library OSGANIMATION_LIBRARY_DEBUG - The OSG debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgDBThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph instead of the Findosg*.cmake modules.Locate osgDB This module defines:
$OSGDIR is an environment variable that would correspond to: ./configure --prefix=$OSGDIR used in building osg. FindosgFXThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgFX This module defines OSGFX_FOUND - Was osgFX found? OSGFX_INCLUDE_DIR - Where to find the headers OSGFX_LIBRARIES - The libraries to link against for the osgFX (use this) OSGFX_LIBRARY - The osgFX library OSGFX_LIBRARY_DEBUG - The osgFX debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgGAThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgGA This module defines OSGGA_FOUND - Was osgGA found? OSGGA_INCLUDE_DIR - Where to find the headers OSGGA_LIBRARIES - The libraries to link against for the osgGA (use this) OSGGA_LIBRARY - The osgGA library OSGGA_LIBRARY_DEBUG - The osgGA debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgIntrospectionThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgINTROSPECTION This module defines OSGINTROSPECTION_FOUND - Was osgIntrospection found? OSGINTROSPECTION_INCLUDE_DIR - Where to find the headers OSGINTROSPECTION_LIBRARIES - The libraries to link for osgIntrospection (use this) OSGINTROSPECTION_LIBRARY - The osgIntrospection library OSGINTROSPECTION_LIBRARY_DEBUG - The osgIntrospection debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgManipulatorThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgManipulator This module defines OSGMANIPULATOR_FOUND - Was osgManipulator found? OSGMANIPULATOR_INCLUDE_DIR - Where to find the headers OSGMANIPULATOR_LIBRARIES - The libraries to link for osgManipulator (use this) OSGMANIPULATOR_LIBRARY - The osgManipulator library OSGMANIPULATOR_LIBRARY_DEBUG - The osgManipulator debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgParticleThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgParticle This module defines OSGPARTICLE_FOUND - Was osgParticle found? OSGPARTICLE_INCLUDE_DIR - Where to find the headers OSGPARTICLE_LIBRARIES - The libraries to link for osgParticle (use this) OSGPARTICLE_LIBRARY - The osgParticle library OSGPARTICLE_LIBRARY_DEBUG - The osgParticle debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgPresentationThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgPresentation This module defines OSGPRESENTATION_FOUND - Was osgPresentation found? OSGPRESENTATION_INCLUDE_DIR - Where to find the headers OSGPRESENTATION_LIBRARIES - The libraries to link for osgPresentation (use this) OSGPRESENTATION_LIBRARY - The osgPresentation library OSGPRESENTATION_LIBRARY_DEBUG - The osgPresentation debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. Modified to work with osgPresentation by Robert Osfield, January 2012. FindosgProducerThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgProducer This module defines OSGPRODUCER_FOUND - Was osgProducer found? OSGPRODUCER_INCLUDE_DIR - Where to find the headers OSGPRODUCER_LIBRARIES - The libraries to link for osgProducer (use this) OSGPRODUCER_LIBRARY - The osgProducer library OSGPRODUCER_LIBRARY_DEBUG - The osgProducer debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgQtThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgQt This module defines OSGQT_FOUND - Was osgQt found? OSGQT_INCLUDE_DIR - Where to find the headers OSGQT_LIBRARIES - The libraries to link for osgQt (use this) OSGQT_LIBRARY - The osgQt library OSGQT_LIBRARY_DEBUG - The osgQt debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. Modified to work with osgQt by Robert Osfield, January 2012. FindosgShadowThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgShadow This module defines OSGSHADOW_FOUND - Was osgShadow found? OSGSHADOW_INCLUDE_DIR - Where to find the headers OSGSHADOW_LIBRARIES - The libraries to link for osgShadow (use this) OSGSHADOW_LIBRARY - The osgShadow library OSGSHADOW_LIBRARY_DEBUG - The osgShadow debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgSimThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgSim This module defines OSGSIM_FOUND - Was osgSim found? OSGSIM_INCLUDE_DIR - Where to find the headers OSGSIM_LIBRARIES - The libraries to link for osgSim (use this) OSGSIM_LIBRARY - The osgSim library OSGSIM_LIBRARY_DEBUG - The osgSim debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgTerrainThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgTerrain This module defines OSGTERRAIN_FOUND - Was osgTerrain found? OSGTERRAIN_INCLUDE_DIR - Where to find the headers OSGTERRAIN_LIBRARIES - The libraries to link for osgTerrain (use this) OSGTERRAIN_LIBRARY - The osgTerrain library OSGTERRAIN_LIBRARY_DEBUG - The osgTerrain debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgTextThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgText This module defines OSGTEXT_FOUND - Was osgText found? OSGTEXT_INCLUDE_DIR - Where to find the headers OSGTEXT_LIBRARIES - The libraries to link for osgText (use this) OSGTEXT_LIBRARY - The osgText library OSGTEXT_LIBRARY_DEBUG - The osgText debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgUtilThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgUtil This module defines OSGUTIL_FOUND - Was osgUtil found? OSGUTIL_INCLUDE_DIR - Where to find the headers OSGUTIL_LIBRARIES - The libraries to link for osgUtil (use this) OSGUTIL_LIBRARY - The osgUtil library OSGUTIL_LIBRARY_DEBUG - The osgUtil debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgViewerThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgViewer This module defines OSGVIEWER_FOUND - Was osgViewer found? OSGVIEWER_INCLUDE_DIR - Where to find the headers OSGVIEWER_LIBRARIES - The libraries to link for osgViewer (use this) OSGVIEWER_LIBRARY - The osgViewer library OSGVIEWER_LIBRARY_DEBUG - The osgViewer debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgVolumeThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgVolume This module defines OSGVOLUME_FOUND - Was osgVolume found? OSGVOLUME_INCLUDE_DIR - Where to find the headers OSGVOLUME_LIBRARIES - The libraries to link for osgVolume (use this) OSGVOLUME_LIBRARY - The osgVolume library OSGVOLUME_LIBRARY_DEBUG - The osgVolume debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. Created by Eric Wing. FindosgWidgetThis is part of the Findosg* suite used to find OpenSceneGraph components. Each component is separate and you must opt in to each module. You must also opt into OpenGL and OpenThreads (and Producer if needed) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules.Locate osgWidget This module defines OSGWIDGET_FOUND - Was osgWidget found? OSGWIDGET_INCLUDE_DIR - Where to find the headers OSGWIDGET_LIBRARIES - The libraries to link for osgWidget (use this) OSGWIDGET_LIBRARY - The osgWidget library OSGWIDGET_LIBRARY_DEBUG - The osgWidget debug library $OSGDIR is an environment variable that would correspond to the ./configure --prefix=$OSGDIR used in building osg. FindosgWidget.cmake tweaked from Findosg* suite as created by Eric Wing. FindPatchNew in version 3.10.The module defines the following variables:
The following IMPORTED targets are also defined:
Example usage: find_package(Patch) if(Patch_FOUND) message("Patch found: ${Patch_EXECUTABLE}") endif() FindPerlFind perlthis module looks for Perl PERL_EXECUTABLE - the full path to perl PERL_FOUND - If false, don't attempt to use perl. PERL_VERSION_STRING - version of perl found (since CMake 2.8.8) FindPerlLibsFind Perl librariesThis module finds if PERL is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: PERLLIBS_FOUND = True if perl.h & libperl were found PERL_INCLUDE_PATH = path to where perl.h is found PERL_LIBRARY = path to libperl PERL_EXECUTABLE = full path to the perl binary The minimum required version of Perl can be specified using the standard syntax, e.g. find_package(PerlLibs 6.0) The following variables are also available if needed (introduced after CMake 2.6.4) PERL_SITESEARCH = path to the sitesearch install dir (-V:installsitesearch) PERL_SITEARCH = path to the sitelib install directory (-V:installsitearch) PERL_SITELIB = path to the sitelib install directory (-V:installsitelib) PERL_VENDORARCH = path to the vendor arch install directory (-V:installvendorarch) PERL_VENDORLIB = path to the vendor lib install directory (-V:installvendorlib) PERL_ARCHLIB = path to the core arch lib install directory (-V:archlib) PERL_PRIVLIB = path to the core priv lib install directory (-V:privlib) PERL_UPDATE_ARCHLIB = path to the update arch lib install directory (-V:installarchlib) PERL_UPDATE_PRIVLIB = path to the update priv lib install directory (-V:installprivlib) PERL_EXTRA_C_FLAGS = Compilation flags used to build perl FindPHP4Find PHP4This module finds if PHP4 is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: PHP4_INCLUDE_PATH = path to where php.h can be found PHP4_EXECUTABLE = full path to the php4 binary FindPhysFSLocate PhysFS library This module defines PHYSFS_LIBRARY, the name of the library to link against PHYSFS_FOUND, if false, do not try to link to PHYSFS PHYSFS_INCLUDE_DIR, where to find physfs.h$PHYSFSDIR is an environment variable that would correspond to the ./configure --prefix=$PHYSFSDIR used in building PHYSFS. Created by Eric Wing. FindPikeFind PikeThis module finds if PIKE is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: PIKE_INCLUDE_PATH = path to where program.h is found PIKE_EXECUTABLE = full path to the pike binary FindPkgConfigA pkg-config module for CMake.Finds the pkg-config executable and adds the pkg_get_variable(), pkg_check_modules() and pkg_search_module() commands. The following variables will also be set:
Both PKG_CONFIG_EXECUTABLE and PKG_CONFIG_ARGN are initialized by the module, but may be overridden by the user. See Variables Affecting Behavior for how these variables are initialized.
pkg_check_modules(<prefix> [REQUIRED] [QUIET] [NO_CMAKE_PATH] [NO_CMAKE_ENVIRONMENT_PATH] [IMPORTED_TARGET [GLOBAL]] <moduleSpec> [<moduleSpec>...]) When the REQUIRED argument is given, the command will fail with an error if module(s) could not be found. When the QUIET argument is given, no status messages will be printed. New in version 3.1: The CMAKE_PREFIX_PATH, CMAKE_FRAMEWORK_PATH, and CMAKE_APPBUNDLE_PATH cache and environment variables will be added to the pkg-config search path. The NO_CMAKE_PATH and NO_CMAKE_ENVIRONMENT_PATH arguments disable this behavior for the cache variables and environment variables respectively. The PKG_CONFIG_USE_CMAKE_PREFIX_PATH variable set to FALSE disables this behavior globally. New in version 3.6: The IMPORTED_TARGET argument will create an imported target named PkgConfig::<prefix> that can be passed directly as an argument to target_link_libraries(). New in version 3.13: The GLOBAL argument will make the imported target available in global scope. New in version 3.15: Non-library linker options reported by pkg-config are stored in the INTERFACE_LINK_OPTIONS target property. Changed in version 3.18: Include directories specified with -isystem are stored in the INTERFACE_INCLUDE_DIRECTORIES target property. Previous versions of CMake left them in the INTERFACE_COMPILE_OPTIONS property. Each <moduleSpec> can be either a bare module name or it can be a module name with a version constraint (operators =, <, >, <= and >= are supported). The following are examples for a module named foo with various constraints:
The following variables may be set upon return. Two sets of values exist: One for the common case (<XXX> = <prefix>) and another for the information pkg-config provides when called with the --static option (<XXX> = <prefix>_STATIC).
All but <XXX>_FOUND may be a ;-list if the associated variable returned from pkg-config has multiple values. Changed in version 3.18: Include directories specified with -isystem are stored in the <XXX>_INCLUDE_DIRS variable. Previous versions of CMake left them in <XXX>_CFLAGS_OTHER. There are some special variables whose prefix depends on the number of <moduleSpec> given. When there is only one <moduleSpec>, <YYY> will simply be <prefix>, but if two or more <moduleSpec> items are given, <YYY> will be <prefix>_<moduleName>.
Changed in version 3.8: For any given <prefix>, pkg_check_modules() can be called multiple times with different parameters. Previous versions of CMake cached and returned the first successful result. Changed in version 3.16: If a full path to the found library can't be determined, but it's still visible to the linker, pass it through as -l<name>. Previous versions of CMake failed in this case. Examples: pkg_check_modules (GLIB2 glib-2.0) Looks for any version of glib2. If found, the output variable GLIB2_VERSION will hold the actual version found. pkg_check_modules (GLIB2 glib-2.0>=2.10) Looks for at least version 2.10 of glib2. If found, the output variable GLIB2_VERSION will hold the actual version found. pkg_check_modules (FOO glib-2.0>=2.10 gtk+-2.0) Looks for both glib2-2.0 (at least version 2.10) and any version of gtk2+-2.0. Only if both are found will FOO be considered found. The FOO_glib-2.0_VERSION and FOO_gtk+-2.0_VERSION variables will be set to their respective found module versions. pkg_check_modules (XRENDER REQUIRED xrender) Requires any version of xrender. Example output variables set by a successful call: XRENDER_LIBRARIES=Xrender;X11 XRENDER_STATIC_LIBRARIES=Xrender;X11;pthread;Xau;Xdmcp
pkg_search_module(<prefix> [REQUIRED] [QUIET] [NO_CMAKE_PATH] [NO_CMAKE_ENVIRONMENT_PATH] [IMPORTED_TARGET [GLOBAL]] <moduleSpec> [<moduleSpec>...]) New in version 3.16: If a module is found, the <prefix>_MODULE_NAME variable will contain the name of the matching module. This variable can be used if you need to run pkg_get_variable(). Example: pkg_search_module (BAR libxml-2.0 libxml2 libxml>=2)
pkg_get_variable(<resultVar> <moduleName> <varName>) If pkg-config returns multiple values for the specified variable, resultVar will contain a ;-list. For example: pkg_get_variable(GI_GIRDIR gobject-introspection-1.0 girdir) Variables Affecting Behavior
FindPNGFind libpng, the official reference library for the PNG image format.Imported targetsNew in version 3.5.This module defines the following IMPORTED target:
Result variablesThis module will set the following variables in your project:
Obsolete variablesThe following variables may also be set, for backwards compatibility:
Since PNG depends on the ZLib compression library, none of the above will be defined unless ZLib can be found. FindPostgreSQLFind the PostgreSQL installation.IMPORTED TargetsNew in version 3.14.This module defines IMPORTED target PostgreSQL::PostgreSQL if PostgreSQL has been found. Result VariablesThis module will set the following variables in your project:
ComponentsThis module contains additional Server component, that forcibly checks for the presence of server headers. Note that PostgreSQL_TYPE_INCLUDE_DIR is set regardless of the presence of the Server component in find_package call.FindProducerThough Producer isn't directly part of OpenSceneGraph, its primary user is OSG so I consider this part of the Findosg* suite used to find OpenSceneGraph components. You'll notice that I accept OSGDIR as an environment path.Each component is separate and you must opt in to each module. You must also opt into OpenGL (and OpenThreads?) as these modules won't do it for you. This is to allow you control over your own system piece by piece in case you need to opt out of certain components or change the Find behavior for a particular module (perhaps because the default FindOpenGL.cmake module doesn't work with your system as an example). If you want to use a more convenient module that includes everything, use the FindOpenSceneGraph.cmake instead of the Findosg*.cmake modules. Locate Producer This module defines PRODUCER_LIBRARY PRODUCER_FOUND, if false, do not try to link to Producer PRODUCER_INCLUDE_DIR, where to find the headers $PRODUCER_DIR is an environment variable that would correspond to the ./configure --prefix=$PRODUCER_DIR used in building osg. Created by Eric Wing. FindProtobufLocate and configure the Google Protocol Buffers library.New in version 3.6: Support for find_package() version checks. Changed in version 3.6: All input and output variables use the Protobuf_ prefix. Variables with PROTOBUF_ prefix are still supported for compatibility. The following variables can be set and are optional:
Defines the following variables:
New in version 3.9: The following IMPORTED targets are also defined:
The following cache variables are also available to set or use:
Example: find_package(Protobuf REQUIRED) include_directories(${Protobuf_INCLUDE_DIRS}) include_directories(${CMAKE_CURRENT_BINARY_DIR}) protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS foo.proto) protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS EXPORT_MACRO DLL_EXPORT foo.proto) protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS DESCRIPTORS PROTO_DESCS foo.proto) protobuf_generate_python(PROTO_PY foo.proto) add_executable(bar bar.cc ${PROTO_SRCS} ${PROTO_HDRS}) target_link_libraries(bar ${Protobuf_LIBRARIES}) NOTE: The protobuf_generate_cpp and
protobuf_generate_python functions and add_executable() or
add_library() calls only work properly within the same directory.
protobuf_generate_cpp (<SRCS> <HDRS> [DESCRIPTORS <DESC>] [EXPORT_MACRO <MACRO>] [<ARGN>...])
protobuf_generate_python (<PY> [<ARGN>...])
FindPythonNew in version 3.12.Find Python interpreter, compiler and development environment (include directories and libraries). New in version 3.19: When a version is requested, it can be specified as a simple value or as a range. For a detailed description of version range usage and capabilities, refer to the find_package() command. The following components are supported:
New in version 3.14: Added the NumPy component. If no COMPONENTS are specified, Interpreter is assumed. If component Development is specified, it implies sub-components Development.Module and Development.Embed. To ensure consistent versions between components Interpreter, Compiler, Development (or one of its sub-components) and NumPy, specify all components at the same time: find_package (Python COMPONENTS Interpreter Development) This module looks preferably for version 3 of Python. If not found, version 2 is searched. To manage concurrent versions 3 and 2 of Python, use FindPython3 and FindPython2 modules rather than this one. NOTE: If components Interpreter and Development
(or one of its sub-components) are both specified, this module search only for
interpreter with same platform architecture as the one defined by CMake
configuration. This constraint does not apply if only Interpreter
component is specified.
Imported TargetsThis module defines the following Imported Targets:Changed in version 3.14: Imported Targets are only created when CMAKE_ROLE is PROJECT.
Result VariablesThis module will set the following variables in your project (see Standard Variable Names):
Python_INCLUDE_DIRS The Python include directories.
Hints
NOTE: This hint will be ignored on Windows because
static libraries are not available on this platform.
This hint will be honored only when searched for
Python version 3.
NOTE: If Python_FIND_ABI is not defined, any ABI will be
searched.
The Python_FIND_ABI variable is a 3-tuple specifying, in that order, pydebug (d), pymalloc (m) and unicode (u) flags. Each element can be set to one of the following:
From this 3-tuple, various ABIs will be searched starting from the most specialized to the most general. Moreover, debug versions will be searched after non-debug ones. For example, if we have: set (Python_FIND_ABI "ON" "ANY" "ANY") The following flags combinations will be appended, in that order, to the artifact names: dmu, dm, du, and d. And to search any possible ABIs: set (Python_FIND_ABI "ANY" "ANY" "ANY") The following combinations, in that order, will be used: mu, m, u, <empty>, dmu, dm, du and d. NOTE: This hint is useful only on POSIX systems. So, on
Windows systems, when Python_FIND_ABI is defined, Python
distributions from python.org will be found only if value for each flag
is OFF or ANY.
Value ONLY is not supported so FIRST will
be used instead.
If Python_FIND_FRAMEWORK is not defined, CMAKE_FIND_FRAMEWORK variable will be used, if any.
New in version 3.17: Added support for conda environments. NOTE: If the component Development is requested, it is
strongly recommended to also include the component Interpreter
to get expected result.
The default value is:
NOTE: This hint has the lowest priority of all hints, so even
if, for example, you specify IronPython first and CPython in
second, a python product based on CPython can be selected because, for
example with Python_FIND_STRATEGY=LOCATION, each location will be
search first for IronPython and second for CPython.
NOTE: When IronPython is specified, on platforms other
than Windows, the .Net interpreter (i.e. mono command) is
expected to be available through the PATH variable.
Artifacts SpecificationNew in version 3.16.To solve special cases, it is possible to specify directly the artifacts by setting the following variables:
NOTE: All paths must be absolute. Any artifact specified with a
relative path will be ignored.
NOTE: When an artifact is specified, all HINTS will be
ignored and no search will be performed for this artifact.
If more than one artifact is specified, it is the user's responsibility to ensure the consistency of the various artifacts. By default, this module supports multiple calls in different directories of a project with different version/component requirements while providing correct and consistent results for each call. To support this behavior, CMake cache is not used in the traditional way which can be problematic for interactive specification. So, to enable also interactive specification, module behavior can be controlled with the following variable:
CommandsThis module defines the command Python_add_library (when CMAKE_ROLE is PROJECT), which has the same semantics as add_library() and adds a dependency to target Python::Python or, when library type is MODULE, to target Python::Module and takes care of Python module naming rules:Python_add_library (<name> [STATIC | SHARED | MODULE [WITH_SOABI]] <source1> [<source2> ...]) If the library type is not specified, MODULE is assumed. New in version 3.17: For MODULE library type, if option WITH_SOABI is specified, the module suffix will include the Python_SOABI value, if any. FindPython2New in version 3.12.Find Python 2 interpreter, compiler and development environment (include directories and libraries). New in version 3.19: When a version is requested, it can be specified as a simple value or as a range. For a detailed description of version range usage and capabilities, refer to the find_package() command. The following components are supported:
New in version 3.14: Added the NumPy component. If no COMPONENTS are specified, Interpreter is assumed. If component Development is specified, it implies sub-components Development.Module and Development.Embed. To ensure consistent versions between components Interpreter, Compiler, Development (or one of its sub-components) and NumPy, specify all components at the same time: find_package (Python2 COMPONENTS Interpreter Development) This module looks only for version 2 of Python. This module can be used concurrently with FindPython3 module to use both Python versions. The FindPython module can be used if Python version does not matter for you. NOTE: If components Interpreter and Development
(or one of its sub-components) are both specified, this module search only for
interpreter with same platform architecture as the one defined by CMake
configuration. This constraint does not apply if only Interpreter
component is specified.
Imported TargetsThis module defines the following Imported Targets:Changed in version 3.14: Imported Targets are only created when CMAKE_ROLE is PROJECT.
Result VariablesThis module will set the following variables in your project (see Standard Variable Names):
Hints
NOTE: This hint will be ignored on Windows because
static libraries are not available on this platform.
Value ONLY is not supported so FIRST will
be used instead.
If Python2_FIND_FRAMEWORK is not defined, CMAKE_FIND_FRAMEWORK variable will be used, if any.
New in version 3.17: Added support for conda environments. NOTE: If the component Development is requested, it is
strongly recommended to also include the component Interpreter
to get expected result.
The default value is:
NOTE: This hint has the lowest priority of all hints, so even
if, for example, you specify IronPython first and CPython in
second, a python product based on CPython can be selected because, for
example with Python2_FIND_STRATEGY=LOCATION, each location will be
search first for IronPython and second for CPython.
NOTE: When IronPython is specified, on platforms other
than Windows, the .Net interpreter (i.e. mono command) is
expected to be available through the PATH variable.
Artifacts SpecificationNew in version 3.16.To solve special cases, it is possible to specify directly the artifacts by setting the following variables:
NOTE: All paths must be absolute. Any artifact specified with a
relative path will be ignored.
NOTE: When an artifact is specified, all HINTS will be
ignored and no search will be performed for this artifact.
If more than one artifact is specified, it is the user's responsibility to ensure the consistency of the various artifacts. By default, this module supports multiple calls in different directories of a project with different version/component requirements while providing correct and consistent results for each call. To support this behavior, CMake cache is not used in the traditional way which can be problematic for interactive specification. So, to enable also interactive specification, module behavior can be controlled with the following variable:
CommandsThis module defines the command Python2_add_library (when CMAKE_ROLE is PROJECT), which has the same semantics as add_library() and adds a dependency to target Python2::Python or, when library type is MODULE, to target Python2::Module and takes care of Python module naming rules:Python2_add_library (<name> [STATIC | SHARED | MODULE] <source1> [<source2> ...]) If library type is not specified, MODULE is assumed. FindPython3New in version 3.12.Find Python 3 interpreter, compiler and development environment (include directories and libraries). New in version 3.19: When a version is requested, it can be specified as a simple value or as a range. For a detailed description of version range usage and capabilities, refer to the find_package() command. The following components are supported:
New in version 3.14: Added the NumPy component. If no COMPONENTS are specified, Interpreter is assumed. If component Development is specified, it implies sub-components Development.Module and Development.Embed. To ensure consistent versions between components Interpreter, Compiler, Development (or one of its sub-components) and NumPy, specify all components at the same time: find_package (Python3 COMPONENTS Interpreter Development) This module looks only for version 3 of Python. This module can be used concurrently with FindPython2 module to use both Python versions. The FindPython module can be used if Python version does not matter for you. NOTE: If components Interpreter and Development
(or one of its sub-components) are both specified, this module search only for
interpreter with same platform architecture as the one defined by CMake
configuration. This constraint does not apply if only Interpreter
component is specified.
Imported TargetsThis module defines the following Imported Targets:Changed in version 3.14: Imported Targets are only created when CMAKE_ROLE is PROJECT.
Result VariablesThis module will set the following variables in your project (see Standard Variable Names):
Python3_Development_FOUND System has the Python 3 development artifacts.
Python3_INCLUDE_DIRS The Python 3 include directories.
Hints
NOTE: This hint will be ignored on Windows because
static libraries are not available on this platform.
If Python3_FIND_ABI is not defined, any ABI will
be searched.
The Python3_FIND_ABI variable is a 3-tuple specifying, in that order, pydebug (d), pymalloc (m) and unicode (u) flags. Each element can be set to one of the following:
From this 3-tuple, various ABIs will be searched starting from the most specialized to the most general. Moreover, debug versions will be searched after non-debug ones. For example, if we have: set (Python3_FIND_ABI "ON" "ANY" "ANY") The following flags combinations will be appended, in that order, to the artifact names: dmu, dm, du, and d. And to search any possible ABIs: set (Python3_FIND_ABI "ANY" "ANY" "ANY") The following combinations, in that order, will be used: mu, m, u, <empty>, dmu, dm, du and d. NOTE: This hint is useful only on POSIX systems. So, on
Windows systems, when Python3_FIND_ABI is defined, Python
distributions from python.org will be found only if value for each flag
is OFF or ANY.
Value ONLY is not supported so FIRST will
be used instead.
If Python3_FIND_FRAMEWORK is not defined, CMAKE_FIND_FRAMEWORK variable will be used, if any.
New in version 3.17: Added support for conda environments. NOTE: If the component Development is requested, it is
strongly recommended to also include the component Interpreter
to get expected result.
The default value is:
NOTE: This hint has the lowest priority of all hints, so even
if, for example, you specify IronPython first and CPython in
second, a python product based on CPython can be selected because, for
example with Python3_FIND_STRATEGY=LOCATION, each location will be
search first for IronPython and second for CPython.
NOTE: When IronPython is specified, on platforms other
than Windows, the .Net interpreter (i.e. mono command) is
expected to be available through the PATH variable.
Artifacts SpecificationNew in version 3.16.To solve special cases, it is possible to specify directly the artifacts by setting the following variables:
NOTE: All paths must be absolute. Any artifact specified with a
relative path will be ignored.
NOTE: When an artifact is specified, all HINTS will be
ignored and no search will be performed for this artifact.
If more than one artifact is specified, it is the user's responsibility to ensure the consistency of the various artifacts. By default, this module supports multiple calls in different directories of a project with different version/component requirements while providing correct and consistent results for each call. To support this behavior, CMake cache is not used in the traditional way which can be problematic for interactive specification. So, to enable also interactive specification, module behavior can be controlled with the following variable:
CommandsThis module defines the command Python3_add_library (when CMAKE_ROLE is PROJECT), which has the same semantics as add_library() and adds a dependency to target Python3::Python or, when library type is MODULE, to target Python3::Module and takes care of Python module naming rules:Python3_add_library (<name> [STATIC | SHARED | MODULE [WITH_SOABI]] <source1> [<source2> ...]) If the library type is not specified, MODULE is assumed. New in version 3.17: For MODULE library type, if option WITH_SOABI is specified, the module suffix will include the Python3_SOABI value, if any. FindQt3Locate Qt include paths and librariesThis module defines: QT_INCLUDE_DIR - where to find qt.h, etc. QT_LIBRARIES - the libraries to link against to use Qt. QT_DEFINITIONS - definitions to use when compiling code that uses Qt. QT_FOUND - If false, don't try to use Qt. QT_VERSION_STRING - the version of Qt found If you need the multithreaded version of Qt, set QT_MT_REQUIRED to TRUE Also defined, but not for general use are: QT_MOC_EXECUTABLE, where to find the moc tool. QT_UIC_EXECUTABLE, where to find the uic tool. QT_QT_LIBRARY, where to find the Qt library. QT_QTMAIN_LIBRARY, where to find the qtmain library. This is only required by Qt3 on Windows. FindQt4Finding and Using Qt4This module can be used to find Qt4. The most important issue is that the Qt4 qmake is available via the system path. This qmake is then used to detect basically everything else. This module defines a number of IMPORTED targets, macros and variables.Typical usage could be something like: set(CMAKE_AUTOMOC ON) set(CMAKE_INCLUDE_CURRENT_DIR ON) find_package(Qt4 4.4.3 REQUIRED QtGui QtXml) add_executable(myexe main.cpp) target_link_libraries(myexe Qt4::QtGui Qt4::QtXml) NOTE: When using IMPORTED targets, the qtmain.lib static
library is automatically linked on Windows for WIN32 executables. To
disable that globally, set the QT4_NO_LINK_QTMAIN variable before
finding Qt4. To disable that for a particular executable, set the
QT4_NO_LINK_QTMAIN target property to TRUE on the
executable.
Qt Build ToolsQt relies on some bundled tools for code generation, such as moc for meta-object code generation,``uic`` for widget layout and population, and rcc for virtual filesystem content generation. These tools may be automatically invoked by cmake(1) if the appropriate conditions are met. See cmake-qt(7) for more.Qt MacrosIn some cases it can be necessary or useful to invoke the Qt build tools in a more-manual way. Several macros are available to add targets for such uses.macro QT4_WRAP_CPP(outfiles inputfile ... [TARGET tgt] OPTIONS ...) create moc code from a list of files containing Qt class with the Q_OBJECT declaration. Per-directory preprocessor definitions are also added. If the <tgt> is specified, the INTERFACE_INCLUDE_DIRECTORIES and INTERFACE_COMPILE_DEFINITIONS from the <tgt> are passed to moc. Options may be given to moc, such as those found when executing "moc -help". macro QT4_WRAP_UI(outfiles inputfile ... OPTIONS ...) create code from a list of Qt designer ui files. Options may be given to uic, such as those found when executing "uic -help" macro QT4_ADD_RESOURCES(outfiles inputfile ... OPTIONS ...) create code from a list of Qt resource files. Options may be given to rcc, such as those found when executing "rcc -help" macro QT4_GENERATE_MOC(inputfile outputfile [TARGET tgt]) creates a rule to run moc on infile and create outfile. Use this if for some reason QT4_WRAP_CPP() isn't appropriate, e.g. because you need a custom filename for the moc file or something similar. If the <tgt> is specified, the INTERFACE_INCLUDE_DIRECTORIES and INTERFACE_COMPILE_DEFINITIONS from the <tgt> are passed to moc. macro QT4_ADD_DBUS_INTERFACE(outfiles interface basename) Create the interface header and implementation files with the given basename from the given interface xml file and add it to the list of sources. You can pass additional parameters to the qdbusxml2cpp call by setting properties on the input file: INCLUDE the given file will be included in the generate interface header CLASSNAME the generated class is named accordingly NO_NAMESPACE the generated class is not wrapped in a namespace macro QT4_ADD_DBUS_INTERFACES(outfiles inputfile ... ) Create the interface header and implementation files for all listed interface xml files. The basename will be automatically determined from the name of the xml file. The source file properties described for QT4_ADD_DBUS_INTERFACE also apply here. macro QT4_ADD_DBUS_ADAPTOR(outfiles xmlfile parentheader parentclassname [basename] [classname]) create a dbus adaptor (header and implementation file) from the xml file describing the interface, and add it to the list of sources. The adaptor forwards the calls to a parent class, defined in parentheader and named parentclassname. The name of the generated files will be <basename>adaptor.{cpp,h} where basename defaults to the basename of the xml file. If <classname> is provided, then it will be used as the classname of the adaptor itself. macro QT4_GENERATE_DBUS_INTERFACE( header [interfacename] OPTIONS ...) generate the xml interface file from the given header. If the optional argument interfacename is omitted, the name of the interface file is constructed from the basename of the header with the suffix .xml appended. Options may be given to qdbuscpp2xml, such as those found when executing "qdbuscpp2xml --help" macro QT4_CREATE_TRANSLATION( qm_files directories ... sources ... ts_files ... OPTIONS ...) out: qm_files in: directories sources ts_files options: flags to pass to lupdate, such as -extensions to specify extensions for a directory scan. generates commands to create .ts (via lupdate) and .qm (via lrelease) - files from directories and/or sources. The ts files are created and/or updated in the source tree (unless given with full paths). The qm files are generated in the build tree. Updating the translations can be done by adding the qm_files to the source list of your library/executable, so they are always updated, or by adding a custom target to control when they get updated/generated. macro QT4_ADD_TRANSLATION( qm_files ts_files ... ) out: qm_files in: ts_files generates commands to create .qm from .ts - files. The generated filenames can be found in qm_files. The ts_files must exist and are not updated in any way. macro QT4_AUTOMOC(sourcefile1 sourcefile2 ... [TARGET tgt]) The qt4_automoc macro is obsolete. Use the CMAKE_AUTOMOC feature instead. This macro is still experimental. It can be used to have moc automatically handled. So if you have the files foo.h and foo.cpp, and in foo.h a a class uses the Q_OBJECT macro, moc has to run on it. If you don't want to use QT4_WRAP_CPP() (which is reliable and mature), you can insert #include "foo.moc" in foo.cpp and then give foo.cpp as argument to QT4_AUTOMOC(). This will scan all listed files at cmake-time for such included moc files and if it finds them cause a rule to be generated to run moc at build time on the accompanying header file foo.h. If a source file has the SKIP_AUTOMOC property set it will be ignored by this macro. If the <tgt> is specified, the INTERFACE_INCLUDE_DIRECTORIES and INTERFACE_COMPILE_DEFINITIONS from the <tgt> are passed to moc. function QT4_USE_MODULES( target [link_type] modules...) This function is obsolete. Use target_link_libraries with IMPORTED targets instead. Make <target> use the <modules> from Qt. Using a Qt module means to link to the library, add the relevant include directories for the module, and add the relevant compiler defines for using the module. Modules are roughly equivalent to components of Qt4, so usage would be something like: qt4_use_modules(myexe Core Gui Declarative) to use QtCore, QtGui and QtDeclarative. The optional <link_type> argument can be specified as either LINK_PUBLIC or LINK_PRIVATE to specify the same argument to the target_link_libraries call. IMPORTED TargetsA particular Qt library may be used by using the corresponding IMPORTED target with the target_link_libraries() command:target_link_libraries(myexe Qt4::QtGui Qt4::QtXml) Using a target in this way causes :cmake(1)` to use the appropriate include directories and compile definitions for the target when compiling myexe. Targets are aware of their dependencies, so for example it is not necessary to list Qt4::QtCore if another Qt library is listed, and it is not necessary to list Qt4::QtGui if Qt4::QtDeclarative is listed. Targets may be tested for existence in the usual way with the if(TARGET) command. The Qt toolkit may contain both debug and release libraries. cmake(1) will choose the appropriate version based on the build configuration.
Result VariablesBelow is a detailed list of variables that FindQt4.cmake
sets.
FindQuickTimeLocate QuickTime This module defines QUICKTIME_LIBRARY QUICKTIME_FOUND, if false, do not try to link to gdal QUICKTIME_INCLUDE_DIR, where to find the headers$QUICKTIME_DIR is an environment variable that would correspond to the ./configure --prefix=$QUICKTIME_DIR Created by Eric Wing. FindRTITry to find M&S HLA RTI librariesThis module finds if any HLA RTI is installed and locates the standard RTI include files and libraries. RTI is a simulation infrastructure standardized by IEEE and SISO. It has a well defined C++ API that assures that simulation applications are independent on a particular RTI implementation. http://en.wikipedia.org/wiki/Run-Time_Infrastructure_(simulation) This code sets the following variables: RTI_INCLUDE_DIR = the directory where RTI includes file are found RTI_LIBRARIES = The libraries to link against to use RTI RTI_DEFINITIONS = -DRTI_USES_STD_FSTREAM RTI_FOUND = Set to FALSE if any HLA RTI was not found Report problems to <certi-devel@nongnu.org> FindRubyFind RubyThis module finds if Ruby is installed and determines where the include files and libraries are. Ruby 1.8 through 2.7 are supported. The minimum required version of Ruby can be specified using the standard syntax, e.g. find_package(Ruby 2.5.1 EXACT REQUIRED) # OR find_package(Ruby 2.4) It also determines what the name of the library is. Virtual environments such as RVM are handled as well, by passing the argument Ruby_FIND_VIRTUALENV Result VariablesThis module will set the following variables in your project:
Changed in version 3.18: Previous versions of CMake used the RUBY_ prefix for all variables. The following variables are provided for compatibility reasons, don't use them in new code:
HintsNew in version 3.18.
FindSDLLocate the SDL libraryImported targetsNew in version 3.19.This module defines the following IMPORTED target:
Result variablesThis module will set the following variables in your project:
New in version 3.19: Added the SDL_INCLUDE_DIRS, SDL_LIBRARIES and SDL_VERSION[_<PART>] variables. Cache variablesThese variables may optionally be set to help this module find the correct files:
Variables for locating SDLThis module responds to the flag:
Obsolete variablesDeprecated since version 3.19.These variables are obsolete and provided for backwards compatibility:
Don't forget to include SDLmain.h and SDLmain.m your project for the OS X framework based version. (Other versions link to -lSDLmain which this module will try to find on your behalf.) Also for OS X, this module will automatically add the -framework Cocoa on your behalf. Additional Note: If you see an empty SDL_LIBRARY_TEMP in your configuration and no SDL_LIBRARY, it means CMake did not find your SDL library (SDL.dll, libsdl.so, SDL.framework, etc). Set SDL_LIBRARY_TEMP to point to your SDL library, and configure again. Similarly, if you see an empty SDLMAIN_LIBRARY, you should set this value as appropriate. These values are used to generate the final SDL_LIBRARY variable, but when these values are unset, SDL_LIBRARY does not get created. $SDLDIR is an environment variable that would correspond to the ./configure --prefix=$SDLDIR used in building SDL. l.e.galup 9-20-02 On OSX, this will prefer the Framework version (if found) over others. People will have to manually change the cache values of SDL_LIBRARY to override this selection or set the CMake environment CMAKE_INCLUDE_PATH to modify the search paths. Note that the header path has changed from SDL/SDL.h to just SDL.h This needed to change because "proper" SDL convention is #include "SDL.h", not <SDL/SDL.h>. This is done for portability reasons because not all systems place things in SDL/ (see FreeBSD). FindSDL_imageLocate SDL_image libraryThis module defines: SDL_IMAGE_LIBRARIES, the name of the library to link against SDL_IMAGE_INCLUDE_DIRS, where to find the headers SDL_IMAGE_FOUND, if false, do not try to link against SDL_IMAGE_VERSION_STRING - human-readable string containing the version of SDL_image For backward compatibility the following variables are also set: SDLIMAGE_LIBRARY (same value as SDL_IMAGE_LIBRARIES) SDLIMAGE_INCLUDE_DIR (same value as SDL_IMAGE_INCLUDE_DIRS) SDLIMAGE_FOUND (same value as SDL_IMAGE_FOUND) $SDLDIR is an environment variable that would correspond to the ./configure --prefix=$SDLDIR used in building SDL. Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifications to recognize OS X frameworks and additional Unix paths (FreeBSD, etc). FindSDL_mixerLocate SDL_mixer libraryThis module defines: SDL_MIXER_LIBRARIES, the name of the library to link against SDL_MIXER_INCLUDE_DIRS, where to find the headers SDL_MIXER_FOUND, if false, do not try to link against SDL_MIXER_VERSION_STRING - human-readable string containing the version of SDL_mixer For backward compatibility the following variables are also set: SDLMIXER_LIBRARY (same value as SDL_MIXER_LIBRARIES) SDLMIXER_INCLUDE_DIR (same value as SDL_MIXER_INCLUDE_DIRS) SDLMIXER_FOUND (same value as SDL_MIXER_FOUND) $SDLDIR is an environment variable that would correspond to the ./configure --prefix=$SDLDIR used in building SDL. Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifications to recognize OS X frameworks and additional Unix paths (FreeBSD, etc). FindSDL_netLocate SDL_net libraryThis module defines: SDL_NET_LIBRARIES, the name of the library to link against SDL_NET_INCLUDE_DIRS, where to find the headers SDL_NET_FOUND, if false, do not try to link against SDL_NET_VERSION_STRING - human-readable string containing the version of SDL_net For backward compatibility the following variables are also set: SDLNET_LIBRARY (same value as SDL_NET_LIBRARIES) SDLNET_INCLUDE_DIR (same value as SDL_NET_INCLUDE_DIRS) SDLNET_FOUND (same value as SDL_NET_FOUND) $SDLDIR is an environment variable that would correspond to the ./configure --prefix=$SDLDIR used in building SDL. Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifications to recognize OS X frameworks and additional Unix paths (FreeBSD, etc). FindSDL_soundLocates the SDL_sound libraryThis module depends on SDL being found and must be called AFTER FindSDL.cmake is called. This module defines SDL_SOUND_INCLUDE_DIR, where to find SDL_sound.h SDL_SOUND_FOUND, if false, do not try to link to SDL_sound SDL_SOUND_LIBRARIES, this contains the list of libraries that you need to link against. SDL_SOUND_EXTRAS, this is an optional variable for you to add your own flags to SDL_SOUND_LIBRARIES. This is prepended to SDL_SOUND_LIBRARIES. This is available mostly for cases this module failed to anticipate for and you must add additional flags. This is marked as ADVANCED. SDL_SOUND_VERSION_STRING, human-readable string containing the version of SDL_sound This module also defines (but you shouldn't need to use directly) SDL_SOUND_LIBRARY, the name of just the SDL_sound library you would link against. Use SDL_SOUND_LIBRARIES for you link instructions and not this one. And might define the following as needed MIKMOD_LIBRARY MODPLUG_LIBRARY OGG_LIBRARY VORBIS_LIBRARY SMPEG_LIBRARY FLAC_LIBRARY SPEEX_LIBRARY Typically, you should not use these variables directly, and you should use SDL_SOUND_LIBRARIES which contains SDL_SOUND_LIBRARY and the other audio libraries (if needed) to successfully compile on your system. Created by Eric Wing. This module is a bit more complicated than the other FindSDL* family modules. The reason is that SDL_sound can be compiled in a large variety of different ways which are independent of platform. SDL_sound may dynamically link against other 3rd party libraries to get additional codec support, such as Ogg Vorbis, SMPEG, ModPlug, MikMod, FLAC, Speex, and potentially others. Under some circumstances which I don't fully understand, there seems to be a requirement that dependent libraries of libraries you use must also be explicitly linked against in order to successfully compile. SDL_sound does not currently have any system in place to know how it was compiled. So this CMake module does the hard work in trying to discover which 3rd party libraries are required for building (if any). This module uses a brute force approach to create a test program that uses SDL_sound, and then tries to build it. If the build fails, it parses the error output for known symbol names to figure out which libraries are needed. Responds to the $SDLDIR and $SDLSOUNDDIR environmental variable that would correspond to the ./configure --prefix=$SDLDIR used in building SDL. On OSX, this will prefer the Framework version (if found) over others. People will have to manually change the cache values of SDL_LIBRARY to override this selectionor set the CMake environment CMAKE_INCLUDE_PATH to modify the search paths. FindSDL_ttfLocate SDL_ttf libraryThis module defines: SDL_TTF_LIBRARIES, the name of the library to link against SDL_TTF_INCLUDE_DIRS, where to find the headers SDL_TTF_FOUND, if false, do not try to link against SDL_TTF_VERSION_STRING - human-readable string containing the version of SDL_ttf For backward compatibility the following variables are also set: SDLTTF_LIBRARY (same value as SDL_TTF_LIBRARIES) SDLTTF_INCLUDE_DIR (same value as SDL_TTF_INCLUDE_DIRS) SDLTTF_FOUND (same value as SDL_TTF_FOUND) $SDLDIR is an environment variable that would correspond to the ./configure --prefix=$SDLDIR used in building SDL. Created by Eric Wing. This was influenced by the FindSDL.cmake module, but with modifications to recognize OS X frameworks and additional Unix paths (FreeBSD, etc). FindSelfPackersFind upxThis module looks for some executable packers (i.e. software that compress executables or shared libs into on-the-fly self-extracting executables or shared libs. Examples: UPX: http://wildsau.idv.uni-linz.ac.at/mfx/upx.html FindSquish-- Typical UseThis module can be used to find Squish. SQUISH_FOUND If false, don't try to use Squish SQUISH_VERSION The full version of Squish found SQUISH_VERSION_MAJOR The major version of Squish found SQUISH_VERSION_MINOR The minor version of Squish found SQUISH_VERSION_PATCH The patch version of Squish found SQUISH_INSTALL_DIR The Squish installation directory (containing bin, lib, etc) SQUISH_SERVER_EXECUTABLE The squishserver executable SQUISH_CLIENT_EXECUTABLE The squishrunner executable SQUISH_INSTALL_DIR_FOUND Was the install directory found? SQUISH_SERVER_EXECUTABLE_FOUND Was the server executable found? SQUISH_CLIENT_EXECUTABLE_FOUND Was the client executable found? It provides the function squish_add_test() for adding a squish test to cmake using Squish >= 4.x: squish_add_test(cmakeTestName AUT targetName SUITE suiteName TEST squishTestName [SETTINGSGROUP group] [PRE_COMMAND command] [POST_COMMAND command] ) Changed in version 3.18: In previous CMake versions, this function was named squish_v4_add_test. The arguments have the following meaning:
enable_testing() find_package(Squish 6.5) if (SQUISH_FOUND) squish_add_test(myTestName AUT myApp SUITE ${CMAKE_SOURCE_DIR}/tests/mySuite TEST someSquishTest ) endif () For users of Squish version 3.x the macro squish_v3_add_test() is provided: squish_v3_add_test(testName applicationUnderTest testCase envVars testWrapper) Use this macro to add a test using Squish 3.x. enable_testing() find_package(Squish 3.0) if (SQUISH_FOUND) squish_v3_add_test(myTestName myApplication testCase envVars testWrapper) endif () FindSQLite3New in version 3.14.Find the SQLite libraries, v3 IMPORTED targetsThis module defines the following IMPORTED target:SQLite::SQLite3 Result variablesThis module will set the following variables if found:
FindSubversionExtract information from a subversion working copyThe module defines the following variables: Subversion_SVN_EXECUTABLE - path to svn command line client Subversion_VERSION_SVN - version of svn command line client Subversion_FOUND - true if the command line client was found SUBVERSION_FOUND - same as Subversion_FOUND, set for compatibility reasons The minimum required version of Subversion can be specified using the standard syntax, e.g. find_package(Subversion 1.4). If the command line client executable is found two macros are defined: Subversion_WC_INFO(<dir> <var-prefix> [IGNORE_SVN_FAILURE]) Subversion_WC_LOG(<dir> <var-prefix>) Subversion_WC_INFO extracts information of a subversion working copy at a given location. This macro defines the following variables if running Subversion's info command on <dir> succeeds; otherwise a SEND_ERROR message is generated. New in version 3.13: The error can be ignored by providing the IGNORE_SVN_FAILURE option, which causes these variables to remain undefined. <var-prefix>_WC_URL - url of the repository (at <dir>) <var-prefix>_WC_ROOT - root url of the repository <var-prefix>_WC_REVISION - current revision <var-prefix>_WC_LAST_CHANGED_AUTHOR - author of last commit <var-prefix>_WC_LAST_CHANGED_DATE - date of last commit <var-prefix>_WC_LAST_CHANGED_REV - revision of last commit <var-prefix>_WC_INFO - output of command `svn info <dir>' Subversion_WC_LOG retrieves the log message of the base revision of a subversion working copy at a given location. This macro defines the variable: <var-prefix>_LAST_CHANGED_LOG - last log of base revision Example usage: find_package(Subversion) if(SUBVERSION_FOUND) Subversion_WC_INFO(${PROJECT_SOURCE_DIR} Project) message("Current revision is ${Project_WC_REVISION}") Subversion_WC_LOG(${PROJECT_SOURCE_DIR} Project) message("Last changed log is ${Project_LAST_CHANGED_LOG}") endif() FindSWIGFind the Simplified Wrapper and Interface Generator (SWIG) executable.This module finds an installed SWIG and determines its version. New in version 3.18: If a COMPONENTS or OPTIONAL_COMPONENTS argument is given to the find_package() command, it will also determine supported target languages. New in version 3.19: When a version is requested, it can be specified as a simple value or as a range. For a detailed description of version range usage and capabilities, refer to the find_package() command. The module defines the following variables:
Any COMPONENTS given to find_package should be the names of supported target languages as provided to the LANGUAGE argument of swig_add_library, such as python or perl5. Language names must be lowercase. All information is collected from the SWIG_EXECUTABLE, so the version to be found can be changed from the command line by means of setting SWIG_EXECUTABLE. Example usage requiring SWIG 4.0 or higher and Python language support, with optional Fortran support: find_package(SWIG 4.0 COMPONENTS python OPTIONAL_COMPONENTS fortran) if(SWIG_FOUND) message("SWIG found: ${SWIG_EXECUTABLE}") if(NOT SWIG_fortran_FOUND) message(WARNING "SWIG Fortran bindings cannot be generated") endif() endif() FindTCLTK_INTERNAL_PATH was removed.This module finds if Tcl is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: TCL_FOUND = Tcl was found TK_FOUND = Tk was found TCLTK_FOUND = Tcl and Tk were found TCL_LIBRARY = path to Tcl library (tcl tcl80) TCL_INCLUDE_PATH = path to where tcl.h can be found TCL_TCLSH = path to tclsh binary (tcl tcl80) TK_LIBRARY = path to Tk library (tk tk80 etc) TK_INCLUDE_PATH = path to where tk.h can be found TK_WISH = full path to the wish executable In an effort to remove some clutter and clear up some issues for people who are not necessarily Tcl/Tk gurus/developers, some variables were moved or removed. Changes compared to CMake 2.4 are: => they were only useful for people writing Tcl/Tk extensions. => these libs are not packaged by default with Tcl/Tk distributions. Even when Tcl/Tk is built from source, several flavors of debug libs are created and there is no real reason to pick a single one specifically (say, amongst tcl84g, tcl84gs, or tcl84sgx). Let's leave that choice to the user by allowing him to assign TCL_LIBRARY to any Tcl library, debug or not. => this ended up being only a Win32 variable, and there is a lot of confusion regarding the location of this file in an installed Tcl/Tk tree anyway (see 8.5 for example). If you need the internal path at this point it is safer you ask directly where the *source* tree is and dig from there. FindTclshFind tclshThis module finds if TCL is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: TCLSH_FOUND = TRUE if tclsh has been found TCL_TCLSH = the path to the tclsh executable FindTclStubTCL_STUB_LIBRARY_DEBUG and TK_STUB_LIBRARY_DEBUG were removed.This module finds Tcl stub libraries. It first finds Tcl include files and libraries by calling FindTCL.cmake. How to Use the Tcl Stubs Library: http://tcl.activestate.com/doc/howto/stubs.html Using Stub Libraries: http://safari.oreilly.com/0130385603/ch48lev1sec3 This code sets the following variables: TCL_STUB_LIBRARY = path to Tcl stub library TK_STUB_LIBRARY = path to Tk stub library TTK_STUB_LIBRARY = path to ttk stub library In an effort to remove some clutter and clear up some issues for people who are not necessarily Tcl/Tk gurus/developers, some variables were moved or removed. Changes compared to CMake 2.4 are: => these libs are not packaged by default with Tcl/Tk distributions. Even when Tcl/Tk is built from source, several flavors of debug libs are created and there is no real reason to pick a single one specifically (say, amongst tclstub84g, tclstub84gs, or tclstub84sgx). Let's leave that choice to the user by allowing him to assign TCL_STUB_LIBRARY to any Tcl library, debug or not. FindThreadsThis module determines the thread library of the system.Imported TargetsNew in version 3.1.This module defines the following IMPORTED target:
Result VariablesThe following variables are set:
Variables Affecting Behavior
FindTIFFFind the TIFF library (libtiff, https://libtiff.gitlab.io/libtiff/).Optional COMPONENTSThis module supports the optional component CXX, for use with the COMPONENTS argument of the find_package() command. This component has an associated imported target, as described below.Imported targetsNew in version 3.5.This module defines the following IMPORTED targets:
Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
New in version 3.4: Debug and Release variants are found separately. FindUnixCommandsFind Unix commands, including the ones from CygwinThis module looks for the Unix commands bash, cp, gzip, mv, rm, and tar and stores the result in the variables BASH, CP, GZIP, MV, RM, and TAR. FindVTKThis module no longer exists.This module existed in versions of CMake prior to 3.1, but became only a thin wrapper around find_package(VTK NO_MODULE) to provide compatibility for projects using long-outdated conventions. Now find_package(VTK) will search for VTKConfig.cmake directly. FindVulkanNew in version 3.7.Find Vulkan, which is a low-overhead, cross-platform 3D graphics and computing API. IMPORTED TargetsThis module defines IMPORTED targets if Vulkan has been found:
Result VariablesThis module defines the following variables:Vulkan_FOUND - "True" if Vulkan was found Vulkan_INCLUDE_DIRS - include directories for Vulkan Vulkan_LIBRARIES - link against this library to use Vulkan The module will also define three cache variables: Vulkan_INCLUDE_DIR - the Vulkan include directory Vulkan_LIBRARY - the path to the Vulkan library Vulkan_GLSLC_EXECUTABLE - the path to the GLSL SPIR-V compiler Vulkan_GLSLANG_VALIDATOR_EXECUTABLE - the path to the glslangValidator tool HintsNew in version 3.18.The VULKAN_SDK environment variable optionally specifies the location of the Vulkan SDK root directory for the given architecture. It is typically set by sourcing the toplevel setup-env.sh script of the Vulkan SDK directory into the shell environment. FindWgetFind wgetThis module looks for wget. This module defines the following values: WGET_EXECUTABLE: the full path to the wget tool. WGET_FOUND: True if wget has been found. FindWishFind wish installationThis module finds if TCL is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: TK_WISH = the path to the wish executable if UNIX is defined, then it will look for the cygwin version first FindwxWidgetsFind a wxWidgets (a.k.a., wxWindows) installation.This module finds if wxWidgets is installed and selects a default configuration to use. wxWidgets is a modular library. To specify the modules that you will use, you need to name them as components to the package: find_package(wxWidgets COMPONENTS core base ... OPTIONAL_COMPONENTS net ...) New in version 3.4: Support for find_package() version argument; webview component. New in version 3.14: OPTIONAL_COMPONENTS support. There are two search branches: a windows style and a unix style. For windows, the following variables are searched for and set to defaults in case of multiple choices. Change them if the defaults are not desired (i.e., these are the only variables you should change to select a configuration): wxWidgets_ROOT_DIR - Base wxWidgets directory (e.g., C:/wxWidgets-2.6.3). wxWidgets_LIB_DIR - Path to wxWidgets libraries (e.g., C:/wxWidgets-2.6.3/lib/vc_lib). wxWidgets_CONFIGURATION - Configuration to use (e.g., msw, mswd, mswu, mswunivud, etc.) wxWidgets_EXCLUDE_COMMON_LIBRARIES - Set to TRUE to exclude linking of commonly required libs (e.g., png tiff jpeg zlib regex expat). For unix style it uses the wx-config utility. You can select between debug/release, unicode/ansi, universal/non-universal, and static/shared in the QtDialog or ccmake interfaces by turning ON/OFF the following variables: wxWidgets_USE_DEBUG wxWidgets_USE_UNICODE wxWidgets_USE_UNIVERSAL wxWidgets_USE_STATIC There is also a wxWidgets_CONFIG_OPTIONS variable for all other options that need to be passed to the wx-config utility. For example, to use the base toolkit found in the /usr/local path, set the variable (before calling the FIND_PACKAGE command) as such: set(wxWidgets_CONFIG_OPTIONS --toolkit=base --prefix=/usr) The following are set after the configuration is done for both windows and unix style: wxWidgets_FOUND - Set to TRUE if wxWidgets was found. wxWidgets_INCLUDE_DIRS - Include directories for WIN32 i.e., where to find "wx/wx.h" and "wx/setup.h"; possibly empty for unices. wxWidgets_LIBRARIES - Path to the wxWidgets libraries. wxWidgets_LIBRARY_DIRS - compile time link dirs, useful for rpath on UNIX. Typically an empty string in WIN32 environment. wxWidgets_DEFINITIONS - Contains defines required to compile/link against WX, e.g. WXUSINGDLL wxWidgets_DEFINITIONS_DEBUG- Contains defines required to compile/link against WX debug builds, e.g. __WXDEBUG__ wxWidgets_CXX_FLAGS - Include dirs and compiler flags for unices, empty on WIN32. Essentially "`wx-config --cxxflags`". wxWidgets_USE_FILE - Convenience include file. New in version 3.11: The following environment variables can be used as hints: WX_CONFIG, WXRC_CMD. Sample usage: # Note that for MinGW users the order of libs is important! find_package(wxWidgets COMPONENTS gl core base OPTIONAL_COMPONENTS net) if(wxWidgets_FOUND) include(${wxWidgets_USE_FILE}) # and for each of your dependent executable/library targets: target_link_libraries(<YourTarget> ${wxWidgets_LIBRARIES}) endif() If wxWidgets is required (i.e., not an optional part): find_package(wxWidgets REQUIRED gl core base OPTIONAL_COMPONENTS net) include(${wxWidgets_USE_FILE}) # and for each of your dependent executable/library targets: target_link_libraries(<YourTarget> ${wxWidgets_LIBRARIES}) FindX11Find X11 installationTry to find X11 on UNIX systems. The following values are defined X11_FOUND - True if X11 is available X11_INCLUDE_DIR - include directories to use X11 X11_LIBRARIES - link against these to use X11 and also the following more fine grained variables and targets: New in version 3.14: Imported targets. X11_ICE_INCLUDE_PATH, X11_ICE_LIB, X11_ICE_FOUND, X11::ICE X11_SM_INCLUDE_PATH, X11_SM_LIB, X11_SM_FOUND, X11::SM X11_X11_INCLUDE_PATH, X11_X11_LIB, X11::X11 X11_Xaccessrules_INCLUDE_PATH, X11_Xaccessstr_INCLUDE_PATH, X11_Xaccess_FOUND X11_Xau_INCLUDE_PATH, X11_Xau_LIB, X11_Xau_FOUND, X11::Xau X11_xcb_INCLUDE_PATH, X11_xcb_LIB, X11_xcb_FOUND, X11::xcb X11_X11_xcb_INCLUDE_PATH, X11_X11_xcb_LIB, X11_X11_xcb_FOUND, X11::X11_xcb X11_xcb_icccm_INCLUDE_PATH, X11_xcb_icccm_LIB, X11_xcb_icccm_FOUND, X11::xcb_icccm X11_xcb_util_INCLUDE_PATH, X11_xcb_util_LIB, X11_xcb_util_FOUND, X11::xcb_util X11_xcb_xfixes_INCLUDE_PATH, X11_xcb_xfixes_LIB, X11_xcb_xfixes_FOUND, X11::xcb_xfixes X11_xcb_xkb_INCLUDE_PATH, X11_xcb_xkb_LIB, X11_xcb_xkb_FOUND, X11::xcb_xkb X11_Xcomposite_INCLUDE_PATH, X11_Xcomposite_LIB, X11_Xcomposite_FOUND, X11::Xcomposite X11_Xcursor_INCLUDE_PATH, X11_Xcursor_LIB, X11_Xcursor_FOUND, X11::Xcursor X11_Xdamage_INCLUDE_PATH, X11_Xdamage_LIB, X11_Xdamage_FOUND, X11::Xdamage X11_Xdmcp_INCLUDE_PATH, X11_Xdmcp_LIB, X11_Xdmcp_FOUND, X11::Xdmcp X11_Xext_INCLUDE_PATH, X11_Xext_LIB, X11_Xext_FOUND, X11::Xext X11_Xxf86misc_INCLUDE_PATH, X11_Xxf86misc_LIB, X11_Xxf86misc_FOUND, X11::Xxf86misc X11_Xxf86vm_INCLUDE_PATH, X11_Xxf86vm_LIB X11_Xxf86vm_FOUND, X11::Xxf86vm X11_Xfixes_INCLUDE_PATH, X11_Xfixes_LIB, X11_Xfixes_FOUND, X11::Xfixes X11_Xft_INCLUDE_PATH, X11_Xft_LIB, X11_Xft_FOUND, X11::Xft X11_Xi_INCLUDE_PATH, X11_Xi_LIB, X11_Xi_FOUND, X11::Xi X11_Xinerama_INCLUDE_PATH, X11_Xinerama_LIB, X11_Xinerama_FOUND, X11::Xinerama X11_Xkb_INCLUDE_PATH, X11_Xkblib_INCLUDE_PATH, X11_Xkb_FOUND, X11::Xkb X11_xkbcommon_INCLUDE_PATH, X11_xkbcommon_LIB, X11_xkbcommon_FOUND, X11::xkbcommon X11_xkbcommon_X11_INCLUDE_PATH,X11_xkbcommon_X11_LIB,X11_xkbcommon_X11_FOUND,X11::xkbcommon_X11 X11_xkbfile_INCLUDE_PATH, X11_xkbfile_LIB, X11_xkbfile_FOUND, X11::xkbfile X11_Xmu_INCLUDE_PATH, X11_Xmu_LIB, X11_Xmu_FOUND, X11::Xmu X11_Xpm_INCLUDE_PATH, X11_Xpm_LIB, X11_Xpm_FOUND, X11::Xpm X11_Xtst_INCLUDE_PATH, X11_Xtst_LIB, X11_Xtst_FOUND, X11::Xtst X11_Xrandr_INCLUDE_PATH, X11_Xrandr_LIB, X11_Xrandr_FOUND, X11::Xrandr X11_Xrender_INCLUDE_PATH, X11_Xrender_LIB, X11_Xrender_FOUND, X11::Xrender X11_XRes_INCLUDE_PATH, X11_XRes_LIB, X11_XRes_FOUND, X11::XRes X11_Xss_INCLUDE_PATH, X11_Xss_LIB, X11_Xss_FOUND, X11::Xss X11_Xt_INCLUDE_PATH, X11_Xt_LIB, X11_Xt_FOUND, X11::Xt X11_Xutil_INCLUDE_PATH, X11_Xutil_FOUND, X11::Xutil X11_Xv_INCLUDE_PATH, X11_Xv_LIB, X11_Xv_FOUND, X11::Xv X11_dpms_INCLUDE_PATH, (in X11_Xext_LIB), X11_dpms_FOUND X11_XShm_INCLUDE_PATH, (in X11_Xext_LIB), X11_XShm_FOUND X11_Xshape_INCLUDE_PATH, (in X11_Xext_LIB), X11_Xshape_FOUND X11_XSync_INCLUDE_PATH, (in X11_Xext_LIB), X11_XSync_FOUND X11_Xaw_INCLUDE_PATH, X11_Xaw_LIB X11_Xaw_FOUND X11::Xaw New in version 3.14: Renamed Xxf86misc, X11_Xxf86misc, X11_Xxf86vm, X11_xkbfile, X11_Xtst, and X11_Xss libraries to match their file names. Deprecated the X11_Xinput library. Old names are still available for compatibility. New in version 3.14: Added the X11_Xext_INCLUDE_PATH variable. New in version 3.18: Added the xcb, X11-xcb, xcb-icccm, xcb-xkb, xkbcommon, and xkbcommon-X11 libraries. New in version 3.19: Added the Xaw, xcb_util, and xcb_xfixes libraries. FindXalanCNew in version 3.5.Find the Apache Xalan-C++ XSL transform processor headers and libraries. Imported targetsThis module defines the following IMPORTED targets:
Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
FindXCTestNew in version 3.3.Functions to help creating and executing XCTest bundles. An XCTest bundle is a CFBundle with a special product-type and bundle extension. The Mac Developer Library provides more information in the Testing with Xcode document. Module Functions
xctest_add_bundle( <target> # Name of the XCTest bundle <testee> # Target name of the testee )
xctest_add_test( <name> # Test name <bundle> # Target name of XCTest bundle ) Module VariablesThe following variables are set by including this module:
FindXercesCNew in version 3.1.Find the Apache Xerces-C++ validating XML parser headers and libraries. Imported targetsNew in version 3.5.This module defines the following IMPORTED targets:
Result variablesThis module will set the following variables in your project:
Cache variablesThe following cache variables may also be set:
New in version 3.4: Debug and Release variants are found separately. FindXMLRPCFind xmlrpcFind the native XMLRPC headers and libraries. XMLRPC_INCLUDE_DIRS - where to find xmlrpc.h, etc. XMLRPC_LIBRARIES - List of libraries when using xmlrpc. XMLRPC_FOUND - True if xmlrpc found. XMLRPC modules may be specified as components for this find module. Modules may be listed by running "xmlrpc-c-config". Modules include: c++ C++ wrapper code libwww-client libwww-based client cgi-server CGI-based server abyss-server ABYSS-based server Typical usage: find_package(XMLRPC REQUIRED libwww-client) FindZLIBFind the native ZLIB includes and library.IMPORTED TargetsNew in version 3.1.This module defines IMPORTED target ZLIB::ZLIB, if ZLIB has been found. Result VariablesThis module defines the following variables:ZLIB_INCLUDE_DIRS - where to find zlib.h, etc. ZLIB_LIBRARIES - List of libraries when using zlib. ZLIB_FOUND - True if zlib found. ZLIB_VERSION_STRING - The version of zlib found (x.y.z) ZLIB_VERSION_MAJOR - The major version of zlib ZLIB_VERSION_MINOR - The minor version of zlib ZLIB_VERSION_PATCH - The patch version of zlib ZLIB_VERSION_TWEAK - The tweak version of zlib New in version 3.4: Debug and Release variants are found separately. Backward CompatibilityThe following variable are provided for backward compatibilityZLIB_MAJOR_VERSION - The major version of zlib ZLIB_MINOR_VERSION - The minor version of zlib ZLIB_PATCH_VERSION - The patch version of zlib HintsA user may set ZLIB_ROOT to a zlib installation root to tell this module where to look.DEPRECATED MODULESDeprecated Utility ModulesAddFileDependenciesDeprecated since version 3.20.Add dependencies to a source file. add_file_dependencies(<source> <files>...) Adds the given <files> to the dependencies of file <source>. Do not use this command in new code. It is just a wrapper around: set_property(SOURCE <source> APPEND PROPERTY OBJECT_DEPENDS <files>...) Instead use the set_property() command to append to the OBJECT_DEPENDS source file property directly. CMakeDetermineVSServicePackDeprecated since version 3.0: Do not use.The functionality of this module has been superseded by the CMAKE_<LANG>_COMPILER_VERSION variable that contains the compiler version number. Determine the Visual Studio service pack of the 'cl' in use. Usage: if(MSVC) include(CMakeDetermineVSServicePack) DetermineVSServicePack( my_service_pack ) if( my_service_pack ) message(STATUS "Detected: ${my_service_pack}") endif() endif() Function DetermineVSServicePack sets the given variable to one of the following values or an empty string if unknown: vc80, vc80sp1 vc90, vc90sp1 vc100, vc100sp1 vc110, vc110sp1, vc110sp2, vc110sp3, vc110sp4 CMakeExpandImportedTargetsDeprecated since version 3.4: Do not use.This module was once needed to expand imported targets to the underlying libraries they reference on disk for use with the try_compile() and try_run() commands. These commands now support imported libraries in their LINK_LIBRARIES options (since CMake 2.8.11 for try_compile() and since CMake 3.2 for try_run()). This module does not support the policy CMP0022 NEW behavior or use of the INTERFACE_LINK_LIBRARIES property because generator expressions cannot be evaluated during configuration. CMAKE_EXPAND_IMPORTED_TARGETS(<var> LIBRARIES lib1 lib2...libN [CONFIGURATION <config>]) CMAKE_EXPAND_IMPORTED_TARGETS() takes a list of libraries and replaces all imported targets contained in this list with their actual file paths of the referenced libraries on disk, including the libraries from their link interfaces. If a CONFIGURATION is given, it uses the respective configuration of the imported targets if it exists. If no CONFIGURATION is given, it uses the first configuration from ${CMAKE_CONFIGURATION_TYPES} if set, otherwise ${CMAKE_BUILD_TYPE}. cmake_expand_imported_targets(expandedLibs LIBRARIES ${CMAKE_REQUIRED_LIBRARIES} CONFIGURATION "${CMAKE_TRY_COMPILE_CONFIGURATION}" ) CMakeForceCompilerDeprecated since version 3.6: Do not use.The macros provided by this module were once intended for use by cross-compiling toolchain files when CMake was not able to automatically detect the compiler identification. Since the introduction of this module, CMake's compiler identification capabilities have improved and can now be taught to recognize any compiler. Furthermore, the suite of information CMake detects from a compiler is now too extensive to be provided by toolchain files using these macros. One common use case for this module was to skip CMake's checks for a working compiler when using a cross-compiler that cannot link binaries without special flags or custom linker scripts. This case is now supported by setting the CMAKE_TRY_COMPILE_TARGET_TYPE variable in the toolchain file instead.
Macro CMAKE_FORCE_C_COMPILER has the following signature: CMAKE_FORCE_C_COMPILER(<compiler> <compiler-id>) It sets CMAKE_C_COMPILER to the given compiler and the cmake internal variable CMAKE_C_COMPILER_ID to the given compiler-id. It also bypasses the check for working compiler and basic compiler information tests. Macro CMAKE_FORCE_CXX_COMPILER has the following signature: CMAKE_FORCE_CXX_COMPILER(<compiler> <compiler-id>) It sets CMAKE_CXX_COMPILER to the given compiler and the cmake internal variable CMAKE_CXX_COMPILER_ID to the given compiler-id. It also bypasses the check for working compiler and basic compiler information tests. Macro CMAKE_FORCE_Fortran_COMPILER has the following signature: CMAKE_FORCE_Fortran_COMPILER(<compiler> <compiler-id>) It sets CMAKE_Fortran_COMPILER to the given compiler and the cmake internal variable CMAKE_Fortran_COMPILER_ID to the given compiler-id. It also bypasses the check for working compiler and basic compiler information tests. So a simple toolchain file could look like this: include (CMakeForceCompiler) set(CMAKE_SYSTEM_NAME Generic) CMAKE_FORCE_C_COMPILER (chc12 MetrowerksHicross) CMAKE_FORCE_CXX_COMPILER (chc12 MetrowerksHicross) CMakeParseArgumentsThis module once implemented the cmake_parse_arguments() command that is now implemented natively by CMake. It is now an empty placeholder for compatibility with projects that include it to get the command from CMake 3.4 and lower.DocumentationDeprecated since version 3.18: This module does nothing, unless policy CMP0106 is set to OLD.This module provides support for the VTK documentation framework. It relies on several tools (Doxygen, Perl, etc). MacroAddFileDependenciesDeprecated since version 3.14.MACRO_ADD_FILE_DEPENDENCIES(<source> <files>...) Do not use this command in new code. It is just a wrapper around: set_property(SOURCE <source> APPEND PROPERTY OBJECT_DEPENDS <files>...) Instead use the set_property() command to append to the OBJECT_DEPENDS source file property directly. TestCXXAcceptsFlagDeprecated since version 3.0: See CheckCXXCompilerFlag.Check if the CXX compiler accepts a flag. CHECK_CXX_ACCEPTS_FLAG(<flags> <variable>)
UseJavaClassFilelistChanged in version 3.20: This module was previously documented by mistake and was never meant for direct inclusion by project code. See the UseJava module.UseJavaSymlinksChanged in version 3.20: This module was previously documented by mistake and was never meant for direct inclusion by project code. See the UseJava module.UsePkgConfigObsolete pkg-config module for CMake, use FindPkgConfig instead.This module defines the following macro: PKGCONFIG(package includedir libdir linkflags cflags) Calling PKGCONFIG will fill the desired information into the 4 given arguments, e.g. PKGCONFIG(libart-2.0 LIBART_INCLUDE_DIR LIBART_LINK_DIR LIBART_LINK_FLAGS LIBART_CFLAGS) if pkg-config was NOT found or the specified software package doesn't exist, the variable will be empty when the function returns, otherwise they will contain the respective information Use_wxWindowsDeprecated since version 2.8.10: Use find_package(wxWidgets) and include(${wxWidgets_USE_FILE}) instead.This convenience include finds if wxWindows is installed and set the appropriate libs, incdirs, flags etc. author Jan Woetzel <jw -at- mip.informatik.uni-kiel.de> (07/2003) USAGE: just include Use_wxWindows.cmake in your projects CMakeLists.txt include( ${CMAKE_MODULE_PATH}/Use_wxWindows.cmake) if you are sure you need GL then set(WXWINDOWS_USE_GL 1) *before* you include this file. WriteBasicConfigVersionFileDeprecated since version 3.0: Use the identical command write_basic_package_version_file() from module CMakePackageConfigHelpers.WRITE_BASIC_CONFIG_VERSION_FILE( filename [VERSION major.minor.patch] COMPATIBILITY (AnyNewerVersion|SameMajorVersion|SameMinorVersion|ExactVersion) [ARCH_INDEPENDENT] ) WriteCompilerDetectionHeaderDeprecated since version 3.20: This module is available only if policy CMP0120 is not set to NEW. Do not use it in new code.New in version 3.1. This module provides the function write_compiler_detection_header(). This function can be used to generate a file suitable for preprocessor inclusion which contains macros to be used in source code: write_compiler_detection_header( FILE <file> PREFIX <prefix> [OUTPUT_FILES_VAR <output_files_var> OUTPUT_DIR <output_dir>] COMPILERS <compiler> [...] FEATURES <feature> [...] [BARE_FEATURES <feature> [...]] [VERSION <version>] [PROLOG <prolog>] [EPILOG <epilog>] [ALLOW_UNKNOWN_COMPILERS] [ALLOW_UNKNOWN_COMPILER_VERSIONS] ) This generates the file <file> with macros which all have the prefix <prefix>. By default, all content is written directly to the <file>. The OUTPUT_FILES_VAR may be specified to cause the compiler-specific content to be written to separate files. The separate files are then available in the <output_files_var> and may be consumed by the caller for installation for example. The OUTPUT_DIR specifies a relative path from the main <file> to the compiler-specific files. For example: write_compiler_detection_header( FILE climbingstats_compiler_detection.h PREFIX ClimbingStats OUTPUT_FILES_VAR support_files OUTPUT_DIR compilers COMPILERS GNU Clang MSVC Intel FEATURES cxx_variadic_templates ) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/climbingstats_compiler_detection.h DESTINATION include ) install(FILES ${support_files} DESTINATION include/compilers ) VERSION may be used to specify the API version to be generated. Future versions of CMake may introduce alternative APIs. A given API is selected by any <version> value greater than or equal to the version of CMake that introduced the given API and less than the version of CMake that introduced its succeeding API. The value of the CMAKE_MINIMUM_REQUIRED_VERSION variable is used if no explicit version is specified. (As of CMake version 3.22.2 there is only one API version.) PROLOG may be specified as text content to write at the start of the header. EPILOG may be specified as text content to write at the end of the header At least one <compiler> and one <feature> must be listed. Compilers which are known to CMake, but not specified are detected and a preprocessor #error is generated for them. A preprocessor macro matching <PREFIX>_COMPILER_IS_<compiler> is generated for each compiler known to CMake to contain the value 0 or 1. Possible compiler identifiers are documented with the CMAKE_<LANG>_COMPILER_ID variable. Available features in this version of CMake are listed in the CMAKE_C_KNOWN_FEATURES and CMAKE_CXX_KNOWN_FEATURES global properties. See the cmake-compile-features(7) manual for information on compile features. New in version 3.2: Added MSVC and AppleClang compiler support. New in version 3.6: Added Intel compiler support. Changed in version 3.8: The {c,cxx}_std_* meta-features are ignored if requested. New in version 3.8: ALLOW_UNKNOWN_COMPILERS and ALLOW_UNKNOWN_COMPILER_VERSIONS cause the module to generate conditions that treat unknown compilers as simply lacking all features. Without these options the default behavior is to generate a #error for unknown compilers and versions. New in version 3.12: BARE_FEATURES will define the compatibility macros with the name used in newer versions of the language standard, so the code can use the new feature name unconditionally. Feature Test MacrosFor each compiler, a preprocessor macro is generated matching <PREFIX>_COMPILER_IS_<compiler> which has the content either 0 or 1, depending on the compiler in use. Preprocessor macros for compiler version components are generated matching <PREFIX>_COMPILER_VERSION_MAJOR <PREFIX>_COMPILER_VERSION_MINOR and <PREFIX>_COMPILER_VERSION_PATCH containing decimal values for the corresponding compiler version components, if defined.A preprocessor test is generated based on the compiler version denoting whether each feature is enabled. A preprocessor macro matching <PREFIX>_COMPILER_<FEATURE>, where <FEATURE> is the upper-case <feature> name, is generated to contain the value 0 or 1 depending on whether the compiler in use supports the feature: write_compiler_detection_header( FILE climbingstats_compiler_detection.h PREFIX ClimbingStats COMPILERS GNU Clang AppleClang MSVC Intel FEATURES cxx_variadic_templates ) #if ClimbingStats_COMPILER_CXX_VARIADIC_TEMPLATES template<typename... T> void someInterface(T t...) { /* ... */ } #else // Compatibility versions template<typename T1> void someInterface(T1 t1) { /* ... */ } template<typename T1, typename T2> void someInterface(T1 t1, T2 t2) { /* ... */ } template<typename T1, typename T2, typename T3> void someInterface(T1 t1, T2 t2, T3 t3) { /* ... */ } #endif Symbol MacrosSome additional symbol-defines are created for particular features for use as symbols which may be conditionally defined empty:class MyClass ClimbingStats_FINAL { ClimbingStats_CONSTEXPR int someInterface() { return 42; } }; The ClimbingStats_FINAL macro will expand to final if the compiler (and its flags) support the cxx_final feature, and the ClimbingStats_CONSTEXPR macro will expand to constexpr if cxx_constexpr is supported. If BARE_FEATURES cxx_final was given as argument the final keyword will be defined for old compilers, too. The following features generate corresponding symbol defines and if they are available as BARE_FEATURES:
Compatibility Implementation MacrosSome features are suitable for wrapping in a macro with a backward compatibility implementation if the compiler does not support the feature.When the cxx_static_assert feature is not provided by the compiler, a compatibility implementation is available via the <PREFIX>_STATIC_ASSERT(COND) and <PREFIX>_STATIC_ASSERT_MSG(COND, MSG) function-like macros. The macros expand to static_assert where that compiler feature is available, and to a compatibility implementation otherwise. In the first form, the condition is stringified in the message field of static_assert. In the second form, the message MSG is passed to the message field of static_assert, or ignored if using the backward compatibility implementation. The cxx_attribute_deprecated feature provides a macro definition <PREFIX>_DEPRECATED, which expands to either the standard [[deprecated]] attribute or a compiler-specific decorator such as __attribute__((__deprecated__)) used by GNU compilers. The cxx_alignas feature provides a macro definition <PREFIX>_ALIGNAS which expands to either the standard alignas decorator or a compiler-specific decorator such as __attribute__ ((__aligned__)) used by GNU compilers. The cxx_alignof feature provides a macro definition <PREFIX>_ALIGNOF which expands to either the standard alignof decorator or a compiler-specific decorator such as __alignof__ used by GNU compilers.
A use-case which arises with such deprecation macros is the deprecation of an entire library. In that case, all public API in the library may be decorated with the <PREFIX>_DEPRECATED macro. This results in very noisy build output when building the library itself, so the macro may be may be defined to empty in that case when building the deprecated library: add_library(compat_support ${srcs}) target_compile_definitions(compat_support PRIVATE CompatSupport_DEPRECATED= ) Example UsageNOTE:This section was migrated from the
cmake-compile-features(7) manual since it relies on the
WriteCompilerDetectionHeader module which is removed by policy
CMP0120.
Compile features may be preferred if available, without creating a hard requirement. For example, a library may provide alternative implementations depending on whether the cxx_variadic_templates feature is available: #if Foo_COMPILER_CXX_VARIADIC_TEMPLATES template<int I, int... Is> struct Interface; template<int I> struct Interface<I> { static int accumulate() { return I; } }; template<int I, int... Is> struct Interface { static int accumulate() { return I + Interface<Is...>::accumulate(); } }; #else template<int I1, int I2 = 0, int I3 = 0, int I4 = 0> struct Interface { static int accumulate() { return I1 + I2 + I3 + I4; } }; #endif Such an interface depends on using the correct preprocessor defines for the compiler features. CMake can generate a header file containing such defines using the WriteCompilerDetectionHeader module. The module contains the write_compiler_detection_header function which accepts parameters to control the content of the generated header file: write_compiler_detection_header( FILE "${CMAKE_CURRENT_BINARY_DIR}/foo_compiler_detection.h" PREFIX Foo COMPILERS GNU FEATURES cxx_variadic_templates ) Such a header file may be used internally in the source code of a project, and it may be installed and used in the interface of library code. For each feature listed in FEATURES, a preprocessor definition is created in the header file, and defined to either 1 or 0. Additionally, some features call for additional defines, such as the cxx_final and cxx_override features. Rather than being used in #ifdef code, the final keyword is abstracted by a symbol which is defined to either final, a compiler-specific equivalent, or to empty. That way, C++ code can be written to unconditionally use the symbol, and compiler support determines what it is expanded to: struct Interface { virtual void Execute() = 0; }; struct Concrete Foo_FINAL { void Execute() Foo_OVERRIDE; }; In this case, Foo_FINAL will expand to final if the compiler supports the keyword, or to empty otherwise. In this use-case, the project code may wish to enable a particular language standard if available from the compiler. The CXX_STANDARD target property may be set to the desired language standard for a particular target, and the CMAKE_CXX_STANDARD variable may be set to influence all following targets: write_compiler_detection_header( FILE "${CMAKE_CURRENT_BINARY_DIR}/foo_compiler_detection.h" PREFIX Foo COMPILERS GNU FEATURES cxx_final cxx_override ) # Includes foo_compiler_detection.h and uses the Foo_FINAL symbol # which will expand to 'final' if the compiler supports the requested # CXX_STANDARD. add_library(foo foo.cpp) set_property(TARGET foo PROPERTY CXX_STANDARD 11) # Includes foo_compiler_detection.h and uses the Foo_FINAL symbol # which will expand to 'final' if the compiler supports the feature, # even though CXX_STANDARD is not set explicitly. The requirement of # cxx_constexpr causes CMake to set CXX_STANDARD internally, which # affects the compile flags. add_library(foo_impl foo_impl.cpp) target_compile_features(foo_impl PRIVATE cxx_constexpr) The write_compiler_detection_header function also creates compatibility code for other features which have standard equivalents. For example, the cxx_static_assert feature is emulated with a template and abstracted via the <PREFIX>_STATIC_ASSERT and <PREFIX>_STATIC_ASSERT_MSG function-macros. Deprecated Find ModulesFindCUDAWARNING:Deprecated since version 3.10.
It is no longer necessary to use this module or call find_package(CUDA) for compiling CUDA code. Instead, list CUDA among the languages named in the top-level call to the project() command, or call the enable_language() command with CUDA. Then one can add CUDA (.cu) sources directly to targets similar to other languages. New in version 3.17: To find and use the CUDA toolkit libraries manually, use the FindCUDAToolkit module instead. It works regardless of the CUDA language being enabled. Documentation of Deprecated UsageTools for building CUDA C files: libraries and build dependencies.This script locates the NVIDIA CUDA C tools. It should work on Linux, Windows, and macOS and should be reasonably up to date with CUDA C releases. New in version 3.19: QNX support. This script makes use of the standard find_package() arguments of <VERSION>, REQUIRED and QUIET. CUDA_FOUND will report if an acceptable version of CUDA was found. The script will prompt the user to specify CUDA_TOOLKIT_ROOT_DIR if the prefix cannot be determined by the location of nvcc in the system path and REQUIRED is specified to find_package(). To use a different installed version of the toolkit set the environment variable CUDA_BIN_PATH before running cmake (e.g. CUDA_BIN_PATH=/usr/local/cuda1.0 instead of the default /usr/local/cuda) or set CUDA_TOOLKIT_ROOT_DIR after configuring. If you change the value of CUDA_TOOLKIT_ROOT_DIR, various components that depend on the path will be relocated. It might be necessary to set CUDA_TOOLKIT_ROOT_DIR manually on certain platforms, or to use a CUDA runtime not installed in the default location. In newer versions of the toolkit the CUDA library is included with the graphics driver -- be sure that the driver version matches what is needed by the CUDA runtime version. Input VariablesThe following variables affect the behavior of the macros in the script (in alphabetical order). Note that any of these flags can be changed multiple times in the same directory before calling cuda_add_executable(), cuda_add_library(), cuda_compile(), cuda_compile_ptx(), cuda_compile_fatbin(), cuda_compile_cubin() or cuda_wrap_srcs():
CommandsThe script creates the following functions and macros (in alphabetical order):cuda_add_cufft_to_target(<cuda_target>) Adds the cufft library to the target (can be any target). Handles whether you are in emulation mode or not. cuda_add_cublas_to_target(<cuda_target>) Adds the cublas library to the target (can be any target). Handles whether you are in emulation mode or not. cuda_add_executable(<cuda_target> <file>... [WIN32] [MACOSX_BUNDLE] [EXCLUDE_FROM_ALL] [OPTIONS ...]) Creates an executable <cuda_target> which is made up of the files specified. All of the non CUDA C files are compiled using the standard build rules specified by CMake and the CUDA files are compiled to object files using nvcc and the host compiler. In addition CUDA_INCLUDE_DIRS is added automatically to include_directories(). Some standard CMake target calls can be used on the target after calling this macro (e.g. set_target_properties() and target_link_libraries()), but setting properties that adjust compilation flags will not affect code compiled by nvcc. Such flags should be modified before calling cuda_add_executable(), cuda_add_library() or cuda_wrap_srcs(). cuda_add_library(<cuda_target> <file>... [STATIC | SHARED | MODULE] [EXCLUDE_FROM_ALL] [OPTIONS ...]) Same as cuda_add_executable() except that a library is created. cuda_build_clean_target() Creates a convenience target that deletes all the dependency files generated. You should make clean after running this target to ensure the dependency files get regenerated. cuda_compile(<generated_files> <file>... [STATIC | SHARED | MODULE] [OPTIONS ...]) Returns a list of generated files from the input source files to be used with add_library() or add_executable(). cuda_compile_ptx(<generated_files> <file>... [OPTIONS ...]) Returns a list of PTX files generated from the input source files. cuda_compile_fatbin(<generated_files> <file>... [OPTIONS ...]) New in version 3.1. Returns a list of FATBIN files generated from the input source files. cuda_compile_cubin(<generated_files> <file>... [OPTIONS ...]) New in version 3.1. Returns a list of CUBIN files generated from the input source files. cuda_compute_separable_compilation_object_file_name(<output_file_var> <cuda_target> <object_files>) Compute the name of the intermediate link file used for separable compilation. This file name is typically passed into CUDA_LINK_SEPARABLE_COMPILATION_OBJECTS. output_file_var is produced based on cuda_target the list of objects files that need separable compilation as specified by <object_files>. If the <object_files> list is empty, then <output_file_var> will be empty. This function is called automatically for cuda_add_library() and cuda_add_executable(). Note that this is a function and not a macro. cuda_include_directories(path0 path1 ...) Sets the directories that should be passed to nvcc (e.g. nvcc -Ipath0 -Ipath1 ...). These paths usually contain other .cu files. cuda_link_separable_compilation_objects(<output_file_var> <cuda_target> <nvcc_flags> <object_files>) Generates the link object required by separable compilation from the given object files. This is called automatically for cuda_add_executable() and cuda_add_library(), but can be called manually when using cuda_wrap_srcs() directly. When called from cuda_add_library() or cuda_add_executable() the <nvcc_flags> passed in are the same as the flags passed in via the OPTIONS argument. The only nvcc flag added automatically is the bitness flag as specified by CUDA_64_BIT_DEVICE_CODE. Note that this is a function instead of a macro. cuda_select_nvcc_arch_flags(<out_variable> [<target_CUDA_architecture> ...]) Selects GPU arch flags for nvcc based on target_CUDA_architecture. Values for target_CUDA_architecture:
Returns list of flags to be added to CUDA_NVCC_FLAGS in <out_variable>. Additionally, sets <out_variable>_readable to the resulting numeric list. Example: cuda_select_nvcc_arch_flags(ARCH_FLAGS 3.0 3.5+PTX 5.2(5.0) Maxwell) list(APPEND CUDA_NVCC_FLAGS ${ARCH_FLAGS}) More info on CUDA architectures: https://en.wikipedia.org/wiki/CUDA. Note that this is a function instead of a macro. cuda_wrap_srcs(<cuda_target> <format> <generated_files> <file>... [STATIC | SHARED | MODULE] [OPTIONS ...]) This is where all the magic happens. cuda_add_executable(), cuda_add_library(), cuda_compile(), and cuda_compile_ptx() all call this function under the hood. Given the list of files <file>... this macro generates custom commands that generate either PTX or linkable objects (use PTX or OBJ for the <format> argument to switch). Files that don't end with .cu or have the HEADER_FILE_ONLY property are ignored. The arguments passed in after OPTIONS are extra command line options to give to nvcc. You can also specify per configuration options by specifying the name of the configuration followed by the options. General options must precede configuration specific options. Not all configurations need to be specified, only the ones provided will be used. For example: cuda_add_executable(... OPTIONS -DFLAG=2 "-DFLAG_OTHER=space in flag" DEBUG -g RELEASE --use_fast_math RELWITHDEBINFO --use_fast_math;-g MINSIZEREL --use_fast_math) For certain configurations (namely VS generating object files with CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE set to ON), no generated file will be produced for the given cuda file. This is because when you add the cuda file to Visual Studio it knows that this file produces an object file and will link in the resulting object file automatically. This script will also generate a separate cmake script that is used at build time to invoke nvcc. This is for several reasons:
This script also looks at optional arguments STATIC, SHARED, or MODULE to determine when to target the object compilation for a shared library. BUILD_SHARED_LIBS is ignored in cuda_wrap_srcs(), but it is respected in cuda_add_library(). On some systems special flags are added for building objects intended for shared libraries. A preprocessor macro, <target_name>_EXPORTS is defined when a shared library compilation is detected. Flags passed into add_definitions with -D or /D are passed along to nvcc. Result VariablesThe script defines the following variables:
FindPythonInterpDeprecated since version 3.12: Use FindPython3, FindPython2 or FindPython instead.Find python interpreter This module finds if Python interpreter is installed and determines where the executables are. This code sets the following variables: PYTHONINTERP_FOUND - Was the Python executable found PYTHON_EXECUTABLE - path to the Python interpreter PYTHON_VERSION_STRING - Python version found e.g. 2.5.2 PYTHON_VERSION_MAJOR - Python major version found e.g. 2 PYTHON_VERSION_MINOR - Python minor version found e.g. 5 PYTHON_VERSION_PATCH - Python patch version found e.g. 2 The Python_ADDITIONAL_VERSIONS variable can be used to specify a list of version numbers that should be taken into account when searching for Python. You need to set this variable before calling find_package(PythonInterp). If calling both find_package(PythonInterp) and find_package(PythonLibs), call find_package(PythonInterp) first to get the currently active Python version by default with a consistent version of PYTHON_LIBRARIES. NOTE: A call to find_package(PythonInterp ${V}) for
python version V may find a python executable with no version
suffix. In this case no attempt is made to avoid python executables from other
versions. Use FindPython3, FindPython2 or FindPython
instead.
FindPythonLibsDeprecated since version 3.12: Use FindPython3, FindPython2 or FindPython instead.Find python libraries This module finds if Python is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: PYTHONLIBS_FOUND - have the Python libs been found PYTHON_LIBRARIES - path to the python library PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) PYTHON_INCLUDE_DIRS - path to where Python.h is found PYTHON_DEBUG_LIBRARIES - path to the debug library (deprecated) PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) The Python_ADDITIONAL_VERSIONS variable can be used to specify a list of version numbers that should be taken into account when searching for Python. You need to set this variable before calling find_package(PythonLibs). If you'd like to specify the installation of Python to use, you should modify the following cache variables: PYTHON_LIBRARY - path to the python library PYTHON_INCLUDE_DIR - path to where Python.h is found If calling both find_package(PythonInterp) and find_package(PythonLibs), call find_package(PythonInterp) first to get the currently active Python version by default with a consistent version of PYTHON_LIBRARIES. FindQtDeprecated since version 3.14: This module is available only if policy CMP0084 is not set to NEW.Searches for all installed versions of Qt3 or Qt4. This module cannot handle Qt5 or any later versions. For those, see cmake-qt(7). This module should only be used if your project can work with multiple versions of Qt. If not, you should just directly use FindQt4 or FindQt3. If multiple versions of Qt are found on the machine, then The user must set the option DESIRED_QT_VERSION to the version they want to use. If only one version of qt is found on the machine, then the DESIRED_QT_VERSION is set to that version and the matching FindQt3 or FindQt4 module is included. Once the user sets DESIRED_QT_VERSION, then the FindQt3 or FindQt4 module is included. QT_REQUIRED if this is set to TRUE then if CMake can not find Qt4 or Qt3 an error is raised and a message is sent to the user. DESIRED_QT_VERSION OPTION is created QT4_INSTALLED is set to TRUE if qt4 is found. QT3_INSTALLED is set to TRUE if qt3 is found. FindwxWindowsDeprecated since version 3.0: Replaced by FindwxWidgets.Find wxWindows (wxWidgets) installation This module finds if wxWindows/wxWidgets is installed and determines where the include files and libraries are. It also determines what the name of the library is. This code sets the following variables: WXWINDOWS_FOUND = system has WxWindows WXWINDOWS_LIBRARIES = path to the wxWindows libraries on Unix/Linux with additional linker flags from "wx-config --libs" CMAKE_WXWINDOWS_CXX_FLAGS = Compiler flags for wxWindows, essentially "`wx-config --cxxflags`" on Linux WXWINDOWS_INCLUDE_DIR = where to find "wx/wx.h" and "wx/setup.h" WXWINDOWS_LINK_DIRECTORIES = link directories, useful for rpath on Unix WXWINDOWS_DEFINITIONS = extra defines OPTIONS If you need OpenGL support please set(WXWINDOWS_USE_GL 1) in your CMakeLists.txt before you include this file. HAVE_ISYSTEM - true required to replace -I by -isystem on g++ For convenience include Use_wxWindows.cmake in your project's CMakeLists.txt using include(${CMAKE_CURRENT_LIST_DIR}/Use_wxWindows.cmake). USAGE set(WXWINDOWS_USE_GL 1) find_package(wxWindows) NOTES wxWidgets 2.6.x is supported for monolithic builds e.g. compiled in wx/build/msw dir as: nmake -f makefile.vc BUILD=debug SHARED=0 USE_OPENGL=1 MONOLITHIC=1 DEPRECATED CMAKE_WX_CAN_COMPILE WXWINDOWS_LIBRARY CMAKE_WX_CXX_FLAGS WXWINDOWS_INCLUDE_PATH AUTHOR Jan Woetzel <http://www.mip.informatik.uni-kiel.de/~jw> (07/2003-01/2006) Legacy CPack ModulesThese modules used to be mistakenly exposed to the user, and have been moved out of user visibility. They are for CPack internal use, and should never be used directly.CPackArchiveNew in version 3.9.The documentation for the CPack Archive generator has moved here: CPack Archive Generator CPackBundleThe documentation for the CPack Bundle generator has moved here: CPack Bundle GeneratorCPackCygwinThe documentation for the CPack Cygwin generator has moved here: CPack Cygwin GeneratorCPackDebThe documentation for the CPack DEB generator has moved here: CPack DEB GeneratorCPackDMGThe documentation for the CPack DragNDrop generator has moved here: CPack DragNDrop GeneratorCPackFreeBSDNew in version 3.10.The documentation for the CPack FreeBSD generator has moved here: CPack FreeBSD Generator CPackNSISThe documentation for the CPack NSIS generator has moved here: CPack NSIS GeneratorCPackNuGetNew in version 3.12.The documentation for the CPack NuGet generator has moved here: CPack NuGet Generator CPackPackageMakerThe documentation for the CPack PackageMaker generator has moved here: CPack PackageMaker GeneratorCPackProductBuildNew in version 3.7.The documentation for the CPack productbuild generator has moved here: CPack productbuild Generator CPackRPMThe documentation for the CPack RPM generator has moved here: CPack RPM GeneratorCPackWIXThe documentation for the CPack WIX generator has moved here: CPack WIX GeneratorCOPYRIGHT2000-2021 Kitware, Inc. and Contributors
Visit the GSP FreeBSD Man Page Interface. |